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ON OCCURRENCE OF COMPLETE BLOW-UP OF THE
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ABSTRACT. Let a, o, p, q, , and m be constants with a > 0, ¢ >0, p >0, ¢ > 0, r > 1,
and m > 0. This article studies the following degenerate semilinear parabolic initial-boundary value
problem,

Elur —uge =EPu" for 0 <€ <a, 0 < 7 < 0,

u(§,0) =wup (§) =m for 0 < ¢ < q,

ug(0,7) = 0= ug(a,7) for 7 > 0.
We derive criteria for u to blow up in finite time, and estimate the blow-up rate. We show that the
blow-up is regional if ¢ > p; the blow-up is complete if ¢ = p; and the blow-up cannot be complete

if p>gq.
AMS (MOS) Subject Classification. 35K57, 35K60, 35K65.

1. Introduction

Let a, o, p, q, r, and m be constants witha >0,0 >0, p>0,¢>0,r > 1, and
m > 0. We consider the following degenerate semilinear parabolic initial-boundary
value problem,
Eur —uge =EPu" for 0 < <a, 0 <7 <0,
u(§,0) =ug(§) =mifor 0 < ¢ <a,
ug(0,7) =0 =ug(a,7) for 0 <7 < 0.

Let ¢ = ax, 7= a?*?, D = (0,1), Q = D x (0,T), D and Q be the closures of D
and € respectively, and Lu = x%u; — u,,. The above problem is transformed into
Lu = aP*2zPu’” in Q,
(1.1) u(r,0) = ug(r) =m >0 on D,
ur(0,8) =0=wu,(1,), 0 <t <T,

where T'= 0 /a%? < oo,
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A solution u of the problem (1.1) is said to blow up at the point (Z,t;) if there
exists a sequence {(x,,t,)} such that u (z,,t,) — 0o as (x,,t,) — (Z,t,). The blow-
up of u is complete if u blows up at every point € D at t = t,. The blow-up of u
is regional in the case ¢ > p, if u blows up at every point x € [0,b,] at t = t;, where
b < 1.

Chan and Dyakevich [1] investigated the blow-up set of the solution for the de-
generate semilinear parabolic equation Lu = a®f (u) subject to the mixed boundary
conditions u(0,t) = 0 = u,(1,t). Dyakevich [3] studied quenching of the solution for
the problem (1.1) with m = 0 and with a”*?zPu" replaced by the function P f(u)
satisfying lim, .- f (u) = oo for some positive constant c. It was shown that con-
stants p and ¢ determine whether the solution quenches completely, or at one of the
boundary points x = 0 or x = 1. In this article, we investigate the influence of the

constants p and ¢ on the blow-up set of the solution u of the problem (1.1).

In Section 2, we discuss existence of a unique classical solution. In Section 3, we
investigate the conditions for u to blow up in a finite time t,, and give an estimate
for the blow-up rate. In Section 4, we show that the blow-up is regional if ¢ > p,

and complete if ¢ = p. In Section 5, we show that the blow-up cannot be complete if

p=>q.
2. Existence of a Unique Classical Solution

Let D, = (¢,1), D, = [g,1], Q. = D. x (0,T), where 0 < ¢ < % We notice that if
e =0, then D. = D. The proof of the following comparison lemma is similar to the

proof of Lemma 2.1 in Dyakevich [3].

Lemma 2.1. For any fized t € (0,T), and any bounded and nontrivial function
B(x,t) on D, x [0,1], if
(L —2PB)u >0 in D. x (0,1],
u(z,0) >0, r € D,
ugz(g,t) <0, u(b,t) >0, t €[0,1],
then u >0 on D, x [0,1].

Following the idea in the proof of Lemma 1 in Chan and Kaper [2]|, we have the

following result.

Lemma 2.2. The problem (1.1) has at most one solution u. This solution has the
following properties: (i). uw > m in D x (0,T); (ii). u is a strictly increasing function
of t for all x € D.

Proof. Let uy and us be two distinct solutions of the problem (1.1) and let y = uy —us.

Uniqueness of u follows directly from Lemma 2.1 of [3].
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(i). Let y = u — m. Because f(m) =m" > 0 and 2Pm” > 0 for any z € D, we
have:
Uy — Ugy — aPT22P f (u) + aPT22P f (M) = 2%; — Yo — aPT22Prn™ 'y > 0 in Q,
y(2,0)=0on D,
Yz (0,t) =0=y, (1,t),0<t < T,
for some 7 between u and m. By Lemma 2.1 of [3], y > 0. By the strong maximum
principle [4, p. 39], if y = 0 at some point (x9,t2) € (0,1) x (0,7"), then y = 0 in
(0,1) x (0, t5). This contradicts to
0 = 2%, — Ypo — a?22Prn" "ty > 01in (0,1) x (0, t,].

Therefore, y > 0 at any point in (0,1). Suppose y attains its minimum value zero at
x =0 or z = 1. By the parabolic version of Hopf’s Lemma [4, p. 49], .(0,¢) > 0 and
y.(1,t) < 0. This contradiction shows that y > 0 on D.

(ii). The proof of this result is identical to the proof of Lemma 2.2 (ii) in Dyake-
vich [3, p. 894]. =

We modify the proof of Lemma 2.3 in Dyakevich [3, p.895] to prove the following

result.

Lemma 2.3. There exists some positive constant to (< T) such that the problem (1.1)
has an upper solution u(z,t) € C*([0,1] x [0,t0]).
Proof. We consider the problem,
Lu. = aP2Pu” in D, x (0,1,],
(2.1) u.(x,0) =m on D,
U, (e,t) =0 =u,, (1,t) for 0 <t <t.
Letm>10<~vy< %, and K > m be chosen such that
a’? (m — 1) > ug () = m,
m" (a??)" < K,
m—1<—(K/2)y* —~y+m <m,
K" (a?™)" > 1.
Let us construct an upper solution yu(z,t) € C*1(D x [0,t]) for all u., where & < 7.

Let
—La? —x+m, 0<z<n,
0(z) = < h(z), y<z<l-—r,
—%(1—3:)2—(1—@—%7?1, 11—y <z<1,
where h () is a positive C* function chosen such that 6 (z) is in C? (D) and m —

1 < h(z) < /. We note that ¢ (z) < 0 for 0 < z < v and 0'(0) = —1 < 0,
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(v) = —Ky—1<0and #(1) =1 > 0. Also, maxf(x) = /m and min 0(z) =

0<z<y 0<z<y
—(K/2)y* =y +m>m—1.
There exists some t; such that the initial-value problem,

(1 + max |6’”|) aPT K"
T (t) =

v<z<l1

q .
7 <“/IS11;219)

has a unique solution for 0 < ¢ < ¢;. Let us choose some constant ty in (0, ;] such
that

m'7" (t) < K,
7 (tg) < a?P2 K" (1(0))" < a?T?K"7".
Let p(z,t) = 0(x)7(t). For any = € [0,7] and ¢ € (0,to], 707" > 0 and 0"(x) =
—K < 0. Therefore,

Ly — a" 2P " = 2997 — 10" — aP2aPom "
> 7(0) K — aP*20" (0) 7" (t0))
= 0 [ — 7 (1))
> 0.

We have for x € (v, 1],

Ly — aPT22Pp” > 1 < min 9) 7' (t) — 7 (o) <max |9”\) —aP o

y<z<1 y<z<1

> 1 ( min 9) 7 (t) — dPTPK" T (max |9”|) —aPTPKT T
y<2<l

y<e<l1

(1 + max \9”\) aPP? KT
q im0 , _ y<z<1

7 ming) |70

TSTS

o
7o (mny)

We also have p(x,0) = a?™20(z) > aP*? (m — 1) > ug(z) = m, p.(0,t) =0, (0) 7 (t) <
0, pz(1,¢) = 6, (1) 7 (¢) > 0 and p(z,t) € C*1(D x [0,t]). The function y = p — u.

satisfies

v

= 0.

Ly — aPrd™y > 0 in D, x (0, to),
y(0) >0, x € Dy,
Ya(e,1) <0, y2(1,2) > 0, ¢ € [0, o],
where ¢ is between p and u. for all ¢ < . By Lemma 2.1 in Dyakevich [3, p. 896-898],
y=p—u >0 ]

The proofs of the following two results can be found in Dyakevich [3, p. 896-898|.
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Lemma 2.4. Let 0 < g1 < g9 < v and suppose that u., and u., are solutions of the
problem (2.1) on (0,t9). If p < q, then u., < 0 and u,, > u., in Qe,. If p > q, then

Ue, >0 and u., < u, in Q.

Theorem 2.5. The problem (1.1) has a classical solution C' (D) NC*((0,1] x [0, to]).

We modify the proof of Theorem 2.6 in Dyakevich [3, p. 898] to obtain the

following continuation theorem.

Theorem 2.6. Let T' be the supremum over ty for which the problem (1.1) has a
unique solution u(z,t) € C(D)NC%1((0,1] x [0,t0]). Then, there is a unique solution
u(z,t) € C(D x [0,T)) N C%1(0,1] x [0,T)). If T < oo, then u is unbounded in <.

Proof. Let us suppose that u is bounded above by some positive constant M >
1/(2aP™2) in Q. We would like to show that u can be continued into a time in-
terval [0,T + ty] for some positive #,. Let a positive constant K* be such that
1 < (2MaP™?)" < K* and a positive constant 7 is such that —£-5% — 5 + 2M > M.
Let

—KT*xz—ijQM, 0<z<7,
Oi(z) = qh(z), ¥ <z<1-7

Q-2 -(1-2)+2M, 1-F<z<1,

where h (z) is a positive C* function chosen such that 6;(z) is in C? (D) and M <
h(z) < 2M. By construction, 0; (z) > M > u(z,t) > uo(x) = m for any t < T.
Also, we notice that 6y, (0) < 0 = ug (0,t), and 6 (1) > 0 = u, (1,t) for ¢t > 0.

With 6, () as the initial function at 7', we are to construct an upper solution
fi (z,t) of u(x,t) on D x [T, T + t] for some positive #5. There exists some t, such
that the initial-value problem,

aPt2 (2M)" ( max

7<e<1

é’{‘ n 1) F(t—T)

Ht—-T)= AT —T) = aPt?,

~4 min@~
Ta

has a unique solution 7 (t — T') for T <t < T +t,. Let fi(z,t) = 61 (z)7(t — T), and
to be chosen such that 0 < ¢, < ¢, and

2M)" 7 (t) < K,
71 (fo) < M) a? 7 (t=T).

Since 96,7 (t) > 0, and 0/ (z) = —K*, we obtain for any = € (0,4] and t €
[T.T + ],

Lii— a”2aPi" > K*F — a?P207] > a?*? (K* — (2M)" 7 (f)) > 0.
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It follows from 7 (t —T) > a?*? for t € [T, T +1,] that for € (7,1] and ¢ €
[T.T + ],

> A1 ( min 51) FH(t—T)—at* M) 7 (t - T) (max

F<a<1 F<e<l1

N’
01

5<z 5<a<1

Lii — aP 2P i > A4 ( miglél) Hnt-T)—7{t—-T) (max
— a0 (t—-T)

N’
01

|
)

—aP22M)" 7 (t—-T)

N’
01

aPT2 (2M)" 7 (t —T) (max

~ .= - y<z<1

>ATmin 0 | 7 (t-T) — e

<2<l 4 min 6,
§<a<i

= 0.

By Lemma 2.1 of [3], fi(x,t) is an upper solution of u on D X [T,T+fo}. As in
Lemma 2.4 and Theorem 2.5, we can show that the problem (1.1) has a unique
solution u(z,t) € C(D x [0,T + o)) N C*1((0,1] x [0, T + £]). This contradicts the
definition of T O

3. Occurrence of Blow-up and Blow-up Rate Estimate

Theorem 3.1. Let ¢ > p and r > 1. Then there exists some
(3.1) ty <1/ (m e (r—1)) < oo

such that

lim max u(z,t) = co.
t—t, reD

Proof. Let 7(t) satisfy
7 (t) = a2 1" (t), 7(0) =m > 0.

Then

1

1 r—1
mi=" —aPt2 (r — 1)t

T(t) = for 0 <t <1y,

where
{ o 1
b r—1gpt2 (r—1)

We have for z € (0,1) and ¢ € (0,4),

27 — Ty — a2l <2t (71— aPTPrT) = 0.

Since 7 does not depend on z, we have 7, (0) = 7,(1) = 0, 7,.(t) = 0, and 7(0) =

m. Therefore, 7(t) is the lower solution that blows up at #,. We notice that if
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g = p, then 7(t) is the unique solution of the problem (1.1) which blows up at
ty =1/ (m" *a?*? (r — 1)) and the blow-up set is D. O
Theorem 3.2. Let ¢ < p and r > 1. If ug(z) = m > 0 is sufficiently large, then

there exists some t, < 0o such that

lim max u(z,t) = oo.
t—t, rzeD

Proof. Let us choose positive constants «, (3, v and w as follows:

ﬂ>max{p—q,p+2},
a>2, w>0,
7>max{2,f’%2}.

Let positive constant K satisfy the following:

48 -Dw+tala—1)92]7T

K
~ art? (r —1)
Let .
K
¢ (z,t) = IEE
where
D (z,t) = 2% (w—1t) + (1 —27)*.
We have:
— pD-r/(r=1) 8
¢t (flf,t) (T _ ) X )
K —r/(r=1) B-1 yye-1 ,,7-1
Kr (=2r+1)/(r—1) 8—1 a1 ~_112
¢$$ (l’,t) = ( 1)2D [(W - t) 625' — Yy (1 Ify) 7 :|
K

B e g0 (8 — 1) 22
— {w=8@-1)e
+a(a—1)21 =222 —ay(y—1)(1 —a7)*! 7}
Therefore, for z € (0,1) and t € (0,w),

Lgb _ ap+2$p¢r

< g B s,
- (r—1)
K
+ ( 1)D_T/(T_l) {ﬁ (w—t)(B-1Da"2+a(a—1)y*(1—- x“’)a_z xz'y_z}
r —
— aP‘FQI.PKTD—r/(r—l)
K
< D_T/(T_l)[:cqw +B8w—1) (-1 +a(a—1)y2z?2

(r—1)
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_ ap+2xpf(r—1 (7, . 1)]
K
r—1)

IN

IA
o o~

D=r/r=Lgp [1 +8B-DNw+ala—1)y2—a?P2K™ 1 (r—1)

We notice that

o (O>t) =0,
_ KBw-y
o T ()T
Kp
T pwogre SRR
¢ (,0) = K >0,0<z <L

(2w + (1 — 7))/

If up(z) = m > ¢(x,0), then by Lemma 2.1 in [3, p. 893], ¢ (x,t) is a lower
solution for the problem (1.1), which blows up at ¢ = w. We notice that the blow-up

set of the function ¢ (x,t) consists of only one point = = 1. O

Below we estimate the blow-up rate using similar method as in the proof of
Theorem 2.2 in Wang and Chen [5, p. 317].

Theorem 3.3. If the solution u (x,t) of the problem (1.1) blows up at t = t,, then

there exists positive constant K such that
w(z,t) < K (ty—t) 71, in D x (0,1,).
Proof. Let
J(x,t) = uy(x,t) — ka?>u" (2, 1),

where the positive constant k will be determined later. We have:

Jy (2,1) = uy — ka 2wy,

Ty (2,1) = ugy — ka?2ru" g,

Tz (2,1) = Ugw — ka? 2r (r — 1) u" 2 (ug)? — ka? 21" Mg,

If we differentiate both sides of (1.1) with respect to ¢, then we get:

1

P2 0Py,

Ty — Ugyr = @
Therefore,
2Ty — Jps
= 2%y — kaPP2a0ru" "y — Upy

+ kaPt2r (r—1)u2 (um)2 + ka”2ru "y,
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r—1 1

= P2 wp — kaP2atru" "y,

zPru
4 ka2 (r—1)u2 (um)2 + ka”2ru "y,

— ap+2 -1

oPru” "ty — kaPPPrum !t (2% — gy

+ ka? e (r — 1) u" 2 (ug)?
= a" 2Py Yy — kaP i aP Rl
+ ka2 (r—1)u" "2 (uy)?
= aP 2Pyt (ut — /%ap”uT) + kaPt2r (1 — 1) u" 2 (uy)?
= aP 2Pru" N (2, t) + kaP e (r — 1) w72 (ug)?
The function J satisfies the following:
29Ty — oy — P 2aPru’ VT = kaPTr (r — 1) 0" (uy)® > 0in D x (0,4,),
J(0,8) = g (0, 1) — ka?™* (ru" ) u, (0,) = 0, for 0 < t < t,,
Jo(1,t) = g (1,t) — ka?™* (ru" ) u,(1,8) = 0, for 0 < t < t.
We know from Lemma 2.2 that u; > 0 on D x [0,#,). Therefore, there exists a positive
constant k; such that wu,(z,0) > k; > 0 for = € [0,1]. Let k be a positive constant
such that & < min {k1/ (a?*2m"), 1} and

J(x,0) = uy(x,0) — ka?*?u" (2,0) > ky — ka”*?m" > 0.

Therefore, by Lemma 2.1 of [3], J(x,t) = w(z,t) — ka?*2u"(x,t) > 0 on D x [0,t,).
Integrating u="(z, t)u,(z,t) > ka?*? from t (> 0) to t,, we obtain:

(32) ule ) < [l%(r ) art (t—t ] (B =8y

_ 1
r—1

where K > [l% (r—1) ap+2]

4. Regional/Complete Blow-up when ¢ > p

In this section we assume that the solution u of the problem (1.1) blows up and
that the blow-up time ¢, is a fixed given number corresponding to the given initial
function ug (z) = m > 0. We would like to investigate the blow-up set. We proved in
Theorem 3.1 that if ¢ = p, then the blow-up set is D. Let 0 < § < 1 be an arbitrary

constant. We choose
E>1-—
and observe that 6 < & < 1. Also, let s be a positive constants such that

(4.1) n <
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We define
(4.2) f(z)=(4g+6)2® —2(4q+6)z — 26 + 40 + 4q + 4,
) 4 1

43 O<B<mn { (2270 a+2) =0 (19 [/ @) } /
and

0< R
(4.4) =max {67, (1+ )", 1—B(g+2)(e—-08)" (1 =8|}

< 1.

Theorem 4.1. Letp < q andr > 1. If

4. r—1 >_
(4.5) m tb_al’+2(r—1)’

then the blow-up set for the solution of (1.1) is [0, d].
Proof. Let

0(2) Bz -6 2-6—2)", ford<z<1,
€Tr) =
0, for 0 <z <9,

where the positive constant B is defined in (4.3). From
0'(x) =B(q+2)(z =0 2—-0—2)" =Bz -6 (¢+2)(2—6 — )"
=2B(q+2)(x =" (26 —a)™ [1 -],
we conclude that ¢'(z) > 0 for 6 < < 1. Also,

0"(x) = B(g+2)(q+1)(z—6)"(2—0—2)""
—2B(q+2)(z—0)"" (q+2)(2—0—a)"™
+B(q+2)(q+1)(z—0)"(2—6— )
=B(g+2)(x—0)"(2-0—=2)" f(z),

where
f@)=(a+1) (262 =2(q+2)(z—6) 20 —2)+(¢+1) (& —4)’
= (4g+6)2* —2 (4 + 6) v — 26 + 40 + 4q + 4.
This quadratic function f(z) has one zero on the interval § <z <1 at
(1-9)
V2+3

Also, f(z) has its vertex at the point (1,—2 (1 — 5)2). The following is true about
0" (z) on the interval 0 < z < 1:

0"(z) =0 for 0 <z <4, and at x = z,
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0"(x) >0ford <z < z,

0"(x) <0for z <z <1.

From (4.1), (4.2) and (4.3) we have on the interval [9, £]:

o) 7o)  Blar2 =0 Qi s f0)
< B(q+2)2%f(0)
< z.

Using (4.5), we choose a positive constant E such that

R r—1 r—1
with R defined in (4.4). Let 7(z,t) be a C%! ([0, 1] x [0,,)) function as follows:
E
T(z,t) = = ED—T%l’

(8 — ) + 8(x)) =
where D (z,t) = (t, — t) + 0(x). From (4.5) and (3.1), the blow-up time satisfies the

following:

R 1
4. < < .
(48) e (1) =S i (r 1)
We have:
ED 71
Ti(z,t) = 1)
(o t) = _ED o)
(r—1)
/ 2 fifl TN
(i t) = rE (0'(z)) 13 B ED 0" (x)
(r—1) (r—1)

Therefore, using (4.7) and 0”(z) = 0 for 0 < z < §, we have for 0 < z < §:

iz, t) — Tpu(, t) — ap+2xp7'r(x, t)

—2r+1

pED 1 rE(#(x)’D 7 ED 16"(x)

__r_
— PP ET DT

(r—1) (r—1) (r—1)
_ 29ED 1 r@ @) 0'(x) a2 (r—1) B!
- (T - 1) [1 B (7’ — 1) x4D + x4 B xd—p
quD_T_il ap+2 (,r, _ 1) ET_l
W [ B 04> < 0.

Using (4.6) and (4.7), we have for 6 <z < é:

27 (2,t) — Toe(w, ) — aPT22P7" (2, 1)
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_ MED TR '1 r (0 (2))? @) @t (- e
 (r—=1) (r—1)z¢D x4 xeP
apD 1 [ P2 (o r—1
21ED Ity (TA 1E <o.
(r—1) | £a=p

Using (4.3), (4.7) and 6"(x) < 0 for £ <z < 1, we have for € <z < 1:

2I7(2,t) — Top(x, 1) — a”22P7" (2, 1)

B ED - (z))? n 0"(x) " (r—1)E""
(r—1) (r — 1 qu x4 xd=P
1IEDT

<T27 1~ min |07(2)| — a2 (r — 1) BT
(r—1) €<m<1

quD_f'il

o LB+ E-9 (1-9"1fE] - r - D ET] <0

From (4.7) we have:
E E

T(I,O) = — < 1 <m,
(ty +0(x)) =t (t)
and
_ ED =10(0)
72(0,t) = S 0,
m(1,) = _EDTTY() —0.

-1
We conclude that 7(x,t) is a lower solution that blows up at ¢ = ¢, on the interval
0,0]. Therefore, u (x,t) also blows up on [0,6] at t = t,. If R =1 in (4.5) and (4.8),
that is,
1

mr—lap+2 (7, _ 1)’

then the blow-up is complete. This is exactly what happened in the case p = ¢ in
Theorem 3.1. O

ty =

5. No Complete Blow-up when ¢ < p

Below we assume that the solution u of the problem (1.1) blows up under the
hypotheses of Theorem 3.2 and that the blow-up time ¢, is a fixed given number

corresponding to the given initial function ug () =m > 0. Let

1 1
ky = - + < )
art2k (r—1) aPP2k(r—1)t,
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where the positive constant k is defined in Theorem 3.3. Let us choose positive

constants § and k4 < 1 such that the following two conditions are satisfied:

(5.1) B>q+2
| 1= (G + ) K — T = DR > 0

We modify the proof of Lemma 4.2 in Chan and Dyakevich [1, p. 614] to prove the

following result.

Lemma 5.1. Ifp > q, then the following estimate holds for the solution of the problem

(1.1):
ks
u(z,ty) < ; En < 0o forx €0, ky).
5 (4 -")]
Proof. Let
ks
P (z,t) = DD
where
1 2
D(n,)= o (k;f —xﬁ) 4ty — 1)
We have:
ks
d — 7D—r/(r—1)
t (l’, t) (T' - 1) )
ks 2
) _ D—T’/(T—l)_ 8 .8 B—1
T (l’,t) (7" — 1_) 6 <k4 X ) X s
_ ke pcaye-n2 (18 8\ 512 (18 8 o1
O,y (1,t) = I ﬂ<k8 :U)x > (k;g x>( )z
2k e 1 oa
+ WD /(r=1) [~ B2~
2k3 —r/(r—1) B8 ¥6] B—2
£ D (K =2") (3= 1)a
k 2 ?
_ kT peanensen {_ (k) —7) xﬁ—l]
(r—1) B
1 2]‘?31)D—r/(r—1)x25—2 X 2253 (51551)13—7»/&—1) (kf _ xﬁ) B2
r— r—

Using (5.1), we obtain for any = € (0, k4) and 0 < t < ¢,

LD — aPT2aPd"



96 N. E. DYAKEVICH
]fgflfq [1 _ 4r kzﬁ_q_Q _ 2 (6 — 1)
“-pp [ (- b
> 0.

kiﬁ—q—Q _ Clp+2k‘£_qk’§_l (7, N 1)

It follows from (3.2), # > 1 and 0 < k4 < 1 that

k
O (2,0) = ’ .

2) r—1
{tb+%(l€f—x5) }

1

|: Al + Al :| r—1
aPt2k(r—1) aPt2k(r—1)t,
> T

(t+ 1)

1

1 r—1
kar+2 (r — 1) 4,
> u(z,0) on [0, kyl.

Since

ks
(ty— )71
it follows from Lemma 2.1, that ® (z,¢) is an upper solution of the problem (1.1) for
0 < x < ky. Since ® (z,t) is bounded at t = ¢, for all 0 < x < k4, we can conclude

®,(0,t) =0, P(ky,t) =

that the blow-up cannot be complete in the case p > ¢. O

REFERENCES

[1] C. Y. Chan and N. E. Dyakevich, Complete and single-point blow-up of the solution for a
degenerate semilinear parabolic problem with mixed boundary conditions, Dynamic Systems
and Applications, 15:603-616, 2006.

[2] C. Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems, SIAM J.
Math. Anal., 20:558-566, 1989.

[3] N. E. Dyakevich, Existence, uniqueness, and quenching properties of solutions for degenerate
semilinear parabolic problems with second boundary conditions, J. Math. Anal. Appl., 338:892—
901, 2008.

[4] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs,
NJ, 1964.

[5] L. Wang and Q. Chen, The asymptotic behavior of blowup solution of localized nonlinear equa-
tion, J. Math. Anal. Appl., 200:315-321, 1996.



