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ABSTRACT. This paper studies impulsive discrete systems with time delay. Several criteria on

uniform stability and uniform asymptotic stability are established by utilizing the Razumikhin tech-

nique. Both linear and nonlinear impulsive discrete systems with time delay are investigated. These

stability criteria show that impulses can be used to stabilize a unstable system. Some numerical

examples are presented to illustrate the stability criteria.
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1. Introduction

Time delay occurs frequently in many processes, such as network controlled sys-

tems [1], high-speed communication networks [2], teleoperated systems [3] and parallel

computation [4] just to name a few. Thus, Stability analysis of time-delay systems

has attracted increasing attention for the past three decades. We refer the reader to

[5] and [6] for the basic theory of time-delay systems.

There are several methods available to study stability problems of differential

systems with time delay such as the Lyapunov functional method, the comparison

principle, and the Razumikhin technique. Each method has its own advantages and

disadvantages. The Lyapunov functional method works similar to the classical Lya-

punov method for systems without time delay when evaluating its derivative along so-

lutions of the system, but it requires to construct an appropriate Lyapunov functional

which is often more challenging than a Lyapunov function, see [7, 8] and relevant ref-

erences therein. The comparison principle technique is very general and popular but

needs an additional comparison system with known stability properties, see [9, 10] and

relevant references therein. On the other hand, the Razumikhin technique requires

a standard Lyapunov function which is relatively easier to construct, but evaluation

of the derivative of the Lyapunov function must be restricted to a minimal set, see

[5, 11, 12] and relevant references therein.
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Impulsive systems occur in many applied fields, such as control technology, com-

munication networks and biological population management, see [11, 13, 14, 15] and

references therein. On the other hand, impulsive control has attracted the interest of

many researchers in recent years. Such control arises naturally in a wide variety of

applications, such as orbital transfer of satellite [16, 17], ecosystem management [18].

It has shown in many cases that impulsive control can give better performance than

continuous control.

In recent years, there have appeared several papers devoted to the study of the

impulsive systems with time delay where the Razumikhin technique is adopted, see

[15, 19] and references therein. Zhang and Chen studied a class of discrete systems

with time delay and established a backward Razumikhin-type uniformly asymptotic

stability theorem in [20]. Liu and Marquez developed the forward Razumikhin-type

uniformly asymptotic stability theorems in [21], which is less restrictive than that in

[20].

In [19], the author only considered continuous impulsive systems. And in [21],

the author only considered delay-free discrete systems. Therefore, the objective of

this paper is to extend the results in [19] and [21] to impulsive discrete systems with

time delay. We shall establish in this paper some Razumikhin-type stability criteria

for impulsive discrete systems with time delay. To the best of our knowledge, very

few results on Razumikhin-type uniform asymptotical stability have been reported

for impulsive discrete systems with time delay.

The rest of this paper is organized as follows. In Section 2, we shall introduce

some notations and definitions. Then in Section 3, we shall establish criteria on

Razumikhin-type uniform stability and uniform asymptotic stability for impulsive

discrete systems with time delay. In Section 4, we shall obtain two stability criteria

for linear impulsive discrete systems with time delay. In Section 5, we shall discuss

some examples to illustrate our results.

2. Preliminaries

Let R denote the set of real numbers, R
m the m-dimensional Euclidean space,

R
+ the interval [0, +∞), N the natural numbers, i.e., N = {0, 1, 2, . . .}. For some

positive integer r, let N−r = {−r,−r + 1, . . . ,−1, 0} and let N− = {0,−1,−2, . . .}.

A function ϕ : R
+ → R

+ is said to be belong to class K (ϕ ∈ K) if it is continuous,

ϕ(0) = 0 and strictly increasing. Let C = {φ : N−r → R
m} with some integer r > 0.

For any φ ∈ C and any positive integer s, we define ‖φ‖s = maxθ∈N−s
{‖φ(θ)‖}. Let

Cρ = {φ ∈ C : ‖φ‖ < ρ} for some ρ > 0.



RAZUMIKHIN-TYPE STABILITY THEOREMS 53

Consider the following impulsive discrete system with time delay

(2.1)































x(n + 1) = f(n, x̄n), n0 ∈ N, n ≥ n0,

x̄(n) =







x(n), n 6= Nk,

x(Nk) + Ik(x(Nk)), n = Nk, k ∈ N,

xn0
= φ,

where x ∈ R
m, f : N × Cρ → Rm, φ ∈ C, x̄n ∈ Cρ is defined by x̄n(s) = x̄(n + s) for

any s ∈ N−r, and 0 < Nk+1 − Nk < +∞ for any k ≥ 0.

We assume f(n, 0) ≡ 0 so that system (2.1) admits the trivial solution. Denote by

x(n) = x(n, n0, φ) the solution of system (2.1), for any given initial data: n0 ∈ N and

φ : N−r → R
m. We further assume that there exists a ρ1 > 0 such that ‖x+Ik(x)‖ < ρ

if ‖x‖ < ρ1. It can be seen that x(Nk) denotes the state of x before the impulse at

time Nk, and x̄(Nk) the state of x after the impulse at time Nk.

Definition 2.1. The trivial solution of system (2.1) is said to be uniformly stable

(US) if, for any ǫ > 0, there exists a δ = δ(ǫ) > 0, for any given initial data: n0 ∈ N,

xn0
= φ, such that ‖φ‖r ≤ δ implies

(2.2) ‖x̄(n, n0, φ)‖ ≤ ǫ, for all n ≥ n0, n ∈ N.

Definition 2.2. The trivial solution of system (2.1) is said to be uniformly attractive

if, there exist a positive real number σ > 0, for any η > 0, there exists a positive

integer K = K(η) > 0, for each given initial data: n0 ∈ N, xn0
= φ, such that when

‖φ‖r < σ and n ≥ n0 + K, the following inequality holds:

(2.3) ‖x̄(n, n0, φ)‖ < η.

Definition 2.3. The trivial solution of system (2.1) is said to be uniformly asymp-

totically stable (UAS) if, the trivial solution of system (2.1) is US and uniformly

attractive.

3. Main results

In this section, we shall state and prove two stability criteria, US and UAS, for

system (2.1).

Theorem 3.1. Assume V : N × Bρ → R
+ is a positive definite and continuous in

x, where Bρ = {x ∈ R
m : ‖x‖ < ρ}. There exist scalar nondecreasing functions

q(·), p1(·), p2(·), g(·) with q(w) > 0, 0 < p1(w) < w, 0 < p2(w) < w, g(w) > 0 for

any w > 0 such that

(i) c1(‖x‖) ≤ V (n, x) ≤ c2(‖x‖), x ∈ Bρ, c1, c2 ∈ K;
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(ii) for any n ∈ N, if V (n, x̄(n)) ≥ p1(V (n + s, x̄(n + s))) for all s ∈ N−r, then

V (n + 1, f(n, x̄n)) − V (n, x̄(n)) ≤ q(V (n, x̄(n))),

otherwise

V (n + 1, f(n, x̄n)) ≤ p2(max
s∈N−r

{V (n + s, x̄(n + s))});

(iii) V (Nk, x̄(Nk)) ≤ g(V (Nk, x(Nk))), for all k ∈ N;

(iv) p2(w) + µq(w) ≤ w and g(w + q(w)) ≤ p2(w) for any w > 0 with µ =

maxk∈N{Nk+1 − Nk}.

Then, the trivial solutions of system (2.1) is US. It is UAS if

(3.1) p2(w) + µq(w) ≤ (1 − γ)w

and

(3.2) g(w + q(w)) ≤ (1 − γ)p2(w)

for some γ ∈ (0, 1).

Proof. Denote U(n) = maxθ∈N−r
{V (n + θ, x̄(n + θ))}.

For any n0 ∈ N, and any ǫ > 0, choose δ = δ(ǫ) > 0 so that 0 < δ < ǫ and

c2(δ) < c1(ǫ). If ‖φ‖r ≤ δ, we claim that

V (n, x̄(n)) < c1(ǫ), for any n ≥ n0, n ∈ N.

If this is not true, since V (n, x̄(n)) < c1(ǫ) for all n < n0, then there exists

n∗ ∈ [Nk, Nk+1) for some k ≥ 0 such that

(3.3) V (n∗, x̄(n∗)) ≥ c1(ǫ) and V (n, x̄(n)) < c1(ǫ) for all n0 − r ≤ n < n∗.

If n∗ = Nk, since

V (Nk, x̄(Nk)) ≤ g(max{V (Nk − 1, x̄(Nk − 1))

+q(V (Nk − 1, x̄(Nk − 1))), p2(U(Nk − 1))})

≤ g(U(Nk − 1) + q(U(Nk − 1)))

≤ p2(U(Nk − 1)),

then we get

V (n∗, x̄(n∗)) ≤ p2(U(Nk − 1)) ≤ U(Nk − 1) ≤ c1(ǫ),

which contradicts (3.3).

If n∗ ∈ (Nk, Nk+1), first, we will show for any n ∈ (Nk, n
∗],

(3.4) V (n, x(n)) ≤ p2(U(Nk − 1)) +
n−1
∑

i=Nk

q(V (i, x̄(i))).
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Since

V (Nk + 1, x(Nk + 1)) ≤ max{V (Nk, x̄(Nk)) + q(V (Nk, x̄(Nk))), p2(U(Nk))}

≤ max{p2(U(Nk − 1)) + q(V (Nk, x̄(Nk))), p2(U(Nk − 1))}

≤ p2(U(Nk − 1)) + q(V (Nk, x̄(Nk))),

which establishes the base case. We proceed by induction and assume for any n ∈

(Nk, n
∗), U(n) ≤ p2(U(Nk − 1)) +

∑n−1

i=Nk
q(V (Nk, x̄(Nk))), then

V (n + 1, x(n + 1)) ≤ max{V (n, x̄(n)) + q(V (n, x̄(n))), p2(U(n))}

≤ p2(U(Nk − 1)) +

n
∑

i=Nk

q(V (i, x̄(i))).

Thus, inequality (3.4) holds for all n ∈ (Nk, n
∗]. Hence, we have

V (n∗, x(n∗)) ≤ p2(U(Nk − 1)) +
n∗

−1
∑

i=Nk

q(V (Nk))

≤ p2(U(Nk − 1)) + µq(U(Nk − 1))

≤ U(Nk − 1) < c1(ǫ)

which contradict with our assumption on n∗.

Therefore, we obtain that

c1(‖x̄(n)‖) ≤ V (n, x̄(n)) < c1(ǫ), for all n ≥ n0, n ∈ N,

which implies ‖x̄(n)‖ ≤ ǫ. Hence, the trivial solution of system (2.1) is US.

In the following, we will prove that the trivial solution of the system (2.1) is

uniformly attractive if (3.1) and (3.2) hold. Since the trivial solution of system (2.1)

is US, for any fixed positive number H > 0 and H < ρ1, there exists a positive

number 0 < δ ≤ H with c2(δ) ≤ c1(H) such that for any φ : N−r → R
n, if ‖φ‖r ≤ δ,

we have

(3.5) ‖x̄(n)‖ ≤ H, n ≥ n0,

and

(3.6) V (n, x̄(n)) ≤ c2(δ) ≤ c1(H), n ≥ n0.

It follows from (3.6) that U(n) ≤ c2(δ) for any n ∈ N. In order to show the uniform

attractivity of the trivial solution, we need to prove that, for any positive real number

η satisfying 0 ≤ η ≤ H , for any n0 ∈ N, φ ∈ C, there exists a positive integer

K = K(η) independent of n0 and δ, such that when ‖φ‖r ≤ δ and n ≥ K + n0, we

have

(3.7) ‖x̄(n)‖ = ‖x̄(n, n0, φ)‖ ≤ η.
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If for any n ≥ K, we have

(3.8) V (n, x̄(n)) ≤ c1(η).

Then, by condition (i), (3.7) can be induced from (3.8). Hence, in the following, we

just prove that (3.8) holds.

Since g(w + q(w)) ≤ p2(w) and V (Nk, x(Nk)) ≤ max{V (Nk − 1) + q(V (Nk −

1)), p2(U(Nk − 1))} ≤ U(Nk − 1) + q(U(Nk − 1)), we have

V (Nk, x̄(Nk)) ≤ g(V (Nk, x(Nk)))

≤ g(U(Nk − 1) + q(U(Nk − 1)))

≤ (1 − γ)U(Nk − 1).

We claim that V (n, x̄(n)) ≤ (1 − γ)U(Nk − 1) for all n ∈ [Nk, Nk+1). If this

is not true, then there exists n̂ ∈ [Nk, Nk+1) such that V (n̂) > (1 − γ)U(Nk − 1).

Notice that V (Nk, x̄(Nk)) < (1− γ)U(Nk − 1), there exist n∗ = min{n |V (n, x(n)) >

(1 − γ)U(Nk − 1), Nk < n ≤ n̂}.

From (3.4), we have

V (n∗, x(n∗)) ≤ p2(U(Nk − 1)) +
n
∑

i=Nk

q(V (Nk, x̄(Nk)))

≤ p2(U(Nk − 1)) + µq((1 − γ)U(Nk))

≤ (1 − γ)U(Nk − 1),

which contradict with our assumption on n∗. Thus, for all n ∈ [Nk, Nk+1), we have

V (n, x̄(n)) ≤ (1 − γ)U(Nk − 1).

For all n ∈ [Nk, Nk+1), we have

U(n) ≤ (1− γ)U(Nk − 1) ≤ · · · ≤ (1− γ)kU(N1 − 1) ≤ (1− γ)k(U(n0) + µq(U(n0))).

Thus, for δ = δ(H) > 0 with c2(δ) ≤ c1(H), for any η > 0, there exists a K = K(η) >

0 with (1 − γ)K/µ(c1(H) + µq(c1(H))) < c1(η), for any n0 ∈ N and ‖φ‖r ≤ δ, when

n ≥ n0 + K, by condition (i), we have

V (n, x̄(n)) ≤ U(n) ≤ (1 − γ)kU(n0)

≤ (1 − γ)K/µ(c2(δ) + µq(c2(δ)))

≤ (1 − γ)K/µ(c1(H) + µq(c1(H)))

< c1(η).

The proof is complete.

Remark 3.2. Condition (ii) of Theorem 3.1 guarantees that the increase of V at

n+1 is bounded by q(V (n, x(n))) when V (n, x̄(n)) exceeds some kind of upper bound
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measured by p1(V (n + s, x̄(n + s)) for all s ∈ N−r, otherwise V (n + 1, f(n, xn)) is

bounded by p2(maxs∈N−r
{V (n + s, x̄(n + s))}).

Remark 3.3. V may increase in Theorem 3.1 at time n+1 when V (n, x̄(n)) exceeds

p1(V (n + s, x̄(n + s)) for all s ∈ N−r. Thus the system may be unstable without

impulse.

Remark 3.4. Inequalities (3.1) and (3.2) in Theorem 3.1 guarantee that V decreases

at a rate greater than 1− γ in adjacent interval while condition (iv) only guarantees

that V is nonincreasing.

Theorem 3.5. Assume V : N × Bρ → R
+ is a positive definite and continuous in

x, where Bρ = {x ∈ R
m : ‖x‖ < ρ}. There exist scalar nondecreasing functions

q(·), p1(·), p2(·), g(·) with q(w) > 0, 0 < p1(w) < w, 0 < p2(w) < w, g(w) > 0 for

any w > 0 such that

(i) c1(‖x‖) ≤ V (n, x) ≤ c2(‖x‖), x ∈ Bρ, c1, c2 ∈ K;

(ii) for any n ∈ N, if V (n, x̄(n)) ≥ p1(V (n + s, x̄(n + s))) for all s ∈ N−r, then

V (n + 1, f(n, x̄n)) ≤ V (n, x̄(n)) − q(V (n, x̄(n))),

otherwise

V (n + 1, f(n, x̄n)) ≤ p2(max
s∈N−r

{V (n + s, x̄(n + s))});

(iii) V (Nk, x̄(Nk)) ≤ g(V (Nk, x(NK))), for all k ∈ N;

(iv) g(p2(w)) ≤ w, w − (τ − r)q(p2(w))) ≤ p2(w) and τ > r for any w > 0 with

τ = mink∈N{Nk+1 − Nk}.

Then, the trivial solution of system (2.1) is US. It is UAS if

(3.9) g(p2(w)) ≤ (1 − γ)w

for some γ ∈ (0, 1).

Proof. Denote U(n) = maxθ∈N−r
{V (n + θ, x̄(n + θ))}.

For any n0 ∈ N, and any ǫ > 0, let δ = δ(ǫ) > 0 with 0 < δ < ǫ and g(c2(δ)) <

c1(ǫ), if ‖φ‖r ≤ δ, we claim that

V (n, x̄(n)) < c1(ǫ), for any n ≥ n0, n ∈ N.

If this is not true, since V (n, x̄(n)) < c1(ǫ) for all n ≤ n0, then there exists

n∗ ∈ [Nk, Nk+1) such that

(3.10) V (n∗, x̄(n∗)) ≥ c1(ǫ) and V (n, x̄(n)) < c1(ǫ) for all n0 − r ≤ n < n∗.

If n∗ 6= Nk, we have

V (n + 1, x(n + 1)) ≤ max{V (n, x̄(n)) − q(V (n, x̄(n))), p2(U(n))}
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≤ max{U(n) − q(V (n, x̄(n))), U(n)}

≤ U(n) < c1(ǫ),

which is contradict with assumption of n∗.

If n∗ = Nk, first, We claim that there exists n̂ ∈ (Nk−1, Nk−1 + τ − r], such that

V (n̂, x(n̂)) ≤ p2(U(Nk)). If this is not true, then

(3.11) V (n, x(n)) > p2(U(Nk)) for all n ∈ (Nk−1, Nk−1 + τ − r].

From condition (ii), if V (n, x̄(n)) ≥ p1(V (n + s, x̄(n + s))) for all n ∈ [Nk−1, Nk−1 +

τ − r − 1] and all s ∈ N−r, we have

V (Nk−1 + τ − r, x(Nk−1 + τ − r)) ≤ V (Nk−1, x̄(Nk−1)) −

Nk−1+τ−r−1
∑

i=Nk−1

q(V (i, x̄(i)))

≤ U(Nk−1) − (τ − r)q(p2(U(Nk−1)))

≤ p2(U(Nk−1)),

otherwise, there exist some n̂ ∈ (Nk−1, Nk−1 + τ − r − 1] such that

V (n̂ + 1, x(n̂ + 1)) ≤ p2(U(n̂)) ≤ p2(U(Nk−1)),

which is contradict with (3.11). Thus our claim is true.

Now suppose for some s ∈ [Nk−1, Nk), V (s, x̄(s)) ≤ p2(U(Nk−1)). Then

V (s + 1, x(s + 1)) ≤ max{V (s, x̄(s)) − q(V (s, x̄(s))), p2(U(s))}

≤ max{p2(U(Nk−1)) − q(V (s, x̄(s))), p2(U(Nk−1))}

≤ p2(U(Nk−1)).

Thus V (n, x(n)) ≤ p2(U(Nk−1)) for all n ∈ [n̂, Nk] by mathematical induction.

Hence, we have

V (n∗, x̄(n∗)) ≤ g(V (Nk, x(Nk)))

≤ g(p2(U(Nk−1)))

≤ U(Nk−1)

< c1(ǫ),

which contradict with assumption of n∗.

Therefore, we obtain that

c1(‖x̄(n)‖) < c1(ǫ).

Thus, for any n ≥ n0, n ∈ N, ‖x̄(n)‖ ≤ ǫ. Hence, the trivial solution of system (2.1)

is US.

In the following, we will prove that the trivial solution of system (2.1) is uniformly

attractive if inequality (3.9) holds. Similar as the proof in Theorem 3.1, for any fixed
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positive number H > 0, H < ρ1, we just prove that there exists δ(H) > 0 and

δ(H) < ρ1, for any positive real number η satisfying 0 ≤ η ≤ H , for any n0 ∈ N,

φ ∈ C, there exists a positive integer K = K(η) independent of n0 and δ, such that

(3.8) holds when ‖φ‖r ≤ δ and n ≥ n0 + K.

Since

U(Nk+1) ≤ max{V (Nk+1, x̄(Nk+1)), V (Nk+1 − 1, x̄(Nk+1 − 1)), . . . ,

V (Nk+1 − r, x̄(Nk+1 − r))}

≤ max{g(V (Nk+1, x(Nk+1))), p2(U(Nk))} ≤ (1 − γ)U(Nk).

Thus, for all Nk ≤ n < Nk+1, we have

U(n) ≤ U(Nk) ≤ (1 − γ)U(Nk−1) ≤ · · · ≤ (1 − γ)k−1U(N1) ≤ (1 − γ)kU(n0).

For any η : 0 < η < ρ1 and the above δ = δ(H) > 0, let µ = maxk∈N{Nk+1−Nk},

there exists a K = K(η) > 0 such that (1− γ)K/µc1(H) < c1(η). For any n0 ∈ N and

‖φ‖r ≤ δ, when n ≥ n0 + K, by condition (i), we have

V (n, x̄(n)) ≤ U(n) ≤ (1 − γ)kU(n0) ≤ (1 − γ)K/µc2(δ) ≤ (1 − γ)K/µc1(H) ≤ c1(η).

Hence (3.8) holds. The proof is complete.

Remark 3.6. Condition (ii) in Theorem 3.5 guarantees that V decreases at time n+1

when V (n, x̄(n)) exceeds some upper bound measured by p1(V (n+s, x̄(n+s)) for any

n ∈ N and all s ∈ N−r, otherwise V (n+1, f(n, xn)) is bounded by p2(maxs∈N−r
{V (n+

s, x̄(n + s))}). Thus the system is stable without impulse.

Remark 3.7. Inequality (3.9) in Theorem 3.5 guarantees that V decreases at a rate

greater than 1 − γ in adjacent intervals while condition (iv) only guarantees that V

is nonincreasing.

4. Stability of linear impulsive discrete systems with time delay

In this section, we shall obtain results on uniform asymptotical stability for linear

impulsive discrete system with time delay.

Consider the linear impulsive discrete systems with time delay of the form

(4.1)







































x(n + 1) = Ax̄(n) +

m0
∑

i=1

Bix̄(n − τi(n)), n0 ∈ N, n ≥ n0,

x̄(n) =







x(n), n 6= Nk,

x(Nk) + Ik(x(Nk)), n = Nk, k ∈ N,

xn0
= φ,

where x ∈ R
m, A, B1, . . . , Bm0

∈ R
m×m, φ ∈ C and τi : N → N−r with r > 0 and

r ∈ N represents the time delay. We have the following theorems.
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Theorem 4.1. Suppose there exist a symmetric positive definite matrix P , let λ0 ≥

max{λ(ATPAP−1)}, λj ≥ max{λ(BT
j PBjP

−1)}, j = 1, 2, . . . , m0 and α2 = max{λ((E+

Ik)
T (E + Ik))} where λ(S) denote all the eigenvalues of matrix S. And there exist

α1 : 0 < α1 < 1, γ : 0 < γ < 1, η > 0, ǫ > 0 such that the following inequalities hold:

(4.2) −

(

a +
b

α1

)

> 0

(4.3) 0 < (aα1 + b + η) < 1

(4.4) α2 · (aα1 + b + η) ≤ 1 − γ

(4.5) 1 + (τ − r)(a +
b

α1

)(aα1 + b + η) ≤ aα1 + b + η

where τ = mink∈N{Nk+1 −Nk}, a = (1 + 1

ǫ
)λ0 − 1 and b = (1 + ǫ)m0

∑m0

j=1
λj. Then,

the trivial solution of system (4.1) is UAS.

Proof. Denote xn = x(n), x̄n = x̄(n), λmin = min{λ(P )} and λmax = max{λ(P )}.

Let V (n) = x(n)T Px(n) and V (n̄) = x̄(n)T P x̄(n). It can be seen that condition (i)

of Theorem 3.5 holds with c1(w) = λminw and c2(w) = λmaxw.

For any n ∈ [Nk, Nk+1), we have

V (n + 1) − V (n̄) =

(

Ax̄n +

m0
∑

j=1

Bj x̄n−j

)T

P

(

Ax̄n +

m0
∑

j=1

Bj x̄n−j

)

− x̄T
nP x̄n

= x̄T
nAT PAx̄n + 2x̄T

nAT P

m0
∑

j=1

(Bj x̄n−j)

+

m0
∑

j=1

(x̄T
n−jB

T
j )P

m0
∑

j=1

(Bj x̄n−j) − x̄T
nP x̄n

≤ x̄T
n (AT PA − P )x̄n +

1

ǫ
x̄T

nAT PAx̄n

+ (1 + ǫ)

m0
∑

j=1

(x̄T
n−jB

T
j )P

m0
∑

j=1

(Bj x̄n−j)

≤ x̄T
n

((

1 +
1

ǫ

)

AT PA − P

)

x̄n + (1 + ǫ)

m0
∑

j=1

(x̄T
n−jB

T
j )P

m0
∑

j=1

(Bjx̄n−j)

≤ x̄T
n

((

1 +
1

ǫ

)

AT PA − P

)

x̄n + (1 + ǫ)

m0
∑

i=1

m0
∑

j=1

(x̄T
n−iB

T
i PBjx̄n−j)

≤ x̄T
n

((

1 +
1

ǫ

)

AT PA − P

)

x̄n + (1 + ǫ)m0

m0
∑

j=1

(x̄T
n−jB

T
j PBjx̄n−j)
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≤ x̄T
n

((

1 +
1

ǫ

)

AT PA − P

)

x̄n + (1 + ǫ)m0

m0
∑

j=1

(λjx̄
T
n−jP x̄n−j)

≤ ((1 +
1

ǫ
)λ0 − 1)V (n̄) + (1 + ǫ)m0

m0
∑

j=1

(λjV (n − j)).(4.6)

Denote p1(w) = α1w. If V (n) ≥ p1(V (n + s)) = α1 · V (n + s) for any s ∈ N−m,

we get

V (n + 1) − V (n̄) ≤

(

a +
b

α1

)

V (n̄) = −q(V (n̄)),

where q(w) = −(a+ b
α1

)w. From inequality (4.2), condition (ii) of Theorem 3.5 holds.

If there exist some s0 ∈ N−m, such that V (n) < p1(V (n + s0)), we get

V (n + 1) − V (n̄) ≤

((

1 +
1

ǫ

)

λ0 − 1

)

α1V (n + s0) + 2m0

m0
∑

j=1

(λjV (n − j))

≤

(

(

1 +
1

ǫ

)

α1λ0 − α1 + (1 + ǫ)m0

m0
∑

j=1

λj

)

‖V (n̄)‖r

≤ (aα1 + b + η)‖V (n̄)‖r

= p2(‖V (n̄)‖r),

where p2(w) = (aα1 + b + η)w. From inequality (4.3), condition (iii) of Theorem 3.5

holds.

Let g(w) = α2w. For any w > 0, from inequalities (4.4) and (4.5), we have

g(p2(w)) = α2 · (aα1 + b + η)w ≤ (1 − γ)w,

w − (τ − r)q(p2(w)) = w + (τ − r)

(

a +
b

α1

)

(aα1 + b + η)w

≤ (aα1 + b + η)w

= p2(w).

Thus, all the conditions of Theorem 3.5 hold. The proof is complete.

Theorem 4.2. Suppose there exist an symmetric positive definite matrix P , let λ0 ≥

max{λ(ATPAP−1)}, λj ≥ max{λ(BT
j PBjP

−1)} and α2 = max{λ((E+Ik)
T (E+Ik))}

where λ(S) denote all the eigenvalues of matrix S. And there exist α1 : 0 < α1 < 1,

γ : 0 < γ < 1, η > 0, ǫ > 0 such that the following inequalities hold:

(4.7)

(

a +
b

α1

)

> 0

(4.8) 0 < (aα1 + b) < 1

(4.9) α2 ·

(

1 + a +
b

α1

)

≤ (1 − γ)(aα1 + b),
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(4.10) aα1 + b + µ

(

a +
b

α1

)

≤ 1 − γ,

where µ = maxk∈N{Nk+1 −Nk}, a = (1 + 1

ǫ
)λ0 − 1 and b = (1 + ǫ)m0

∑m0

j=1
λj. Then,

the trivial solution of system (4.1) is UAS.

Proof. Denote xn = x(n) and x̄n = x̄(n). Let V (n) = x(n)T Px(n) and V (n̄) =

x̄(n)T P x̄(n). From the proof of Theorem 4.1, condition (i) of Theorem 3.1 holds.

Let p1(w) = α1w. If V (n) ≥ p1(V (n + s)) = α1 · V (n + s) for any s ∈ N−m, by

inequality (4.6), we get

V (n + 1) − V (n̄) ≤

(

a +
b

α1

)

V (n̄) = q(V (n̄)),

where q(w) = (a + b
α1

)w. From inequality (4.7), condition (ii) of Theorem 3.1 holds.

If there exist some s0 ∈ N−m, such that V (n) < p1(V (n + s0)), we get

V (n + 1) − V (n̄) ≤ (aα1 + b)‖V (n̄)‖r = p2(‖V (n̄)‖r),

where p2(w) = (aα1+b)w. From inequality (4.8), condition (iii) of Theorem 3.1 holds.

Let g(w) = α2w. For any w > 0, from inequalities (4.9) and (4.10), we have

g(w + q(w)) = α2(1 + a +
b

α1

)) · w ≤ (1 − γ)(aα1 + b)w,

p2(w) + µq(w) = (aα1 + b + µ(a +
b

α1

))w ≤ (1 − γ)w.

Thus, all the conditions of Theorem 3.1 hold. The proof is complete.

5. Examples

To illustrate our theorems obtained in the previous sections, we now consider

some numerical examples.

Example 5.1. Consider the linear impulsive discrete system with time delay

(5.1)































x(n) = Ax̄(n − 1) + Bx̄(n − 2), n0 ∈ N, n ≥ n0,

x̄(n) =







x(n), n 6= Nk,

x(Nk) + Ik(x(Nk)), n = Nk, k ∈ N,

xn0
= φ,

where A =

[

0 0.1

0.1 0

]

, B =

[

0.6 0

0 −0.6

]

, Ik = α

[

1 0

0 1

]

, φ ∈ {φ : N ×

{−1, 0} → R
2}.

Suppose we define the Lyapunov function V (n) = ‖x(n)‖. For any φ : N ×

{−1, 0} → R
2 with φ(0) 6= 0, we have

∆V (n) ≤ −0.98V (n) + 0.72V (n − 1).
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We are interested in uniformly stabilizing system (5.1) through the use of impulses

according to Theorem 3.5. For simplicity, let us assume that the impulse times are

equally spaced. In other words, Nk − Nk−1 = τ > 0 for all k. Take p1(w) = p2(w) =

0.8w, g(w) = 1.2w, τ = 5. If V (n) ≥ p1(V (n + s)) = 0.8V (n + s) for all s ∈ N−1, we

have

V (n + 1) − V (n) ≤ −0.98V (n) + 0.72V (n + s)

≤ −0.08V (n)

= −q(V (n)).

If for any n, there exist some s ∈ N−1 such that V (n) < p1(V (n+ s)) = 0.8V (n+

s), we have

V (n + 1) ≤ V (n) − 0.98V (n) + 0.72V (n + s)

≤ 0.736V (n + s)

≤ 0.736U(n)

≤ 0.8U(n).

It can be seen that all the conditions of Theorem 3.5 are satisfied. Figure 1 shows

that the system is uniform stable.
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Figure 1. Simulation of state variables in example 5.1.

Example 5.2. Consider the same type of linear impulsive discrete system with time

delay in Example 5.1 with A =

[

0.01 1.01

0.5 0

]

, B =

[

0.01 0

0 0.01

]

, Ik = α

[

1 0

0 1

]

,

φ ∈ {φ : N × {−1, 0} → R
2}.

Let λ0 = 1.05, λ1 = 0.005, α1 = 0.88, α2 = 0.7 γ = 0.1, ǫ = 20 and µ =

maxk=1,2,...{Nk − Nk−1} = 3. Thus, all the conditions of Theorem 4.2 are satisfied
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Figure 2. Simulation of state variables in example 5.2 .
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Figure 3. Simulation of V (n, x(n)) in example 5.2 .

with P =

[

5.8922 0.0891

0.0891 7.6430

]

. The simulation results are shown in Figure 2 and

Figure 3, which show that the system is uniformly asymptotically stable.

Remark 5.3. It can be seen that system (5.1) in Example 5.1 is still uniformly

stable without impulse. But the impulse is necessary to achieve uniform stability in

Example 5.2.

Example 5.4. Consider the nonlinear impulsive discrete system with time delay:

(5.2)































x(n + 1) = Ax̄(n) + F (n, x̄(n), x̄(n − h(n))), n0 ∈ N, n ≥ n0,

x̄(n) =







x(n), n 6= Nk,

x(Nk) + Ik(x(Nk)), n = Nk, k ∈ N,

xn0
= φ,
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where m = 2, h(n) = 1 or 2, A =







0.5 0 0

0 0.1 0.1

0.1 0 0.5






and F (n, x(n), x(n − h(n))) =

1

4
((x1(n−h(n))/(1+sin2 n+‖x(n)‖2), x2(n−h(n)) sin(x3(n)), x3(n−h(n))cos(x3(n)))T .

We are interested in uniformly asymptotically stabilizing system (5.2) through

the use of impulses according to Theorem 3.1. For simplicity, let us assume that the

impulse times are equally spaced. In other words, Nk − Nk−1 = τ > 0 for all k. Let

V (n, x) = xT x. Take p1(w) = 0.9w, g(w) = 1.3w.

If V (n) ≥ p1(V (n + s) = 0.9V (n + s) for all s ∈ N−r, we have

V (n + 1) − V (n) ≤ −0.2408V (n).

If for any n and some s ∈ N−r, V (n) < p1(V (n + s)) = 0.9V (n + s), we have

V (n + 1) ≤ 0.6833V (n).

Choose γ = 0.1. It can be seen that all the conditions of Theorem 3.1 are satisfied

with τ ≥ 3.925. Figure 4 shows that the system is uniformly asymptotically stable

with τ = 4.
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Figure 4. Simulation of state variables in example 5.4.

6. Conclusion

In this paper, we have studied impulsive discrete systems with time delay. By

using Lyapunov function and the Razumikhin technique we have established several

uniform stability and uniform asymptotic stability criteria for such systems. We have

shown that impulses can be used to stabilize a unstable system. Numerical examples

have been provided to demonstrate our theoretical results.
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