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ABSTRACT. We study the existence of solutions for a class of boundary value problems for frac-

tional differential inclusions, where the right hand side is a convex or a non-convex multi-valued map.

Suitable fixed point theorems are used to prove some new existence results. Examples illustrating

the abstract results are also presented.
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1. INTRODUCTION

Recently, there has been a great interest to differential equations and inclusions

with non-integer order, since fractional order models are more accurate than integer

models. Fractional derivatives provide an excellent instrument for the description of

systems with memory and hereditary properties. Many books and monographs are

devoted to the development of fractional calculus, see for instance [15, 17, 19, 21, 23,

24] and references therein. For application of fractional calculus to the other fields of

science, we refer the reader to [13, 17, 19].

In [12] the authors consider the following boundary value problem:

Dδy(t) − λy(t) = f(t, y(t)), t ∈ J := [0, 1], 1 < δ < 2,

y(0) = y(1) = 0,

where Dδ is the standard Riemann-Liouville fractional derivative, f is continuous and

λ ∈ R. In this paper we continue the study in [12] to cover the multi-valued case.

More precisely, we shall be concerned with existence of solutions for the following

boundary value problem for nonlinear fractional differential inclusion of the form:

(1.1) Dδy(t) − λy(t) ∈ F (t, y(t)), t ∈ J := [0, 1], 1 < δ < 2,

(1.2) y(0) = y(1) = 0.
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Here Dδ is the standard Riemann-Liouville fractional derivative, and F : J × R →

P(R) is a multi-valued map (P(R) is the family of all nonempty subsets of R), and

λ ∈ R with λ 6= 0. For more details about multi-valued analysis, see [5, 8, 10, 14].

Differential equations and inclusions with various boundary conditions are widely

investigated by many authors, see for instance the papers [1, 2, 6, 22].

This paper is organized as follows. In section 2 we recall some definitions and

preliminary results about multi-valued analysis and fractional calculus witch will be

used in the sequel. Section 3 is devoted to our main existence results. Illustrative

examples are given in the last section.

2. PRELIMINARIES

In this section, we introduce notations and preliminary facts that are used through-

out this paper.

2.1. Multivalued Analysis. Let C(J) denotes the Banach space of continuous func-

tions from J into R with the norm

‖f‖ = sup{|f(t)| : t ∈ J}.

By L1(J,R) denotes the Banach space of functions y : J −→ R which are Lebesgue

integrable normed by

‖y‖L1 =

∫ 1

0

|y(t)|dt.

Let (X, | · |) be a Banach space. A multi-valued map F : X → P(X) :

(i) is convex (closed) valued if F (x) is convex (closed) for all x ∈ X;

(ii) is bounded on bounded sets if F (B) =
⋃

x∈B F (x) is bounded in X for all

bounded set B of X i.e. supx∈B{sup{|y| : y ∈ F (x)}} <∞;

(iii) is called upper semi-continuous (u.s.c. for short) on X if for each x0 ∈ X the set

F (x0) is nonempty, closed subset of X, and for each open set U of X containing

F (x0), there exists an open neighborhood V of x0 such that F (V) ⊆ U ;

(iv) is said to be completely continuous if F (B) is relatively compact for every

bounded subset B of X;

(v) has a fixed point if there exists x ∈ X such that x ∈ F (x).

For each y ∈ C(J) the set

SF,y = {f ∈ L1(J,R) : f(t) ∈ F (t, y) for a.e. t ∈ J}

is known as the set of selections of the multi-valued map F .

In the following by Pp we denote the set of all nonempty subsets of X which

have the property “p”, where “p” will be bounded (b), closed (cl), concex (c), com-

pact (cp) etc. Thus Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) = {Y ∈ P(X) :
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Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) = {Y ∈ P(X) :

Y is compact and convex}.

We define the graph of G to be the set Gr (G) = {(x, y) ∈ X × Y, y ∈ G(x)} and

recall two useful results regarding closed graphs and upper-semicontinuity.

Lemma 2.1 ([8, Proposition 1.2]). If G : X → Pcl(Y ) is u.s.c., then Gr(G) is a

closed subset of X × Y ; i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if

when n → ∞, xn → x∗, yn → y∗ and yn ∈ G(xn), then y∗ ∈ G(x∗). Conversely, if G

is completely continuous and has a closed graph, then it is upper semi-continuous.

Lemma 2.2 ([18]). Let X be a separable Banach space. Let F : J × X → Pcp,c(X)

be measurable with respect to t for each x ∈ X and u.s.c. with respect to x for almost

all t ∈ J and SF,x 6= ∅ for any x ∈ C(J,X), and let Θ be a linear continuous mapping

from L1(J,X) to C(J,X). Then the operator

Θ ◦ SF : C(J,X) → Pcp,c(C(J,X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x,y)

is a closed graph operator in C(J,X) × C(J,X).

For more details on multi-valued maps and the proof of the known results cited

in this section we refer interested reader to the books of Deimling [8], Gorniewicz [10]

and Hu and Papageorgiou [14].

2.2. Fractional Calculus. Now, we recall the definitions of the Riemann-Liouville

fractional primitive and derivative.

Definition 2.3 ([23, 24]). The Riemann-Liouville fractional integral of order s > 0

of a continuous function f : (0,∞) → R is given by

Is
0f(t) =

1

Γ(s)

∫ t

0

(t− τ)s−1f(τ)dτ,

where Γ is the gamma function.

Definition 2.4 ([23, 24]). The Riemann-Liouville fractional derivative of order s > 0

of a continuous function f : (0,∞) → R is given by

Dsf(t) =
1

Γ(1 − s)

d

dt

∫ t

0

(t− τ)−sf(τ)dτ

=
d

dt
I1−s
0 f(t).

The following lemma is of great importance in the proof of our main results.

Lemma 2.5 ([12]). The boundary value problem

Dδu(t) − λu(t) = f(t), t ∈ J := J, 1 < δ < 2,

u(0) = u(1) = 0,
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has a unique solution u ∈ C(J) given by

u(t) =

∫ 1

0

Gλ,δ(t, s)f(s)ds,

where

Gλ,δ(t, s) =























−
eλt

δ e
λ(1−s)
δ

eλ
δ

+ e
λ(t−s)
δ , 0 ≤ s ≤ t ≤ 1;

−
eλt

δ e
λ(1−s)
δ

eλ
δ

, 0 ≤ t < s ≤ 1.

Here eδ denotes the δ-exponential function given by:

eλt
δ := tδ−1Eδ,δ(λt

δ), t ∈ C \ {0}, Re(δ) > 0, λ ∈ C,

and Eδ,β is the general Mittag-Leffler function defined by:

Eδ,β(t) =
∞
∑

j=0

tj

Γ(δj + β)
, t, β ∈ C, Re(δ) > 0.

For more details about the δ-exponential function, see [15].

3. EXISTENCE RESULTS

Before stating and proving our main existence results for problem (1.1)–(1.2), we

will give the definition of its solution.

Definition 3.1. A function y ∈ AC1(J) is said to be a solution of the problem (1.1)–

(1.2) if there exists a function f ∈ L1(J,R) with f(t) ∈ F (t, y) a.e. on J such that

y satisfies the differential equation Dδy(t) − λy(t) = f(t) on J and the boundary

condition (1.2).

3.1. The Upper Semicontinuous case. Consider first the case when F has convex

values. Our first result is based on Bohnenblust-Karlin fixed point theorem.

Lemma 3.2 (Bohnenblust-Karlin [3]). Let X be a Banach space, D a nonempty

subset of X, witch is bounded, closed and convex. Suppose G : J × R → P(R) is

u.s.c. with closed, convex values, and G(D) ⊂ D and G(D) is compact. Then G has

a fixed point.

Theorem 3.3. Assume that:

(H1) F : J × R → Pcp,c(R) is Carathéodory i.e.

(i) t 7−→ F (t, y) is measurable for each y ∈ R;

(ii) y 7−→ F (t, y) is u.s.c. for almost all t ∈ J ;
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(H2) for each r > 0, there exists ϕr ∈ L1(J,R+) such that

‖F (t, y)‖ = sup{|v| : v ∈ F (t, y)} ≤ ϕr(t)

for all ‖y‖ ≤ r and for a.e. t ∈ J and

(3.1) lim inf
r→∞

1

r

∫ 1

0

ϕr(t)dt = γ.

Then the boundary problem (1.1)–(1.2) has at least one solution on J provided that:

(3.2)

[

e
|λ|
δ

|eλ
δ |

+ 1

]

e
|λ|
δ γ < 1.

Proof. We transform the problem (1.1)–(1.2) into a fixed point problem. Con-

sider the multi-valued map: N : C(J,R) → P(C(J,R)) defined by

N(y) =

{

h ∈ C(J,R) : h(t) =

∫ 1

0

Gλ,δ(t, s)f(s)ds, f ∈ SF,y

}

.

It is clear that fixed points of N are solutions of problem (1.1)–(1.2). It turns to

show that the operator N satisfies all condition of Lemma 3.2. The proof is given in

several steps.

Step 1. N(y) is convex for each y ∈ C(J,R).

Indeed, if h1, h2 belongs to N(y), then there exist f1, f2 ∈ SF,y such that for each

t ∈ J , we have

hi(t) =

∫ 1

0

Gλ,δ(t, s)fi(s)ds, i = 1, 2.

Let 0 ≤ µ ≤ 1. Then for each t ∈ J , we have

[µh1 + (1 − µ)h2](t) =

∫ 1

0

Gλ,δ(t, s)[µf1(s) + (1 − µ)f2(s)]ds.

Since F has convex values, SF,y is convex, then

µh1 + (1 − µ)h2 ∈ N(y).

Step 2. N(y) maps bounded sets (balls) into bounded sets in C(J,R).

For a positive number r let Br = {y ∈ C(J,R) : ‖y‖ ≤ r} be a bounded ball in

C(J,R). We shall prove that there exists a positive number r′ such that N(Br′) ⊆ Br′ .

If not, for each positive number r, there exists a function yr(·) ∈ Br, ‖N(yr)‖ > r for

some t ∈ J and

hr(t) =

∫ 1

0

Gλ,δ(t, s)fr(s)ds
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for some fr ∈ SF,yr
. However, on the other hand, we have:

r < ‖N(yr)‖

≤
|eλt

δ |

|eλ
δ |

∫ 1

0

|e
λ(1−s)
δ ||fr(s)|ds+

∫ t

0

|e
λ(t−s)
δ ||fr(s)|ds

≤

[

e
|λ|
δ

|eλ
δ |

+ 1

]

e
|λ|
δ

∫ 1

0

ϕ(s)ds.

Dividing both sides by r and take the lower limit as r → ∞, we get:
[

e
|λ|
δ

|eλ
δ |

+ 1

]

e
|λ|
δ γ ≥ 1,

which contradicts (3.2). Hence there exists a positive number r such thatN(Br) ⊆ Br.

Step 3. N(y) maps bounded sets into equicontinuous sets of C(J,R).

Let y be any element in Br and h ∈ N(y), then there exists a function f ∈ SF,y

such that for each t ∈ J we have

h(t) =

∫ 1

0

Gλ,δ(t, s)f(s)ds.

Let t1, t2 ∈ J, t1 < t2. Thus

|h(t2) − h(t1)| ≤

∣

∣

∣

∣

−
eλt2

δ

eλ
δ

∫ 1

0

e
λ(1−s)
δ f(s)ds−

∫ t2

0

e
λ(t2−s)
δ f(s)ds

+
eλt1

δ

eλ
δ

∫ 1

0

e
λ(1−s)
δ f(s)ds+

∫ t1

0

e
λ(t1−s)
δ f(s)ds

∣

∣

∣

∣

≤
|eλt1

δ − eλt2
δ |

|eλ
δ |

∫ 1

0

e
|λ|(1−s)
δ ϕr(s)ds

+

∫ t1

0

|e
λ(t1−s)
δ − e

λ(t2−s)
δ |ϕr(s)ds

+

∫ t2

t1

e
|λ|(t2−s)
δ ϕr(s)ds.

The right hand of the above inequality tends to zero independently of y ∈ Br as

t1 → t2.

As a consequence of Steps 1–3 together with Arzelá-Ascoli theorem, we conclude

that N : C(J,R) → P(C(J,R)) is completely continuous.

Step 4. N(y) is closed for each y ∈ C(J,R).

Let {un}n≥0 ∈ N(y) be such that un → u (n→ ∞) in C(J,R). Then u ∈ C(J,R)

and there exists vn ∈ SF,yn
such that, for each t ∈ J ,

un(t) =

∫ 1

0

Gλ,δ(t, s)vn(s)ds
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As F has compact values, we pass onto a subsequence (if necessary) to obtain

that vn converges to v in L1(J,R). Thus, v ∈ SF,y and for each t ∈ J , we have

un(t) → u(t) =

∫ 1

0

Gλ,δ(t, s)v(s)ds

Hence, u ∈ N(y).

By Lemma 2.1, since N(y) is completely continuous, in order to prove that it is

u.s.c. it is enough to prove that it has a closed graph. Thus, in our next step, we

show that

Step 5. N has a closed graph.

Let yn → y∗, hn ∈ N(yn) and hn → h∗. We need to show that h∗ ∈ N(y∗). Now

hn ∈ N(yn) implies that there exists fn ∈ SF,yn
such that for each t ∈ J ,

hn(t) =

∫ 1

0

Gλ,δ(t, s)fn(s)ds.

We must show that there exists f∗ ∈ SF,y∗ such that for each t ∈ J ,

h∗(t) =

∫ 1

0

Gλ,δ(t, s)f∗(s)ds.

Consider the continuous linear operator

Θ : L1(J,R) → C(J), f 7→ Θ(f)(t) =

∫ 1

0

Gλ,δ(t, s)f(s)ds.

From Lemma 2.2, it follows that Θ ◦ SF,y is a closed graph operator. Moreover, we

have

hn ∈ Θ(SF,yn
).

Since yn → y∗, Lemma 2.2 implies that

h∗(t) =

∫ 1

0

Gλ,δ(t, s)f∗(s)ds

for some f∗ ∈ SF,y∗

Hence, we conclude that N is a compact multivalued map, u.s.c. with convex

closed values. As a consequence of Lemma 3.2, we deduce that N has a fixed point

which is a solution of the boundary problem (1.1)–(1.2). This completes the proof.

Next, we give an existence result based upon the following form of fixed point

theorem applied to completely continuous operators [20].

Lemma 3.4. Let X a Banach space, and T : X → P(X) be a completely continuous

multi-valued map. If the set

E = {x ∈ X : σx ∈ T (x), σ > 1}

is bounded, then T has a fixed point.

Theorem 3.5. Assume that the following hypotheses hold:
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(H3) F : J × R → Pb,cl,c(R) is a Carathéodory multi-valued map;

(H4) there exists a function µ ∈ L1(J,R) such that

‖F (t, y)‖ ≤ µ(t), for a.e. t ∈ J and each y ∈ R.

Then the boundary problem (1.1)–(1.2) has at least one solution on J .

Proof. Define N as in the proof of Theorem 3.3. As in Theorem 3.3 we can

prove that N is completely continuous. It remains to show that the set

E = {y ∈ C(J) : σy ∈ N(y), σ > 1}

is bounded. Let y ∈ E , then σy ∈ N(y) for some σ > 1 and there exists a function

f ∈ SF,y such that

y(t) = σ−1

∫ 1

0

Gλ,δ(t, s)f(s)ds.

For each t ∈ J , we have

|y(t)| ≤
e
|λ|t
δ

|eλ
δ |

∫ 1

0

e
|λ|(1−s)
δ |f(s)|ds+

∫ t

0

e
|λ|(t−s)
δ |f(s)|ds.

Taking the supremum over t ∈ J , we get

‖y‖ ≤

[

e
|λ|
δ

|eλ
δ |

+ 1

]

e
|λ|
δ ‖µ‖L1 <∞.

Hence the set E is bounded. As a consequence of Lemma 3.4 we deduce that N has at

least a fixed point which gives rise to a mild solution of the boundary value problem

(1.1)–(1.2) on J . �

Our final existence result in this subsection is based on Leray-Schauder nonlinear

alternative.

Lemma 3.6 (Nonlinear alternative for Kakutani maps [11]). Let E be a Banach

space, C a closed convex subset of E, U an open subset of C and 0 ∈ U . Suppose that

F : U → Pc,cv(C) is a upper semicontinuous compact map. Then either

(i) F has a fixed point in U, or

(ii) there is a u ∈ ∂U and µ ∈ (0, 1) with u ∈ µF (u).

Theorem 3.7. Assume that (H1) holds. In addition we assume that:

(H5) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a

function p ∈ L1(J,R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t)ψ(‖x‖) for each (t, x) ∈ J × R;

(H6) there exists a constant M > 0 such that

M

ψ(M)‖p‖L1

[

e
|λ|
δ

|eλ

δ
|
+ 1

]

e
|λ|
δ

> 1.
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Then the boundary value problem (1.1)–(1.2) has at least one solution on J .

Proof. Define the operator N(y) as in the proof of Theorem 3.3. Let y ∈ µN(y)

for some µ ∈ (0, 1). We show there exists an open set U ⊆ C(J,R) with y /∈ N(y)

for any µ ∈ (0, 1) and all y ∈ ∂U . Let µ ∈ (0, 1) and y ∈ µN(y). Then there exists

f ∈ L1(J,R) with f ∈ SF,y such that, for t ∈ J , we have

y(t) =

∫ 1

0

Gλ,δ(t, s)f(s)ds.

In view of (H5), we have for each t ∈ J,

|y(t)| ≤ ψ(‖y‖)

[

e
|λ|
δ

|eλ
δ |

+ 1

]

e
|λ|
δ

∫ 1

0

p(s)ds.

Consequently, we have

‖y‖

ψ(‖y‖)‖p‖L1

[

e
|λ|
δ

|eλ

δ
|
+ 1

]

e
|λ|
δ

≤ 1.

In view of (H6), there exists M such that ‖y‖ 6= M . Let us set

U = {y ∈ C(J,R) : ‖y‖ < M}.

Proceed as in the proof of Theorem 3.3, we claim that the operator N : U → P(C(J,

R)) is a compact multi-valued map, u.s.c. with convex closed values. From the choice

of U , there is no y ∈ ∂U such that y ∈ µN(y) for some µ ∈ (0, 1). Consequently, by

the nonlinear alternative of Leray-Schauder type (Lemma 3.6), we deduce that N has

a fixed point y ∈ U which is a solution of the boundary value problem (1.1)–(1.2).

This completes the proof. �

3.2. The lower semicontinuous case. As a next result, we study the case when F

is not necessarily convex valued. Our strategy to deal with this problem is based on

the nonlinear alternative of Leray-Schauder type together with the selection theorem

of Bressan and Colombo [4] for lower semi-continuous maps with decomposable values.

Definition 3.8. Let A be a subset of I×R. A is L⊗B measurable if A belongs to the

σ−algebra generated by all sets of the form J ×D, where J is Lebesgue measurable

in I and D is Borel measurable in R.

Definition 3.9. A subset A of L1(I,R) is decomposable if for all u, v ∈ A and mea-

surable J ⊂ I, the function uχJ +vχI−J ∈ A, where χJ stands for the characteristic

function of J .

Lemma 3.10 ([4]). Let Y be a separable metric space and let N : Y → P(L1(I,R))

be a lower semi-continuous (l.s.c.) multivalued operator with nonempty closed and
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decomposable values. Then N has a continuous selection, that is, there exists a con-

tinuous function (single-valued) h : Y → L1(I,R) such that h(x) ∈ N(x) for every

x ∈ Y .

Theorem 3.11. Assume that (H5), (H6) and the following condition holds:

(H7) F : J × R → P(R) is a nonempty compact-valued multivalued map such that

(a) (t, x) 7−→ F (t, x) is L ⊗ B measurable,

(b) x 7−→ F (t, x) is lower semicontinuous for each t ∈ J ;

Then the boundary value problem (1.1)–(1.2) has at least one solution on J .

Proof. It follows from (H5) and (H7) that F is of l.s.c. type [9]. Then from

Lemma 3.10, there exists a continuous function f : AC1(J,R) → L1(J,R) such that

f(x) ∈ F(x) for all y ∈ C(J, R), where F : C(J×R) → P(L1(J,R)) is the Nemytskii

operator associated with F, defined as

F(y) = {w ∈ L1(J,R) : w(t) ∈ F (t, y(t)) for a.e. t ∈ J}.

Consider the problem

(3.3) Dδy(t) − λy(t) = f(y(t)), t ∈ J := J, 1 < δ < 2,

(3.4) y(0) = y(1) = 0.

Observe that if y ∈ AC1(J,R) is a solution of (3.3)–(3.4), then y is a solution to

the boundary value problem (1.1)–(1.2). In order to transform the problem (3.3)–(3.4)

into a fixed point problem, we define the operator N as

N(y) =

∫ 1

0

Gλ,δ(t, s)f(y(s))ds.

It can easily be shown that N is continuous and completely continuous. The

remaining part of the proof is similar to that of Theorem 3.7. So we omit it. This

completes the proof. �

3.3. The Lipschitz case. Now we prove the existence of solutions for the boundary

value problem (1.1)–(1.2) with a nonconvex valued right hand side by applying a fixed

point theorem for multivalued map due to Covitz and Nadler [7].

Let (X, d) be a metric space induced from the normed space (X; ‖ · ‖). Consider

Hd : P(X) × P(X) → R ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pb,cl(X), Hd) is a

metric space (see [16]).

Definition 3.12. A multivalued operator N : X → Pcl(X) is called
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(a) θ−Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ θd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is θ−Lipschitz with θ < 1.

Lemma 3.13 ([7]). Let (X, d) be a complete metric space. If N : X → Pcl(X) is a

contraction, then FixN 6= ∅.

Theorem 3.14. Assume that the following conditions hold:

(H8) F : J × R → Pcp(R) is such that F (·, y) : J → Pcp(R) is measurable for each

y ∈ R.

(H8) Hd(F (t, y), F (t, ȳ)) ≤ m(t)|y − ȳ| for almost all t ∈ J and y, ȳ ∈ R with m ∈

L1(J,R+) and d(0, F (t, 0)) ≤ m(t) for almost all t ∈ J .

Then the boundary value problem (1.1)–(1.2) has at least one solution on J if
[

e
|λ|
δ

|eλ
δ |

+ 1

]

e
|λ|
δ ‖m‖L1 < 1.

Proof. We transform the boundary value problem (1.1)–(1.2) into a fixed point

problem. Consider the operator N : C(J,R) → P(C(J,R)) defined at the begin of

the proof of Theorem 3.3. We show that the operator N, satisfies the assumptions of

Lemma 3.13. The proof will be given in two steps.

Step I. N(y) is nonempty and closed for every v ∈ SF,y.

Note that since the set-valued map F (·, y(·)) is measurable with the measurable

selection theorem (e.g., [5, Theorem III.6]) it admits a measurable selection v : J → R.

Moreover, by the assumption (H8), we have

|v(t)| ≤ m(t) +m(t)|y(t)|,

i.e. v ∈ L1(J,R) and hence F is integrably bounded. Therefore, SF,y 6= ∅. Moreover

N(y) ∈ Pcl(C(J, R)) for each y ∈ C(J,R), as proved in Step 4 of Theorem 3.3.

Step II. Next we show that there exists θ < 1 such that

Hd(N(y), N(ȳ)) ≤ θ‖y − ȳ‖ for each y, ȳ ∈ AC1(J,R).

Let y, ȳ ∈ AC1(J,R) and h1 ∈ N(y). Then there exists v1(t) ∈ F (t, y(t)) such

that, for each t ∈ J ,

h1(t) =

∫ 1

0

Gλ,δ(t, s)v1(s)ds.

By (H9), we have

Hd(F (t, y), F (t, ȳ)) ≤ m(t)|y(t) − ȳ(t)|.

So, there exists w(t) ∈ F (t, x̄(t)) such that

|v1(t) − w(t)| ≤ m(t)|y(t) − ȳ(t)|, t ∈ J.
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Define U : J → P(R) by

U(t) = {w ∈ R : |v1(t) − w(t)| ≤ m(t)|y(t) − ȳ(t)|}.

Since the multivalued operator U(t)∩F (t, ȳ(t)) is measurable (Proposition III.4 [5]),

there exists a function v2(t) which is a measurable selection for U . So v2(t) ∈ F (t, ȳ(t))

and for each t ∈ J , we have |v1(t) − v2(t)| ≤ m(t)|y(t) − ȳ(t)|.

For each t ∈ J , let us define

h2(t) =

∫ 1

0

Gλ,δ(t, s)v2(s)ds.

Thus,

|h1(t) − h2(t)| =

∣

∣

∣

∣

−
eλt

δ

eλ
δ

∫ 1

0

e
λ(1−s)
δ v1(s)ds−

∫ t

0

e
λ(t−s)
δ v1(s)ds

+
eλt

δ

eλ
δ

∫ 1

0

e
λ(1−s)
δ v2(s)ds+

∫ t

0

e
λ(t−s)
δ v2(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

eλt
δ

eλ
δ

∫ 1

0

e
λ(1−s)
δ [v2(s) − v1(s)]ds+

∫ t

0

e
λ(t−s)
δ [v2(s) − v1(s)]ds

∣

∣

∣

∣

≤

[

e
|λ|
δ

|eλ
δ |

+ 1

]

e
|λ|
δ ‖m‖L1‖y − y‖.

Hence,

‖h1 − h2‖ ≤

[

e
|λ|
δ

|eλ
δ |

+ 1

]

e
|λ|
δ ‖m‖L1‖y − y‖.

Analogously, interchanging the roles of x and x, we obtain

Hd(N(y), N(ȳ)) ≤ θ‖x− x̄‖ ≤

[

e
|λ|
δ

|eλ
δ |

+ 1

]

e
|λ|
δ ‖m‖L1‖y − y‖.

Since N is a contraction, it follows by Lemma 3.13 that N has a fixed point y

which is a solution of (1.1)–(1.2). This completes the proof. �

4. EXAMPLES

Consider the nonlinear fractional boundary value problem

(4.1) Dδy(t) − λy(t) ∈ F (t, y(t)), t ∈ J := [0, 1], 1 < δ < 2, λ ∈ R,

(4.2) y(0) = y(1) = 0.

(a) Let F : J × R → P(R) be a multivalued map given by

(4.3) y → F (t, y) =

[

y2e−y2

x2 + 3
,
t|y| sin |y|

|y| + 1

]

.
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For f ∈ F , we have

|f | ≤ max

(

y2e−y2

y2 + 3
,
t|y| sin |y|

|y| + 1

)

≤ t|y| + 1, y ∈ R.

Thus,

‖F (t, y)‖P := sup{|x| : x ∈ F (t, y)} ≤ rt+ 1 = ϕr(t), ‖y‖ ≤ r.

We can find that lim inf
r→∞

1

r

∫ 1

0

ϕr(s)ds = γ = 1/2. Therefore, all the conditions

of Theorem 3.3 are satisfied. So, problem (4.1)–(4.2) with F (t, y) given by (4.3)

has at least one solution on J provided

e
|λ|
δ = Eδ,δ(|λ|) < 1.

(b) If F : J × R → P(R) is a multivalued map given by

(4.4) y → F (t, y) =

[

y4

y4 + 2
+ e−y2

+ t+ 2,
|y|

|y| + 1
+ t2 +

1

2

]

.

For f ∈ F , we have

|f | ≤ max

(

y4

y4 + 2
+ e−y2

+ t+ 2,
|y|

|y| + 1
+ t2 +

1

2

)

≤ 5, x ∈ R.

Here ‖F (t, y)‖P := sup{|x| : x ∈ F (t, y)} ≤ 5 = p(t)ψ(‖y‖), y ∈ R, with

p(t) = 1, ψ(‖y‖) = 5. It is easy to verify that M > 10e
|λ|
δ = 10Eδ,δ(|λ|). Then,

by Theorem 3.7, the problem (4.1)–(4.2) with F (t, y) given by (4.4) has at least

one solution on J .

(c) Consider the multivalued map F : J × R → P(R) given by

(4.5) y → F (t, y) =

[

0, (t+ 1) sin y +
2

3

]

.

Then we have

sup{|u| : u ∈ F (t, y)} ≤ (t+ 1) +
2

3
,

and

Hd(F (t, y), F (t, y)) ≤ (t+ 1)|y − y|.

Let m(t) = t + 1. Then Hd(F (t, x), F (t, x)) ≤ m(t)|y − y|, and ‖m‖L1 = 3/2.

By Theorem 3.14, the problem (4.1)–(4.2) with the F (t, y) given by (4.5) has at

least one solution on J if

3

2
e
|λ|
δ =

3

2
Eδ,δ(|λ|) < 1.
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