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1. Introduction

This paper is devoted to the eigenvalue problem associated with a second order
ODE containing a perturbed one-dimensional g-Laplace operator with a singularity
at 0. Our main goal is to discuss when the equation

ka(t)

(1.1) - ((a(t) |/ (£)]9 u')/+ — |/ (£)]97 u’) = fi(t,u(t)) + Afa(t, u(t))

a.e.in (0,T), where ¢ > 2,k > 1, T > 0,a € C'([0,T]), possesses at least one positive
solution satisfying the boundary conditions

(1.2) '(0) = 0 and w(T) = 0.

Our paper is motivated by the large number of papers associated with similar
problems, see for example [1], [2], [3], [4], [5], [6], [8], [9]. The majority of these
papers discuss the case ¢ = 2 or when the right-hand side of (1) has a special form.
The approach presented here is based on methods in calculus of variations. Thus we

treat (1.1)—(1.2) as the Euler-Lagrange equation for the following functional

(1.3) J(u) = /0 fh (—FA(t,u(t)) + éa(t) |u’(t)|q) dt,

u

where Fy(t,u) == [(fi(t,1) + Afa(t,1))dl and for i = 1,2,
0

— fl(t,u) if u e [O,dl],t c [O,T]
filt,u) = .
+00 if u € R\[0,dy],t €[0,T]
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with positive d; € I := (=b,c), where b and ¢ are fixed positive numbers. We deal

with the case when the following assumptions hold

f1 f1, f2: [0, T] x I — R are Caratheodory functions, X is real number R such that
for almost all t € [0,T] and all v € I

filt,w) + Afo(t,u) >0

and t — f1(t,0) + Afa(t,0) is not identically zero in a certain subset of [0,T]
with positive measure.
2 there exists positive d € I such that for i = 1,2, u — fi(t,u) + Afa(t,u) is
increasing in I for a.a. t € [0,T], and
max (fi(-u) + Ml w) € LY(0,7),

with ¢ = q_il.

f3 a € C'([0,T]) and amin := mingep 7 a(t) > 0.
Let

U = {ueC[0,T)): u(T)=0and «'(0) = 0 and u'(t) < 0
(1.4) for ¢t € [0,T] and t*a(t) [/]" 2’ € A([0, T])} ,

where A([0,7]) denotes the space of absolutely continuous functions v such that
o' [t € L9(0,T).

Let us note that in this case J is not necessarily either bounded or continuously
differentiable in its natural domain. Therefore we describe the set denoted by U in
which J is bounded below and possesses a positive minimizer u € U. The special
properties of U and the Fenchel equalities for auxiliary functionals allow us to show
that @ is the solution of (1.1)—(1.2). Also in this paper we discuss the continuous
dependence of solutions on functional parameters for our problem. Here we employ
the schema presented e.g. in [7], [6]. Roughly we prove that a sequence of solutions

(tm) ey of the problem

(1.5) = fi(t,u(t), w(t

corresponding to the sequence of parameters ((wWm, 2m)),,en C LP1(0,T) x LP2(0,T),
where py,pa > 2, tends uniformly to @ in [0,7] (up to a subsequence) provided
that the sequence of parameters tends almost everywhere in (0,7) to (wo,z) €
LP1(0,T)x LP2(0,T). Moreover we show that u is the solution of (1.5) with parameters

(’UJ(), Z(]).
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Lemma 1.1. Assume f1, 2 and f3. If u is a solutions of (1.1)—(1.2) such that
u(t) € I then u'(t) <0 fort e (0,7T).

Proof. Let h(t) := t*a(t)|u/(t)|97 20/ (t) for all t € [0,T]. Since h'(t) < 0 for all t €
(0,7T") we see that h is decreasing. Moreover h(0) = 0, so we have h(t) < h(0) = 0 for
t € (0,T). Therefore, by 3 and definition of h, we see that v/(t) < 0fort € (0,7). O

Lemma 1.2. Suppose that f1, f2, f3 hold and assume additionally that for d € I
defined in f2 the following inequality hold

f4 1
/OT <@ /0 (Al d) + AR d)dr)) s <d

Then the set U := {u € U;u(t) < d for all t € [0, 7]} has the following property:
for each uw € U there exists u € U such that for a.e. in (0,7)

(1.6) — (alf @OF2T(0) = (a(t,u(t) + Aol ule).

Proof. Fix u € U. We show that

1

1 1

u(t) = /tT (W /Os r* (fi(r,u(r)) + )\fg(r,u(r))dr)) ds

also belongs to U and satisfies (1.6). To this end we note

1
-1

() = (ﬁ [ it + Afz(r,U(T))dr))q
and further
alt)t* [ (1) (1)
— —a(t)t’f [(ﬁ/o rk (fi(r,u(r)) + )xfg(T,U(T))dT)) “]
- / P (fy(r () + Afalry u(r))dr)

which gives (1.6). Tt is clear that u(T) = 0, u € C([0,T]) N C*((0,T]). Moreover, by
Holder’s inequality, we have

[a'(t)|T! = ﬁ/o L u(r)) + A fo(ru(r))dr

t Ya ;s ¢ 1/q
B (/ lqkdl) (/ (it u(®) +Af2<t,u<t>>>q’dz)

0 0

T 1/d'
1 < 1 )1/q 1/ ( 7 —_ y )
fi(l,d) + Afa(t,d))?dl
a(t)th \ gk +1 0/

IA

IA




100 D. O’'REGAN AND A. ORPEL

1 1 1/q T B B 1/q
- (qk: n 1) /(fl(lvd) AL D))
min 0
Therefore
lim 4'(¢) = 0.
Jim, @ (t)=0

Taking into account (1.6) we get
(sl @I TD) = (it ult) + Molt, u(t))

which means, by £2, that (a()t* |a'(t)|*” (1) )//tk belongs to € L7(0,T). Finally,
by the definition of & we get a(t)t* |[0(¢)|" > @ (t) € A([0,T)). O

Theorem 1.3. Assume that (f1)-(f4) hold. If (tm)men C U is a minimizing sequence
of the functional J : U — R then there exists a sequence (Vp)men C W9(0,T)
such that

(1.7) —vn, (t) = t* (fi(t,um)) + Afa(t, um)) a.e. in (0,1)
and
18) lm [ —— o7 + 31“( Y ul, (D] — iy (£) (£) )t = 0.

meog(tha(h)) s

Proof. Let us note that J is bounded below on U. Indeed, for each u € U one can see
T t tk
(1.9) J(u) = / {—thA(t,u) + )t |u'(t)|q] dt
0 q
T T o o
> —/ tRFy (8, u(t))dt > —/ tru)[(fi(t, d)) + Afa(t, d)]dt
0 0

> _art /0 T[(E(t,d)) et d)]dt

and further —oo < min := inf J(u) < 400, which implies that for each £ > 0 there
uelU

exists mo € N such that J(u,,) < € + min for all m > m,. Taking into account

Lemma 1.2 we infer that for each u,, € U, there exists (U, )meny C U such that

(1.10)  —(t*a(t) [, (t)| *u, (1)) = t* (fi(t,um(t)) + Afa(t, un(t))) ae. in (0,7)
u,,(0) =0 and w,,(T) = 0.

We consider the following sequence (v, )men € WH'(0,T)

(1.11) Um(t) == tha(t) [@, ()|" W, (1) for t € (0,T)

and note, by (1.10), that

(1.12) —v) (1) € Ot Fr(t, um(t))}

= {t" (filt,um(t)) + Ma(t,un(t)))} a. e in (0,7)
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which can be rewritten as (1.7).
Moreover, by the Fenchel equality for L¢(0,7) 5 u +— fth \(t, u(t))dt, we infer
that for each m > my "

(1.13) min+e > J ()

T oo
= / th F; <t,—#) dt+/ U (YU (£)t
0 0
T k
i / o @pat,
0 q

where F5(t,v) 1= sup,cp (wv — Fy(t,u)) for all (t,v,\) € (0,T) x R x R.
On the other hand, for all u € U, we have the estimate

min = inf J(u) §/0 a(tTW|u'(t)|th—/ tRE(t, u(t))dt

uelU 0

S/OTa(tT)#“|u,(t>|th+/oTth: (t,—%) dt—/OTu’(t)vm(t)dt.

Therefore one sees

(1.14) min < inf UOTMW@)WH/T#“F; (t,—v’lﬂ(t)) dt

uclU q 0 tk

~ /0 Tu’(t)vm(t)dt} _ /0 L (t,-“ﬁ;ﬁt)) dat

~ sup [ /0 (o ()t — /0 : a(tT)tkW(t)Pdt]

uel

for all m € N. Now, by formula (1.11) and the properties of U we have

T 1 / T_/ Ta'(t)tk !/
———— v (t)|%dt = Uy, (E) U () dt — ——|u'(t)]?dt
[} ot = [ tuon - [0

< sup {/OT u' () vy, (t)dt — /OT a(tTW|u'(t)|th]

uel

< sup )[ /0 Tz(t)vm(t)dt— /0 Ta(tTM|z(t)|th}

2€L2(0,T

— [ ———— ol
o g(ta(t)

which implies
T T 4k T 1 /
(1.15) sup [/ u/(t)vm(t)dt—/ —\u/(t)|dt] :/ —————— |vm(t)]7 dt,
wet LJo 0 2 0 g (tha(t)) e
that for all m € N. Consequently, (1.14) yields that

T vl (1) T 1 /
(1.16) min < / tFY(t, — w)dt — / ——————|vm(t)|? dt, for all m € N.
0 / o ¢(tta(n)’
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Combining (1.13) and (1.16) we obtain the estimate

og(/ﬁ%ﬁﬁﬁwﬁ+/-Eiaymmww—/e%ww®w>
0 Oq/ ka q 0

T / L ey Un(t)
- —  u®)|Ydt— | F( - dt
{/0 q’(tka(t))qq| . /0 S }

+ {/OT““TW\U/@)WH/OTum(t)v;n(t)dH/OTth;(t,—#)dt}

< —min+ min 4€ = ¢,

for all m > my. Since € > 0 was arbitrary, we get (1.8). O

Theorem 1.4. If (f1)-(f4) hold, then problem (1.1)—(1.2) possesses at least one so-

lution w € U which is a minimizer of J : U — R.

Proof. We start our proof with the observation that for a € R large enough the set
Sa :={u e U, J(u) < a} is nonempty. Let (uy)men C S, be a minimizing sequence
of J: U — R. Taking into account the estimate (1.9), we see that (t*/%u/ ),.cn is
bounded in the L9(0,T)-norm, and further ((tkum)/)meN is bounded in the L4(0,T)-
norm. Thus, going if necessary to a subsequence, (t*u,,)men is weakly convergent
in W,9(0,T) to a certain 2 € W,(0,7) and, as a consequence, it is uniformly
convergent in [0, T"]. Moreover (uy,)men is bounded in L9(0, T") so up to a subsequence,
(U )men tends weakly to a certain w € L?(0,T). Therefore z(t) = t*u(t) and further
w is continuous in (0,7] and 0 < @ < d in (0,7]. Now we show that @’ < 0 and

u € C'([0,T]). To this end we see, by Theorem 1.3, that there exists a sequence
(Vm)men C WHT(0,T) such that
(

1.17) —u, (t) =t (fi(t,um(t)) + Afa(t,um(t))), for ae. t € (0,T),

and such that

T 1 ,
(1.18) lim ——— [om ()" +
mee o \g/(tha(t) T

Assertion (1.17) leads to the conclusion that (v, /t*)en and (v),)men are bounded

Al iy - u;n(t)vm(t)) dt = 0.

in the L? (0,7) norm, which implies the weak convergence (up to subsequences) of
(V! Ymen and (V) /t*)men in L7 (0, T). By (1.18) we can deduce also the boundedness
of (Up)men in L9(0,T). Finally, going if necessary to a subsequence, (Up,)men is
weakly convergent in Wh4'(0,T) to 7 € Wh7(0,T). Therefore (v, )men tends uni-
formly to ¥ in [0, T']. Since for all m € N, v,, is continuous and nonpositive, we obtain

the continuity and positivity of . Our task is now to prove that

(1.19) T (t) = —t"(fu(t,T(t)) + Afa(t,T(t))) a.e. in (0,7)

(1.20) o(t) = tha(t) [ ()2 @ (t) ace. in (0, 7).
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To this end one notes, by (1.17) and the properties of (wy,)men and (v),)men,

0 > liminf /OT (v;n(t)um(t) + oy (t, —U;;,Sw) + thA(t,um(t))) dt

m—0o0

> /OT (@’(t) (t) +t"Fy (t —i@) +thA(t,ﬂ(t))) dt >0,

where the last inequality is due to the properties of the Fenchel conjugate. Thus we

get
(1.21) T(t) = —t" (f1(t,a(t)) + Ma(t,a(t))) a.e. in (0,7).

On the other hand, (1.18) gives

.. T 1 q a(t>tk / q
ozlmmé<i;_—mﬂn+jrmwn1Mmm0ﬁ

e a(t) "

T L 0O e )
> PO+ B @) - (1)) | dt > 0.
A (ﬂﬁmm? q

Consequently, applying again the properties of the Fenchel transform, we get

(1.22) o(t) = tha(t) [@'(8)" @ (1) ae. i (0,7).

Summarizing, assertions (1.21) and (1.22) give
(1.23)  (tPa(t) [@ )" 2T (1)) = —t* f1(t, () + Mfao(t,u(t)) for a. a. ¢ € (0,T)
which can be rewritten as (1.1)—(1.2). Moreover it is clear that Lemmas 1.1 and 1.2
yield @ € C([0,T)), @(0) = 0, a(T) = 0, @ < 0 a.e. in [0, 7], t*a(t) [@(t)|" @ (t) €
L7(0,T). Finally @ € U.

Finally, by the uniform convergence of (u,),,cn to @ and the weak convergence
of (t*/9y! )en in L1(0,T) to t*/9%', one gets

ilellf} J(u) = lim inf /OT tk (—F,\(t,um(t)) + @ \u;n(t)|q) dt
> AT (pxmw»+iﬁrww)ﬁzjm)

2. Stability of solutions

In this section we shall investigate the dependence on functional parameters. Let
us consider the set W x Z C LP*(0,T) x LP>(0,T), where py,ps > 2. We start with
assumptions which guarantee that for each pair (w,z) € W x Z there exists at least

one positive and decreasing solution of (1.5). For this we assume



104 D. O’'REGAN AND A. ORPEL

flp f1:[0,T) x I x R — R, f5:1]0,T] x I x R — R are Caratheodory functions, A
is real number R such that for almost all t € [0,T] and all u € I, (z,y) € R?

filt,u,x) + Afa(t,y) > 0;

f2p there exists positive d € I such that for each (w,z) € WX Z, u — fi(t,u, w(t))+
Afo(t,u, 2(t)) is increasing in I for a.a. t € [0,T], and
Ig[%}é} (fl('v u, ’UJ()) + )‘f2('7 u, Z())) < Lq/(ou T)v
with ¢ = 4, and t — fi(t,0,w(t)) + Afa(L, 0, 2(¢)) is not identically zero in a
certain subset of [0,T] with positive measure.

fdp for each (w,z) e W x Z

1

f5p there exists M > 0 such that for each (w,z) € W x Z

/T % max [f1(t, u, w(t)) + Afa(t, u, 2(t))]dt < M.
0 u€[0,d]

Theorem 2.1. Suppose that (fIp), (f2p), (fip), (f5p) and (f3) hold. Consider the
sequence of parameters (W, Zm) ey € W X Zsuch that for each m € N, we denote
by um € U a solution of (1.5). If (Wm, Zm) ey tends a.e. in [0,T] to (wo, z), then

the sequence of solutions (uy,) tends uniformly (up to a subsequence) to a certain

meN
ug € U being a solution of (1.5) for parameters (wy, zo).

Proof. By the previous theorem for each pair (wp, zm),,cy € W x Z there exists a

solution w,, € U for problem (1.5), namely

21— (al®) [l (Ot (1)) = 1 L1 0 (6), 1 (6) + Mo(t, (), 2 (1),

Thus we have
T
/ * Ll (8)|° dt
0

<L / a(8)t¥ [ (8)[72 el () (1)t

_ ! /0 a(t)t* |ul, (8) 72l (t)ul, (t)dt
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_ 1 /Otk max [Fu (£ 1, wn(8)) -+ Aot u, 2 (8))]dt < 2

Qmin u€l0,d] Amin

Therefore we see that (t*/9u/ ),,cn is bounded in the L7(0,T)-norm, and further
((tkum),)me ~ is bounded in the L9(0,7)-norm. Now, employing a reasoning similar
to that in the proof of Theorem 1.4, we infer that (t*u,,)men tends weakly (up to a
subsequence) in Wy(0,T) to a certain zo € Wy?(0,T). Consequently, it is uniformly
convergent in [0, 77]. On the other hand (u,)men is bounded in L(0,7") so up to a
subsequence, (u;,)men is weakly convergent to a certain ug € L%(0,7). Therefore
7o(t) = t*ug(t) and further ug is continuous in (0,77 and 0 < uy < d in (0,7]. Now

we prove that uj < 0 and ug € C*([0,T]). For this we consider the sequence

O (t) = tFa(t) |ul, (£)|" 2o () a.e. in (0,T).

m

By (2.1),
(2.2) 0l (1) = 1 (8w (£), 0 (£)) - Mo (t, wm(£), 2m () ace. in (0, T).

The above assertions and the properties of the sequence (u,,)meny guarantee that
(Um)men is bounded in W (0,T) and further, it is weakly convergent (up to a sub-
sequence) to vy € W(0,7). Finally (v,,)men is uniformly convergent to v in [0, 7).
Since each v, (t) < 0 we see that vy(t) < 0in (0,7") and vy € C([0,T]). Moreover we
have

T 1
(23) 0 = liminf <7q,|vm(t)|q
m—>oo/0 q/(tka(t))?
a(t)t*

!

LD g - u;<t>vm<t>) i

T 1 g alytt oo,
> — |vo(t uo(?)|" — ug(t)vo(t) | dt > 0.
= <q/<tka<t>>‘z' (17 + S ()~ (1) <>)

We now show

(2.4) 0 = lim inf /0 ' (v;n(t)um(t) + Ry (t, _Un® i, zm(t))

m—oo tk

F T EN( U (1), wn (1), zm(t))) dt

> /0 : (v(’)(t)uo(t) N (t, —%ff), wo(t), zo(t>)
+ R\ (t, uo(t), wo(t), zo(t))) dt >0,

where for almost all t € [0, 7] and all u € I, (z,y) € R? and v* € R,

u

Fy(t w2, y) = / (Filt 1) + Aot 1 y))dl,

0
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FY(t,v*, z,y) == sup (wv* — F\(t,u, x,y))

uER
with
— o fl(t,u,x) if ue [O,dl], t € [O,T]
hituz) = { +o0 if u € R\[0,dy], t € [0,T]
_ - fa(t,u,y) if w e [0,dy], t € [0,7]
Fatwy) = { Yoo if ue R\[0,dy], t € [0,T].

For this we note that (2.2), convexity of F) with respect to the second variable and
definition of F) yield

U;;;]g) c 8UF)\(t’ um(t), wm(t), Zm(t>>>

for a.a. t € (0,7T) and all m € N, where 0, F), is the subdifferential of F\ with respect

to the second variable:

8uFA(t>u>$ay) = {'U* € Ra F)\(t,'l},!lf,y) > F)\(tauax>y) + v (U - U) for all v € R}

Now applying the Fenchel equality for the function F\(¢,-, z,y) we get

(V) () () + t*F <t, —#,wm(t), zm(t)) + PNt U (), Wi (), 2m () = 0

for a.a. t € (0,7) and all m € N. Thus

T 1 (¢
lim (v;n(t)um(t) + " Fy (t> ~ml)
0

tk

Jim, (0 2n(0))
+ R E (1, U (1), win (1), zm(t))) dt = 0.

On the other hand, by the assumptions on F) and properties of the sequences, we
know that

(2.5) lim T (O (t)dt = / ()t
and
(26)  lim TthA(t,um(t),wm(t),zm(t))dt:/TthA(t,uo(t),wo(t),zo(t))dt.

Therefore, we infer the existence of the following limit

T /
lim [ t"F; <t, “n®) . zm(t)) dt.

m—o0 tk
0
Now we note that for all w € L%(0,7") , m € N and a.e. t € [0, 7] one has
—vp, (1)u(t) — t"Fx(t, u(t), win(t), 2in(t))

sup {0l ()1 — t*Fa(t, 7, win(t), 2 (1)) }

= t"F} (t, —#,wm(t),zm(t))

IN
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and further

lim (—vl, (8)u(t) — t*Fa(t, ut), wn(t), zm(1))) dt

m
m—00 0

T /
< lim thFy (t,—vm(t) wm(t),zm(t)) dt.

m—oo J tk

Combining (2.5), (2.6) and the previous inequality we derive

T
/ (—vh()u(t) — t*Fa(t, ult), wo(t), 20(t)))dt
0
T /
< lim [ t°F} (t, —U";—l@,wm(t), zm(t)) dt
m—o0 0
for all w € L9(0,T). Consequently

sup ){/0 (—vp()u(t) — " Fx(t, u(t), wo(t), 20(t))) dt}

ueLi(0,T

T /
< lim [ t°F} (t, “a®) . zm(t)) dt.

m—oo J tk
Since
T /
/0 thEy (t, —Uot—gf),wo(t),zo(t)) dt
T
= sup {/ (—vp()u(t) — t*F(t, u(t), wo(t), 20(t))) dt},
uerLa(0,1) LJo
we have
(2.7)
T / T /
e (=B .z ar < i [0 (120 02000 )
0 m=ee Jo

Taking into account (2.5), (2.6) and (2.7) we get (2.4).
Assertions (2.3) and (2.4) give

1 o a(t)tk
() + 2

S |up ()" — up(t)vo(t)) = 0 a.e in (0,7)
¢'(tha(t)) »

and

(vg(t)uo(t) + "y (t, —%) + R F\(t, uo(t), wo(t), zo(t))> =0 a.ein (0,7).

Consequently, by the properties of the Fenchel transform,
(2.8) vo(t) = tRa(t) |uh ()] 2 ul(t) ae. in (0,7).
By (2.1),

(2.9) —uh(t) =t (£t wo(t), wo(t)) + Mfalt, um(t), 20(t))) ace. in (0,T).
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Thus

(210)  — (Fa(t) [y ()" up(1)) = 1* (it wo(t), wolt)) + Aot wn(t), (1)

a.e. in (0,7). Note that ug(T) =0, 0 < ug < d in (0,7] and ug is continuous in
(0,T]. By (2.8), the continuity of vy in [0, 7] implies that ug € C*((0,T]). Further
(2.8), (2.9) and assumption (f2p) imply t*a(t) [u}(t)|* > u} € A([0,T]). Now it suffices
to show that «/(t) < 0 for t € [0,7] and wy is continuous at 0. From (2.10) we have

the estimates (as in the proof of Lemma 1.2)

0 = e [ PR + A ()r

t)tk
T 1/q
! Ly ¢htl/a (1, d) + M fa(t, d)7dl
< t
< i () | [ T )
0
T 1/q
1
< (1,d) + Mfa(t,d)?dl | .
- Amin (qk + 1) / + f2 ))
0
Finally
. . /
tli%i up(t) = 0 = uy(0).
Now (2.10) and Lemma 1.1 lead to the conclusion that ug(t) < 0 for ¢ € (0, 7). Thus
Ug € U. O

Example 2.2. For A € (6.935,8.366) and all (w,z) € LP*(0,7) x LP*(0,T), with
p1, P2 > 2, the BVP

(2.11)
1 2
_((1+t2 |u'(£), ()) +(1+t2t‘u )
— 815\/5 (—u'(t) (1 + arctg®w(t)) + A (u?(t) + 1) (1 + sin z(t))) a.e. in (0, 3),
' (0) =0 and u(3) = 0.
possesses at least one positive solution in the set U := {u € U ; u(t) < 1 for all

t € [0,3]}, with

U = {u € C1([0, 7)) : u(3) = 0 and v/(0) = 0 and u'(t) < 0

k

t n2
T |u'|" w GA([O,T])}.

(2.12) for t € [0, 3] and

Moreover if for each m € N, u,, € U denotes the solution of (2.11) for (wy,, z,,) and if
(Wi, 2m ) ey tends a.e. in [0, 7] to (wo, 29), then the sequence of solutions (u,),,cy
tends uniformly (up to a subsequence) to a certain uy € U being a solution of (2.11)

for parameters (wy, 2o).
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Proof. We consider (1.5) with T'= 3, ¢ = 4, a(t) = 1jt2 and

1 1+arctg®x 4

t = - I
fl( 7u7'r) 810 \/E (] b
1 1 +sin?y
= _ 1).

We show that all the ssumptions of Theorem 2.1 are satisfied in this case. First we
look for A such that

f( t,u,x,y) : :fl(tvuv'r)+>\f2( tuuuy)
1 )
= 31077 (—u4 (1 + arctg%) + A (u2 + 1) (1 + sin? y))

is increasing in [0, 1]. Note

fr(t,u,z,y) = u? (1+ arctg®z) + 2Xu (1 +sin’y))

1
—4
810/t (
and further
filt,u,z,y) = 0 < —4u® (1 + arctg®x) + 2 u (1 4 sin’y) =0
which gives
\/7 l—l—smy \/X 1 +sin®y
up =0 or u; = Y U
1+ arctg®x 2\ 1+ arctg’x
Thus for a.a. t € (0,7) and all z,y € R
fl(t,u,z,y) > 0foru € (—oo,uz) U (0,u)
fi(t,u,z,y) < 0 for u € (ug,0)

which implies that for a.a. t € (0,7) and =,y € R the function f(¢, -, z,y) is increasing
for u € (0,u1). Moreover , since f(¢,0,z,y) = ﬁ\/{ (1 + sin? y) > 0, one sees that
f(t,u,z,y) > 0 for u € (0,u;). Thus we obtain

.2
| < é 1+sin“y
—V 2\ 1+arctg’x

for a.a. t € (0,T) and all 2,y € R. Note that

2
1 < 1+sin“y <
1+72/4 =\ 14+ arctg?x —

for all x,y € R. We take A such that
A 1
1<\/=y|———
- \/g\/ 1+ 72/4’

(2.13) A >

namely
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We also look for A such that
(2.14)

1
3

3 1 s 1 4 ) , i
/0 (a(s>s’f/o " gtogy (4 (1 arga) + A (d +1) (14 sin y))dr) ds < d

with d = 1. It is easy to see that

1
3

3 1 s . 1 ) g
/o <a(5)8k/0 r 8107 (_ (1+arctg x) +2) (1+sn1 y)) dr) ds
11 ° 1 2 .
= /o <%m/0 W<_<1+Z>+4>\)dr) ds
[aeo0eD) )
- 810 — | ds
o \8 ;

10 1+ 52 T
)6
< 2.7(/% <4>\— (1+%2)) < f/g_lo (4)\— <1+%2)).

Therefore (2.14) holds if
.1 2
— (AN — 1+ — <1

Ll

which is equivalent to

31 n?
2.1 < —+ —=8. .
(2.15) A< T 1o~ 83660
Summarizing, for A satisfying (2.13) and (2.15) all the assumtions of Theorem 2.1
hold. O
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