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ABSTRACT. We investigate the eigenvalue interval for boundary value problem with a one-

dimensional perturbed q-Laplace operator. Our results cover also the case when the right-hand side
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establish their continuous dependence on functional parameters.
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1. Introduction

This paper is devoted to the eigenvalue problem associated with a second order

ODE containing a perturbed one-dimensional q-Laplace operator with a singularity

at 0. Our main goal is to discuss when the equation

(1.1) −
((

a(t) |u′(t)|q−2
u′
)′

+
ka(t)

t
|u′(t)|q−2

u′

)
= f1(t, u(t)) + λf2(t, u(t))

a.e. in (0, T ), where q ≥ 2, k > 1, T > 0, a ∈ C1([0, T ]), possesses at least one positive

solution satisfying the boundary conditions

(1.2) u′(0) = 0 and u(T ) = 0.

Our paper is motivated by the large number of papers associated with similar

problems, see for example [1], [2], [3], [4], [5], [6], [8], [9]. The majority of these

papers discuss the case q = 2 or when the right-hand side of (1) has a special form.

The approach presented here is based on methods in calculus of variations. Thus we

treat (1.1)–(1.2) as the Euler-Lagrange equation for the following functional

(1.3) J(u) =

∫ T

0

tk
(
−Fλ(t, u(t)) +

1

q
a(t) |u′(t)|q

)
dt,

where Fλ(t, u) :=
u∫
0

(f1(t, l) + λf2(t, l))dl and for i = 1, 2,

f i(t, u) =





fi(t, u) if u ∈ [0, d1], t ∈ [0, T ]

+∞ if u ∈ R\[0, d1], t ∈ [0, T ]
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with positive d1 ∈ I := (−b, c), where b and c are fixed positive numbers. We deal

with the case when the following assumptions hold

f1 f1, f2 : [0, T ]× I → R are Caratheodory functions, λ is real number R such that

for almost all t ∈ [0, T ] and all u ∈ I

f1(t, u) + λf2(t, u) ≥ 0

and t 7→ f1(t, 0) + λf2(t, 0) is not identically zero in a certain subset of [0, T ]

with positive measure.

f2 there exists positive d ∈ I such that for i = 1, 2, u 7→ f1(t, u) + λf2(t, u) is

increasing in I for a.a. t ∈ [0, T ], and

max
u∈[0,d]

(f1(·, u) + λf2(·, u)) ∈ Lq′(0, T ),

with q′ = q
q−1

.

f3 a ∈ C1([0, T ]) and amin := mint∈[0,T ] a(t) > 0.

Let

Ũ =
{
u ∈ C1([0, T ]) : u(T ) = 0 and u′(0) = 0 and u′(t) < 0

for t ∈ [0, T ] and tka(t) |u′|q−2
u′ ∈ A([0, T ])

}
,(1.4)

where A([0, T ]) denotes the space of absolutely continuous functions v such that

v′/tk ∈ Lq′(0, T ).

Let us note that in this case J is not necessarily either bounded or continuously

differentiable in its natural domain. Therefore we describe the set denoted by U in

which J is bounded below and possesses a positive minimizer u ∈ U . The special

properties of U and the Fenchel equalities for auxiliary functionals allow us to show

that u is the solution of (1.1)–(1.2). Also in this paper we discuss the continuous

dependence of solutions on functional parameters for our problem. Here we employ

the schema presented e.g. in [7], [6]. Roughly we prove that a sequence of solutions

(um)m∈N of the problem

(1.5)






−
((

a(t) |u′(t)|q−2 u′
)′

+ ka(t)
t

|u′(t)|q−2 u′
)

= f1(t, u(t), w(t)) + λf2(t, u(t), z(t)) a.e. in (0, T ),

u′(0) = 0 and u(T ) = 0,

corresponding to the sequence of parameters ((wm, zm))m∈N ⊂ Lp1(0, T ) × Lp2(0, T ),

where p1, p2 > 2, tends uniformly to u in [0, T ] (up to a subsequence) provided

that the sequence of parameters tends almost everywhere in (0, T ) to (w0, z0) ∈
Lp1(0, T )×Lp2(0, T ). Moreover we show that u is the solution of (1.5) with parameters

(w0, z0).
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Lemma 1.1. Assume f1, f2 and f3. If u is a solutions of (1.1)–(1.2) such that

u(t) ∈ I then u′(t) < 0 for t ∈ (0, T ).

Proof. Let h(t) := tka(t)|u′(t)|q−2u′(t) for all t ∈ [0, T ]. Since h′(t) < 0 for all t ∈
(0, T ) we see that h is decreasing. Moreover h(0) = 0, so we have h(t) < h(0) = 0 for

t ∈ (0, T ). Therefore, by f3 and definition of h, we see that u′(t) < 0 for t ∈ (0, T ).

Lemma 1.2. Suppose that f1, f2, f3 hold and assume additionally that for d ∈ I

defined in f2 the following inequality hold

f4 ∫ T

0

(
1

a(s)sk

∫ s

0

rk (f1(r, d) + λf2(r, d)dr)

) 1

q−1

ds ≤ d.

Then the set U := {u ∈ Ũ ; u(t) ≤ d for all t ∈ [0, T ]} has the following property:

for each u ∈ U there exists ũ ∈ U such that for a.e. in (0, T )

(1.6) −
(
a(t)tk |ũ′(t)|q−2

ũ′(t)
)′

= tk(f1(t, u(t)) + λf2(t, u(t))).

Proof. Fix u ∈ U . We show that

ũ(t) =

∫ T

t

(
1

a(s)sk

∫ s

0

rk (f1(r, u(r)) + λf2(r, u(r))dr)

) 1

q−1

ds

also belongs to U and satisfies (1.6). To this end we note

ũ′(t) = −
(

1

a(t)tk

∫ t

0

rk (f1(r, u(r)) + λf2(r, u(r))dr)

) 1

q−1

and further

a(t)tk |ũ′(t)|q−2
ũ′(t)

= −a(t)tk

[(
1

a(t)tk

∫ t

0

rk (f1(r, u(r)) + λf2(r, u(r))dr)

) 1

q−1

]q−1

= −
∫ t

0

rk (f1(r, u(r)) + λf2(r, u(r))dr)

which gives (1.6). It is clear that ũ(T ) = 0, ũ ∈ C([0, T ]) ∩ C1((0, T ]). Moreover, by

Hőlder’s inequality, we have

|ũ′(t)|q−1 =
1

a(t)tk

∫ t

0

rkf1(r, u(r)) + λf2(r, u(r))dr

≤ 1

a(t)tk




t∫

0

lqkdl




1/q


t∫

0

(f1(l, u(l)) + λf2(t, u(t)))q′dl




1/q′

≤ 1

a(t)tk

(
1

qk + 1

)1/q

tk+1/q




T∫

0

(f1(l, d) + λf2(t, d))q′dl




1/q′
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≤ 1

amin

(
1

qk + 1

)1/q



T∫

0

(f1(l, d) + λf2(t, d))q′dl




1/q′

t1/q.

Therefore

lim
t→0+

ũ′(t) = 0.

Taking into account (1.6) we get
(
a(t)tk |ũ′(t)|q−2

ũ′(t)
)′

/tk = (f1(t, u(t)) + λf2(t, u(t)))

which means, by f2, that
(
a(t)tk |ũ′(t)|q−2 ũ′(t)

)′
/tk belongs to ∈ Lq′(0, T ). Finally,

by the definition of ũ we get a(t)tk |ũ′(t)|q−2 ũ′(t) ∈ A([0, T ]).

Theorem 1.3. Assume that (f1)–(f4) hold. If (um)m∈N ⊂ U is a minimizing sequence

of the functional J : U → R then there exists a sequence (vm)m∈N ⊂ W 1,q′(0, T )

such that

(1.7) −v′
m(t) = tk

(
f1(t, um)) + λf2(t, um)

)
a.e. in (0, 1)

and

(1.8) lim
m→∞

∫ T

0

1

q′(tka(t))
q′

q

|vm(t)|q′ +
1

q
a(t)tk|u′

m(t)|q − u′
m(t)vm(t))dt = 0.

Proof. Let us note that J is bounded below on U . Indeed, for each u ∈ U one can see

J(u) =

∫ T

0

[
−tkFλ(t, u) +

a(t)tk

q
|u′(t)|q

]
dt(1.9)

≥ −
∫ T

0

tkFλ(t, u(t))dt ≥ −
∫ T

0

tku(t)[
(
f1(t, d)) + λf2(t, d

)
]dt

≥ −dT k

∫ T

0

[
(
f1(t, d)) + λf2(t, d

)
]dt,

and further −∞ < min := inf
u∈eU

J(u) < +∞, which implies that for each ε > 0 there

exists m0 ∈ N such that J(um) < ε + min for all m ≥ m0. Taking into account

Lemma 1.2 we infer that for each um ∈ U , there exists (um)m∈N ⊂ U such that

−(tka(t)|u′
m(t)|q−2u′

m(t))′ = tk
(
f1(t, um(t)) + λf2(t, um(t))

)
a.e. in (0, T )(1.10)

u′
m(0) = 0 and um(T ) = 0.

We consider the following sequence (vm)m∈N ⊂ W 1,q′(0, T )

(1.11) vm(t) := tka(t) |u′
m(t)|q−2

u′
m(t) for t ∈ (0, T )

and note, by (1.10), that

−v′
m(t) ∈ ∂u{tkFλ(t, um(t))}(1.12)

= {tk
(
f1(t, um(t)) + λf2(t, um(t))

)
} a. e. in (0, T )
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which can be rewritten as (1.7).

Moreover, by the Fenchel equality for Lq(0, T ) ∋ u 7→
T∫
0

tkFλ(t, u(t))dt, we infer

that for each m ≥ m0

min +ε > J (um)(1.13)

=

∫ T

0

tkF ∗
λ

(
t,−v′

m(t)

tk

)
dt +

∫ T

0

um(t)v′
m(t)dt

+

∫ T

0

a(t)tk

q
|u′

m(t)|qdt,

where F ∗
λ (t, v) := supu∈R (uv − Fλ(t, u)) for all (t, v, λ) ∈ (0, T ) × R × R.

On the other hand, for all u ∈ U , we have the estimate

min = inf
u∈eU

J(u) ≤
∫ T

0

a(t)tk

q
|u′(t)|qdt −

∫ T

0

tkFλ(t, u(t))dt

≤
∫ T

0

a(t)tk

q
|u′(t)|qdt +

∫ T

0

tkF ∗
λ

(
t,−v′

m(t)

tk

)
dt −

∫ T

0

u′(t)vm(t)dt.

Therefore one sees

min ≤ inf
u∈eU

[∫ T

0

a(t)tk

q
|u′(t)|qdt +

∫ T

0

tkF ∗
λ

(
t,−v′

m(t)

tk

)
dt(1.14)

−
∫ T

0

u′(t)vm(t)dt

]
=

∫ T

0

tkF ∗
λ

(
t,−v′

m(t)

tk

)
dt

− sup
u∈eU

[∫ T

0

u′(t)vm(t)dt −
∫ T

0

a(t)tk

q
|u′(t)|qdt

]

for all m ∈ N . Now, by formula (1.11) and the properties of U we have
∫ T

0

1

q′(tka(t))
q′

q

|vm(t)|q′dt =

∫ T

0

u′
m(t)vm(t)dt −

∫ T

0

a(t)tk

q
|u′(t)|qdt

≤ sup
u∈eU

[∫ T

0

u′(t)vm(t)dt −
∫ T

0

a(t)tk

q
|u′(t)|qdt

]

≤ sup
z∈L2(0,T )

[∫ T

0

z(t)vm(t)dt −
∫ T

0

a(t)tk

q
|z(t)|qdt

]

=

∫ T

0

1

q′(tka(t))
q′

q

|vm(t)|q′dt,

which implies

(1.15) sup
u∈eU

[∫ T

0

u′(t)vm(t)dt −
∫ T

0

tk

2
|u′(t)|dt

]
=

∫ T

0

1

q′(tka(t))
q′

q

|vm(t)|q′dt,

that for all m ∈ N . Consequently, (1.14) yields that

(1.16) min ≤
∫ T

0

tkF ∗
λ (t,−v′

m(t)

tk
)dt −

∫ T

0

1

q′(tka(t))
q′

q

|vm(t)|q′dt, for all m ∈ N.
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Combining (1.13) and (1.16) we obtain the estimate

0 ≤
(∫ T

0

a(t)tk

q
|u′

m(t)|qdt +

∫ T

0

1

q′(tka(t))
q′

q

|vm(t)|q′dt −
∫ T

0

u′
m(t)vm(t)dt

)

=

{∫ T

0

1

q′(tka(t))
q′

q

|vm(t)|q′dt −
∫ T

0

tkF ∗
λ (t,−v′

m(t)

tk
)dt

}

+

{∫ T

0

a(t)tk

q
|u′(t)|qdt +

∫ T

0

um(t)v′
m(t)dt +

∫ T

0

tkF ∗
λ (t,−v′

m(t)

tk
)dt

}

≤ −min + min +ε = ε,

for all m ≥ m0. Since ε > 0 was arbitrary, we get (1.8).

Theorem 1.4. If (f1)–(f4) hold, then problem (1.1)–(1.2) possesses at least one so-

lution u ∈ U which is a minimizer of J : U → R.

Proof. We start our proof with the observation that for a ∈ R large enough the set

Sa := {u ∈ U, J(u) ≤ a} is nonempty. Let (um)m∈N ⊂ Sa be a minimizing sequence

of J : U → R. Taking into account the estimate (1.9), we see that (tk/qu′
m)m∈N is

bounded in the Lq(0, T )-norm, and further (
(
tkum

)′
)m∈N is bounded in the Lq(0, T )-

norm. Thus, going if necessary to a subsequence, (tkum)m∈N is weakly convergent

in W 1,q
0 (0, T ) to a certain z̃ ∈ W 1,q

0 (0, T ) and, as a consequence, it is uniformly

convergent in [0, T ]. Moreover (um)m∈N is bounded in Lq(0, T ) so up to a subsequence,

(um)m∈N tends weakly to a certain u ∈ Lq(0, T ). Therefore z̃(t) = tku(t) and further

u is continuous in (0, T ] and 0 ≤ u ≤ d in (0, T ]. Now we show that u′ < 0 and

u ∈ C1([0, T ]). To this end we see, by Theorem 1.3, that there exists a sequence

(vm)m∈N ⊂ W 1,q′(0, T ) such that

(1.17) −v′
m(t) = tk

(
f1(t, um(t)) + λf2(t, um(t))

)
, for a.e. t ∈ (0, T ),

and such that

(1.18) lim
m→∞

∫ T

0

(
1

q′(tka(t))
q′

q

|vm(t)|q′ +
a(t)tk

q
|u′

m(t)|q − u′
m(t)vm(t)

)
dt = 0.

Assertion (1.17) leads to the conclusion that (v′
m/tk)m∈N and (v′

m)m∈N are bounded

in the Lq′ (0, T ) norm, which implies the weak convergence (up to subsequences) of

(v′
m)m∈N and (v′

m/tk)m∈N in Lq′(0, T ). By (1.18) we can deduce also the boundedness

of (vm)m∈N in Lq′(0, T ). Finally, going if necessary to a subsequence, (vm)m∈N is

weakly convergent in W 1,q′(0, T ) to v ∈ W 1,q′(0, T ). Therefore (vm)m∈N tends uni-

formly to v in [0, T ]. Since for all m ∈ N , vm is continuous and nonpositive, we obtain

the continuity and positivity of v. Our task is now to prove that

(1.19) v′(t) = −tk(f1(t, u(t)) + λf2(t, u(t))) a.e. in (0, T )

(1.20) v(t) = tka(t) |u′(t)|q−2
u′(t) a.e. in (0, T ).
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To this end one notes, by (1.17) and the properties of (um)m∈N and (v′
m)m∈N ,

0 ≥ lim inf
m→∞

∫ T

0

(
v′

m(t)um(t) + tkF ∗
λ

(
t,−v′

m(t)

tk

)
+ tkFλ(t, um(t))

)
dt

≥
∫ T

0

(
v′(t)u(t) + tkF ∗

λ

(
t,−v′(t)

tk

)
+ tkFλ(t, u(t))

)
dt ≥ 0,

where the last inequality is due to the properties of the Fenchel conjugate. Thus we

get

(1.21) v′(t) = −tk (f1(t, u(t)) + λf2(t, u(t))) a.e. in (0, T ).

On the other hand, (1.18) gives

0 ≥ lim inf
m→∞

∫ T

0

(
1

q′(tka(t))
q′

q

|vm(t)|q′ +
a(t)tk

q
|u′

m(t)|q − u′
m(t)vm(t)

)
dt

≥
∫ T

0

(
1

q′(tka(t))
q′

q

|v(t)|q′ +
a(t)tk

q
|u′(t)|q − u′(t)v(t)

)
dt ≥ 0.

Consequently, applying again the properties of the Fenchel transform, we get

(1.22) v(t) = tka(t) |u′(t)|q−2
u′(t) a.e. in (0, T ).

Summarizing, assertions (1.21) and (1.22) give

(1.23) (tka(t) |u′(t)|q−2
u′(t))′ = −tkf1(t, u(t)) + λf2(t, u(t)) for a. a. t ∈ (0, T )

which can be rewritten as (1.1)–(1.2). Moreover it is clear that Lemmas 1.1 and 1.2

yield u ∈ C1([0, T ]), u′(0) = 0, u(T ) = 0, u′ < 0 a.e. in [0, T ], tka(t) |u′(t)|q−2 u′(t) ∈
Lq′(0, T ). Finally u ∈ U .

Finally, by the uniform convergence of (um)m∈N to u and the weak convergence

of (tk/qu′
m)m∈N in Lq(0, T ) to tk/qu′, one gets

inf
u∈U

J(u) = lim inf
m→∞

∫ T

0

tk
(
−Fλ(t, um(t)) +

a(t)

q
|u′

m(t)|q
)

dt

≥
∫ T

0

tk
(
−Fλ(t, u(t)) +

a(t)

q
|u′(t)|q

)
dt = J(u).

2. Stability of solutions

In this section we shall investigate the dependence on functional parameters. Let

us consider the set W × Z ⊂ Lp1(0, T ) × Lp2(0, T ), where p1, p2 > 2. We start with

assumptions which guarantee that for each pair (w, z) ∈ W × Z there exists at least

one positive and decreasing solution of (1.5). For this we assume
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f1p f1 : [0, T ] × I × R → R, f2 : [0, T ] × I × R → R are Caratheodory functions, λ

is real number R such that for almost all t ∈ [0, T ] and all u ∈ I, (x, y) ∈ R2

f1(t, u, x) + λf2(t, y) ≥ 0;

f2p there exists positive d ∈ I such that for each (w, z) ∈ W ×Z, u 7→ f1(t, u, w(t))+

λf2(t, u, z(t)) is increasing in I for a.a. t ∈ [0, T ], and

max
u∈[0,d]

(f1(·, u, w(·)) + λf2(·, u, z(·))) ∈ Lq′(0, T ),

with q′ = q
q−1

, and t 7→ f1(t, 0, w(t)) + λf2(t, 0, z(t)) is not identically zero in a

certain subset of [0, T ] with positive measure.

f4p for each (w, z) ∈ W × Z

∫ T

0

(
1

a(s)sk

∫ s

0

rk (f1(r, d, w(r)) + λf2(r, d, z(r))dr)

) 1

q−1

ds ≤ d.

f5p there exists M > 0 such that for each (w, z) ∈ W × Z
∫ T

0

tk max
u∈[0,d]

[f1(t, u, w(t)) + λf2(t, u, z(t))]dt ≤ M.

Theorem 2.1. Suppose that (f1p), (f2p), (f4p), (f5p) and (f3) hold. Consider the

sequence of parameters (wm, zm)m∈N ∈ W × Zsuch that for each m ∈ N , we denote

by um ∈ U a solution of (1.5). If (wm, zm)m∈N tends a.e. in [0, T ] to (w0, z0), then

the sequence of solutions (um)m∈N tends uniformly (up to a subsequence) to a certain

u0 ∈ U being a solution of (1.5) for parameters (w0, z0).

Proof. By the previous theorem for each pair (wm, zm)m∈N ∈ W × Z there exists a

solution um ∈ U for problem (1.5), namely

(2.1) −
(
a(t)tk |u′

m(t)|q−2
u′

m(t)
)′

= tkf1(t, um(t), wm(t)) + λf2(t, um(t), zm(t)).

Thus we have
∫ T

0

tk |u′
m(t)|q dt

≤ 1

amin

∫ T

0

a(t)tk |u′
m(t)|q−2

u′
m(t)u′

m(t)dt

=
1

amin

∫ T

0

a(t)tk |u′
m(t)|q−2

u′
m(t)u′

m(t)dt

=
1

amin

([
u(t)a(t)tk |u′

m(t)|q−2
u′

m(t)
]T
0

−
∫ T

0

(
a(t)tk |u′

m(t)|q−2
u′

m(t)
)′

um(t)dt

)

=
1

amin

∫ T

0

−
(
a(t)tk |u′

m(t)|q−2
u′

m(t)
)′

um(t)dt
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=
1

amin

∫ T

0

tk max
u∈[0,d]

[f1(t, u, wm(t)) + λf2(t, u, zm(t))]dt ≤ M

amin

.

Therefore we see that (tk/qu′
m)m∈N is bounded in the Lq(0, T )-norm, and further

(
(
tkum

)′
)m∈N is bounded in the Lq(0, T )-norm. Now, employing a reasoning similar

to that in the proof of Theorem 1.4, we infer that (tkum)m∈N tends weakly (up to a

subsequence) in W 1,q
0 (0, T ) to a certain x0 ∈ W 1,q

0 (0, T ). Consequently, it is uniformly

convergent in [0, T ]. On the other hand (um)m∈N is bounded in Lq(0, T ) so up to a

subsequence, (um)m∈N is weakly convergent to a certain u0 ∈ Lq(0, T ). Therefore

x0(t) = tku0(t) and further u0 is continuous in (0, T ] and 0 ≤ u0 ≤ d in (0, T ]. Now

we prove that u′
0 < 0 and u0 ∈ C1([0, T ]). For this we consider the sequence

vm(t) = tka(t) |u′
m(t)|q−2

u′
m(t) a.e. in (0, T ).

By (2.1),

(2.2) −v′
m(t) = tkf1(t, um(t), wm(t)) + λf2(t, um(t), zm(t)) a.e. in (0, T ).

The above assertions and the properties of the sequence (um)m∈N guarantee that

(vm)m∈N is bounded in W q′(0, T ) and further, it is weakly convergent (up to a sub-

sequence) to v0 ∈ W q′(0, T ). Finally (vm)m∈N is uniformly convergent to v0 in [0, T ].

Since each vm(t) < 0 we see that v0(t) ≤ 0 in (0, T ) and v0 ∈ C([0, T ]). Moreover we

have

0 = lim inf
m→∞

∫ T

0

(
1

q′(tka(t))
q′

q

|vm(t)|q′(2.3)

+
a(t)tk

q
|u′

m(t)|q − u′
m(t)vm(t)

)
dt

≥
∫ T

0

(
1

q′(tka(t))
q′

q

|v0(t)|q
′

+
a(t)tk

q
|u′

0(t)|
q − u′

0(t)v0(t)

)
dt ≥ 0.

We now show

0 = lim inf
m→∞

∫ T

0

(
v′

m(t)um(t) + tkF ∗
λ

(
t,−v′

m(t)

tk
, wm(t), zm(t)

)
(2.4)

+ tkFλ(t, um(t), wm(t), zm(t))

)
dt

≥
∫ T

0

(
v′
0(t)u0(t) + tkF ∗

λ

(
t,−v′

0(t)

tk
, w0(t), z0(t)

)

+ tkFλ(t, u0(t), w0(t), z0(t))

)
dt ≥ 0,

where for almost all t ∈ [0, T ] and all u ∈ I, (x, y) ∈ R2 and v∗ ∈ R,

Fλ(t, u, x, y) :=

u∫

0

(f1(t, l, x) + λf2(t, l, y))dl,
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F ∗
λ (t, v∗, x, y) := sup

u∈R
(uv∗ − Fλ(t, u, x, y))

with

f1(t, u, x) =

{
f1(t, u, x) if u ∈ [0, d1], t ∈ [0, T ]

+∞ if u ∈ R\[0, d1], t ∈ [0, T ]

f 2(t, u, y) =

{
f2(t, u, y) if u ∈ [0, d1], t ∈ [0, T ]

+∞ if u ∈ R\[0, d1], t ∈ [0, T ].

For this we note that (2.2), convexity of Fλ with respect to the second variable and

definition of Fλ yield

−v′
m(t)

tk
∈ ∂uFλ(t, um(t), wm(t), zm(t)))

for a.a. t ∈ (0, T ) and all m ∈ N , where ∂uFλ is the subdifferential of Fλ with respect

to the second variable:

∂uFλ(t, u, x, y) := {v∗ ∈ R, Fλ(t, v, x, y) ≥ Fλ(t, u, x, y) + v∗ (v − u) for all v ∈ R}.

Now applying the Fenchel equality for the function Fλ(t, ·, x, y) we get

(v′
m(t)um(t) + tkF ∗

λ

(
t,−v′

m(t)

tk
, wm(t), zm(t)

)
+ tkFλ(t, um(t), wm(t), zm(t))) = 0

for a.a. t ∈ (0, T ) and all m ∈ N . Thus

lim
m→∞

∫ T

0

(
v′

m(t)um(t) + tkF ∗
λ

(
t,−v′

m(t)

tk
, wm(t), zm(t)

)

+ tkFλ(t, um(t), wm(t), zm(t))

)
dt = 0.

On the other hand, by the assumptions on Fλ and properties of the sequences, we

know that

(2.5) lim
m→∞

∫ T

0

v′
m(t)um(t)dt =

∫ T

0

v′
0(t)u0(t)dt

and

(2.6) lim
m→∞

∫ T

0

tkFλ(t, um(t), wm(t), zm(t))dt =

∫ T

0

tkFλ(t, u0(t), w0(t), z0(t))dt.

Therefore, we infer the existence of the following limit

lim
m→∞

∫ T

0

tkF ∗
λ

(
t,−v′

m(t)

tk
, wm(t), zm(t)

)
dt.

Now we note that for all u ∈ Lq(0, T ) , m ∈ N and a.e. t ∈ [0, T ] one has

−v′
m(t))u(t) − tkFλ(t, u(t), wm(t), zm(t))

≤ sup
r∈R

{
−v′

m(t)r − tkFλ(t, r, wm(t), zm(t))
}

= tkF ∗
λ

(
t,−v′

m(t)

tk
, wm(t), zm(t)

)
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and further

lim
m→∞

∫ T

0

(
−v′

m(t))u(t) − tkFλ(t, u(t), wm(t), zm(t))
)
dt

≤ lim
m→∞

∫ T

0

tkF ∗
λ

(
t,−v′

m(t)

tk
, wm(t), zm(t)

)
dt.

Combining (2.5), (2.6) and the previous inequality we derive

∫ T

0

(−v′
0(t))u(t) − tkFλ(t, u(t), w0(t), z0(t)))dt

≤ lim
m→∞

∫ T

0

tkF ∗
λ

(
t,−v′

m(t)

tk
, wm(t), zm(t)

)
dt

for all u ∈ Lq(0, T ). Consequently

sup
u∈Lq(0,T )

{∫ T

0

(
−v′

0(t))u(t) − tkFλ(t, u(t), w0(t), z0(t))
)
dt

}

≤ lim
m→∞

∫ T

0

tkF ∗
λ

(
t,−v′

m(t)

tk
, wm(t), zm(t)

)
dt.

Since
∫ T

0

tkF ∗
λ

(
t,−v′

0(t)

tk
, w0(t), z0(t)

)
dt

= sup
u∈Lq(0,T )

{∫ T

0

(
−v′

0(t))u(t) − tkFλ(t, u(t), w0(t), z0(t))
)
dt

}
,

we have

(2.7)∫ T

0

tkF ∗
λ

(
t,−v′

0(t)

tk
, w0(t), z0(t)

)
dt ≤ lim

m→∞

∫ T

0

tkF ∗
λ

(
t,−v′

m(t)

tk
, wm(t), zm(t)

)
dt.

Taking into account (2.5), (2.6) and (2.7) we get (2.4).

Assertions (2.3) and (2.4) give

1

q′(tka(t))
q′

q

|v0(t)|q
′

+
a(t)tk

q
|u′

0(t)|
q − u′

0(t)v0(t)) = 0 a.e in (0, T )

and
(

v′
0(t)u0(t) + tkF ∗

λ

(
t,−v′(t)

tk

)
+ tkFλ(t, u0(t), w0(t), z0(t))

)
= 0 a.e in (0, T ).

Consequently, by the properties of the Fenchel transform,

(2.8) v0(t) = tka(t) |u′
0(t)|

q−2
u′

0(t) a.e. in (0, T ).

By (2.1),

(2.9) −v′
0(t) = tk (f1(t, u0(t), w0(t)) + λf2(t, um(t), z0(t))) a.e. in (0, T ).
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Thus

(2.10) −
(
tka(t) |u′

0(t)|
q−2

u′
0(t)
)′

= tk (f1(t, u0(t), w0(t)) + λf2(t, um(t), z0(t)))

a.e. in (0, T ). Note that u0(T ) = 0, 0 ≤ u0 ≤ d in (0, T ] and u0 is continuous in

(0, T ]. By (2.8), the continuity of v0 in [0, T ] implies that u0 ∈ C1((0, T ]). Further

(2.8), (2.9) and assumption (f2p) imply tka(t) |u′
0(t)|q−2 u′

0 ∈ A([0, T ]). Now it suffices

to show that u′(t) < 0 for t ∈ [0, T ] and u0 is continuous at 0. From (2.10) we have

the estimates (as in the proof of Lemma 1.2)

|u′
0(t)|q−1 =

1

a(t)tk

∫ t

0

rkf1(r, u0(r)) + λf2(r, u0(r))dr

≤ 1

a(t)tk

(
1

qk + 1

)1/q

tk+1/q




T∫

0

(f1(l, d) + λf2(t, d))q′dl




1/q′

≤ 1

amin

(
1

qk + 1

)1/q



T∫

0

(f1(l, d) + λf2(t, d))q′dl




1/q′

t1/q.

Finally

lim
t→0+

u′
0(t) = 0 = u′

0(0).

Now (2.10) and Lemma 1.1 lead to the conclusion that u′
0(t) < 0 for t ∈ (0, T ). Thus

u0 ∈ U .

Example 2.2. For λ ∈ (6.935, 8.366) and all (w, z) ∈ Lp1(0, T ) × Lp2(0, T ), with

p1, p2 > 2, the BVP

(2.11)



−
((

1
1+t2

|u′(t)|2 u′(t)
)′

+ k
(1+t2)t

|u′(t)|2 u′(t)
)

= 1
810

√
t

(
−u4(t) (1 + arctg2w(t)) + λ (u2(t) + 1)

(
1 + sin2 z(t)

))
a.e. in (0, 3),

u′(0) = 0 and u(3) = 0.

possesses at least one positive solution in the set U := {u ∈ Ũ ; u(t) ≤ 1 for all

t ∈ [0, 3]}, with

Ũ =

{
u ∈ C1([0, T ]) : u(3) = 0 and u′(0) = 0 and u′(t) < 0

for t ∈ [0, 3] and
tk

1 + t2
|u′|2 u′ ∈ A([0, T ])

}
.(2.12)

Moreover if for each m ∈ N , um ∈ U denotes the solution of (2.11) for (wm, zm) and if

(wm, zm)m∈N tends a.e. in [0, T ] to (w0, z0), then the sequence of solutions (um)m∈N

tends uniformly (up to a subsequence) to a certain u0 ∈ U being a solution of (2.11)

for parameters (w0, z0).
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Proof. We consider (1.5) with T = 3, q = 4, a(t) = 1
1+t2

and

f1(t, u, x) = − 1

810

1 + arctg2x√
t

u4;

f2(t, u, y) =
1

810

1 + sin2 y√
t

(
u2 + 1

)
.

We show that all the ssumptions of Theorem 2.1 are satisfied in this case. First we

look for λ such that

f( t, u, x, y) : = f1(t, u, x) + λf2( t, u, y)

=
1

810
√

t

(
−u4

(
1 + arctg2x

)
+ λ

(
u2 + 1

) (
1 + sin2 y

))

is increasing in [0, 1]. Note

f ′
u(t, u, x, y) =

1

810
√

t

(
−4u3

(
1 + arctg2x

)
+ 2λu

(
1 + sin2 y

))

and further

f ′
u(t, u, x, y) = 0 ⇔ −4u3

(
1 + arctg2x

)
+ 2λu

(
1 + sin2 y

)
= 0

which gives

u0 = 0 or u1 =

√
λ

2

√
1 + sin2 y

1 + arctg2x
or u2 = −

√
λ

2

√
1 + sin2 y

1 + arctg2x
.

Thus for a.a. t ∈ (0, T ) and all x, y ∈ R

f ′
u(t, u, x, y) > 0 for u ∈ (−∞, u2) ∪ (0, u1)

f ′
u(t, u, x, y) < 0 for u ∈ (u2, 0)

which implies that for a.a. t ∈ (0, T ) and x, y ∈ R the function f(t, ·, x, y) is increasing

for u ∈ (0, u1). Moreover , since f(t, 0, x, y) = λ
810

√
t

(
1 + sin2 y

)
> 0, one sees that

f(t, u, x, y) > 0 for u ∈ (0, u1). Thus we obtain

1 ≤
√

λ

2

√
1 + sin2 y

1 + arctg2x

for a.a. t ∈ (0, T ) and all x, y ∈ R. Note that
√

1

1 + π2/4
≤
√

1 + sin2 y

1 + arctg2x
≤

√
2

for all x, y ∈ R. We take λ such that

1 ≤
√

λ

2

√
1

1 + π2/4
,

namely

(2.13) λ ≥ 4 + π2

2
≈ 6.9348.
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We also look for λ such that

(2.14)
∫ 3

0

(
1

a(s)sk

∫ s

0

rk 1

810
√

r

(
−d4

(
1 + arctg2x

)
+ λ

(
d2 + 1

) (
1 + sin2 y

))
dr

) 1

3

ds ≤ d

with d = 1. It is easy to see that

∫ 3

0

(
1

a(s)sk

∫ s

0

rk 1

810
√

r

(
−
(
1 + arctg2x

)
+ 2λ

(
1 + sin2 y

))
dr

)1

3

ds

≤
∫ 3

0

(
1

810

1

1 + s2

∫ s

0

1√
r

(
−
(

1 +
π2

4

)
+ 4λ

)
dr

)1

3

ds

=

∫ 3

0


 1

810

(
4λ −

(
1 + π2

4

))

1 + s2

∫ s

0

dr√
r




1

3

ds

= 3

√
1

810

(
4λ −

(
1 +

π2

4

))∫ 3

0

(
2
√

s

1 + s2

) 1

3

ds

≤ 2.7 3

√
1

810

(
4λ −

(
1 +

π2

4

))
≤ 3

√
1

30

(
4λ −

(
1 +

π2

4

))
.

Therefore (2.14) holds if

3

√
1

30

(
4λ −

(
1 +

π2

4

))
≤ 1

which is equivalent to

(2.15) λ ≤ 31

4
+

π2

16
≈ 8.3669.

Summarizing, for λ satisfying (2.13) and (2.15) all the assumtions of Theorem 2.1

hold.
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