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ABSTRACT. In this paper we prove some new dynamic inequalities on discrete time scales. These
new inequalities contain some generalizations of the discrete inequalities due to Hardy, Copson,
Leindler and Walsh. The main results will be proved using a general algebraic inequality and

Keller’s chain rule on time scales.
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1. Introduction

The classical Hardy inequality states that for f > 0 integrable over any finite

interval (0,z) and f* integrable and convergent over (0,00) and k > 1, then

(1.1) /OOO G /Oxf(t)dt)kda: < (%)k/ooo i (@)da.

The constant (k/ (k —1))" is the best possible. This inequality is the continuous

version of Hardy’s discrete inequality

[e’¢) n k k oo
1 k
1.2 - o< —— Fook> 1.
- () < () B
These Hardy type inequalities have been extensively studied in literature; we refer
the reader to the books [17, 18, 22] and the papers [7, 14, 15, 16, 20, 21, 24]. Hardy

in [10] proved that if ¢ > 1, A(n) > 0, a(n) > 0, and A(n) and A(n) are defined by

n

(1.3) A(n) = Z (i), and A(n) = a(i)A(i),

i=1
then

(1.4) g)\(n) (%) < (Cf l)ch(n)ac(n).
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Copson in [5, Theorems 1.1, 1.2] proved that if £ > 1, A(n) > 0 and ¢ > 1, then

(1.5) ZA(n)(ﬁz; < (0_1) ZA YAR=¢(n)ak (n),

and if 0 < k <1 and ¢ < 1, then

Lo AN < () 34 (Za(iw)),

where N is 1 or 1 — ¢ according as ¢ > 0 or ¢ < 0. Copson proved his results by using

the algebraic inequalities
(1.7) "y — oy < (k- 1)2" Y (z — y) when k& > 1,

and
(k—1)a* 1y > (k — 1)a* +y* when 0 < k < 1,

where x and y are positive. Using the inequality (1.7), Elliott [8] proved that

(1.8) gA(n) (%)k < (k—fl)k g)\(n)ak(n) when & < 0.

In [19] Leindler extended the results by Copson and proved that if Y ° A(i) < oo,
k>1and 0 <c <1, then

= A(n) Je=cqh
193 g Ao = ) >0 (),
where A*(n) = > ° A(i) and A(n) is defined as in (1.3). Walsh [28] extended the

results obtained by Copson and Elliott and proved that if b > 1, ¢ > 1, and for all n,
a(n) >0, A(n) > 0, p(n) > 0, and

(1.10) p(n)A(n)/P(n) > p(n+ DA(n + 1)/ P(n+1)

where

- Z A(s), A(n) = Z A(s)a(s), and P(n Zp

then
> \(m) (A() P () (A)) "
; (P(n))bte-1
(111) (%) ZA (AW a ) (Am)) .

The inequality (1.11) was proved using the general algebraic inequality

(1.12) c(1—2)° > bat (1 — B2°) + b(c — 1)’ (1 — B) + c(1 — b)a’
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where b>1,¢>1,0<a<1,0< <1 and z is assumed to lie in the range (0, 1).
One can easily see that inequality (1.11) contains the inequalities due to Hardy and

Copson.

The aim in this paper is to prove some new dynamic inequalities on discrete
time scales, i.e., where the domain of the unknown function is a so-called discrete
time scale T (i.e. u(t) # 0). The inequalities, as special cases, contain the above
discrete inequalities when T = N, and can be used to derive new discrete inequalities
when T =hAN and other different types of discrete (i.e. p(t) # 0) time scales. For
dynamic inequalities of Hardy’s type on time scales, we refer the reader to the papers
(23, 25, 26, 27] and the references cited therein.

2. Main Results

A time scale T is an arbitrary nonempty closed subset of the real numbers R.
We assume throughout that T has the topology that it inherits from the standard
topology on the real numbers R. The forward jump operator and the backward jump
operator are defined by: o(t) :=inf{s € T : s > t}, p(t) :=sup{s € T : s < t}, where
sup@d = inf T. A point ¢t € T, is said to be left-dense if p(t) = ¢ and t > inf T, is
right-dense if o(t) = t, is left-scattered if p(t) < t and right-scattered if o(t) > t. A
function g : T — R is said to be right-dense continuous (rd-continuous) provided g is
continuous at right-dense points and at left-dense points in T, left hand limits exist

and are finite. The set of all such rd-continuous functions is denoted by C,4(T).

The graininess function p for a time scale T is defined by u(t) := o(t) —t > 0,
and for any function f : T — R the notation f7(t) denotes f(o(t)). In this paper
we present results on discrete (i.e. p(t) # 0) time scales (time scales with isolated
points). Fix t € T and let  : T — R. Define 2*(¢) to be the number (if it
exists) with the property that given any € > 0 there is a neighborhood U of t with
[[z(o(t)) — 2(s5)] — 22 (t)[o(t) — s]| < €|o(t) — s|, for all s € U. In this case, we say
22(t) is the (delta) derivative of z at ¢ and that z is (delta) differentiable at t. We
will frequently use the following results due to Hilger [13]. Throughout the paper we
will assume that g : T — R and let t € T.

(i) If ¢ is differentiable at ¢, then g is continuous at t.
(

ii) If ¢ is continuous at ¢ and t is right-scattered, then g is differentiable at ¢ with

gA(t) _ g(U(L)()t;g(t)'

(iii) If g is differentiable at ¢, then g(o(t)) = g(t) + u(t)g>(t).

Without loss of generality, we assume that sup T = oo, and define the time scale
interval [a, bt by [a, b]t := [a,b] N'T. The three most popular examples of calculus on
time scales are differential calculus, difference calculus, and quantum calculus, i.e.,
when T=R, T=Nand T = ¢ = {¢' : t € Ny} where ¢ > 1. For more details
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of time scale analysis we refer the reader to the two books by Bohner and Peterson
2], [3] which summarize and organize much of the time scale calculus. The cases
when the time scale is equal to the the integers represent the classical theories of
discrete inequalities. In this paper, we will refer to the (delta) integral which we can
define as follows. If G®(t) = g(t), then the Cauchy (delta) integral of g is defined
by f;g(s)As := G(t) — G(a). Tt can be shown (see [2]) that if g € C,4(T), then the
Cauchy integral G(t) := ftl; g(s)As exists, ty € T, and satisfies GA(t) = g(t), t € T.
An infinite integral is defined as [° f(£)At = limy_.o f; f(t)At. We will make use of
the following product and quotient rules for the derivative of the product fg and the
quotient f/g (where gg° # 0, here g° = g o o) of two differentiable function f and g
A A
21 (0= Pt e = o+ P (L) LT
g 99
The following simple consequence of Keller’s chain rule [2, Theorem 1.90] and the

integration by parts formula on time scales is needed in the proof of the main results
1

(2.2) (27 ()" = 7/ [ha? + (1 — h)z]" " dha®(t),
and
(2.3) / u(t)o™ (H) AL = [u(t)o(t)])’ — / u®(t)v° (t) At.

Throughout this section, we will assume that the functions in the statements of
the theorems are nonnegative and rd-continuous functions and the integrals consid-

ered are assumed to exist.

In the following we prove the time scale version of the Walsh type inequality on
discrete (i.e. p(t) # 0) time scales. The idea is to use Walsh’s inequality (1.12) and
the chain rule (2.2).

Theorem 2.1. Let T be a discrete time scale and b > 1, ¢ > 1 and define
[ A@) = [ A(s)As,

(2.4) A(t) := [Ta(s)A(s)As,  for any t € [a,00)r.

| P() = [ plo)A(s)As,

If

(2.5) (P7(£)' 7 (A7(1)° > (P(1)' (A1),
then

> MOP' () (A7()" (A7 (1)) ¢ \' [ A () (A7)
20 / (P(t))tet A= (c—l) / (Po(t)) (Ao ()




HARDY, COPSON, AND WALSH INEQUALITIES 117
Proof. Fix t € (a,00)7. Let

A(t) P(t) _ A
= A7 (1) 20 <1, and «a:= nA”(t)’

where 1 (= n(t)) is positive and will be determined below such that < 1. As a

(2.7)

b=

result of these substitutions in (1.12), we get that

(1- f%) _ < <>AA<>) _ (u(t)a(t))A(t))”
- (1 Ao(<tt)>)c>
{1,
(Ao (1))

(2.8) tb(e—1)

>~

o~

H

oﬂ.
7;
Ay

Multiplying both sides by
(2.9) AP (E) (A7 () (A7(8)" (P7(1))

gives

cA(t)(a(t) ( ) (A7)
(Po()) (A()" "
> b7t [(P7(8) 7 (A7) = (P(1) 7 (A(1)]
o b(c — Du(t)p(t) , c(1—b)n’
(210) +)\(t) (A (t)) ( ( ))c 77 + (Po_(t))c—l Ao(t) :

Now, we consider the last term on the right hand side, namely

(2.11) fn) = My + K",
as a function of 7, where
b(c — 1)u(t)p(t) c(1 =) (P7(1))"
K = ——, and M =
(P (t)) Ae(t)
By differentiation, we see that the function f(n) has a maximum value at
= 1p{uhA(y)
= P 0
and the maximum value of f(n) is given by
_ (e= D" pPub () (A7)
(2.13) f;lfgf( n) = = (Po(t))rFeT
From (2.7) and (2.12), we see that (with the above 1),
_ M) _e=1pWu(OM) _ e=1u(0)PA0)
Ao(t) c Po(t) c Po(t)
c—1P(t) — P(t)
c Po(t)

(2.12)
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and note 0 < o < 1. Then (2.10) and (2.13) imply that
b

eA(t) (a(t)p(t)” (A7(£)"
)

(Po(1) L (A(0)) " " (PP (1) (A7())° = (P(5)" " (A(t)]
(

(= D" AR 0P (#) (A7(1))° (A7 (1)"
b1 (P (t))rte1

Using the condition (2.5), we have that

eA(t)a (1) (A7(1)" _ (e = 1)" A1) (A7(1)" (A7 (1))"
214) Py T @) S T p P
Integration from a to oo yields

* A)a" (1) (A7) (c=1)" [ A1) (A7(8) (A7)
(219 C/a (PU(t))c_l(A"(t))l_bAtZ ! / PP

Thus

A1) (A7(1)" (A7(1)" p(t) e\ [T AW (A7)
/a (Po(t))r+et A= <C—1) /a (Po(t) (A ()"

which is the desired inequality (2.6). The proof is complete. O

Y

When ¢ > b, we have the following result.

Corollary 2.2. Let T be a discrete time scale and ¢ > b > 1 and A(t), A(t) and P(t)
are defined as in Theorem 2.1. If (2.5) holds, then
(2.16)
/°° A(H) (A7) p"(0) (A7) ( ¢ )/OO A(t)al (1) (A7 ()" AL
o (Po(t))rret T\ e ()T (A(8)
As a special case when p(t) = 1 for all ¢, we see that P?(t) = A°(t) and then
(2.16) reduces to
@) (A7(1)° c C/OO b b
. — AL < 7(t))° .
(2.17) /a A D)) At < —1) /. A(E) (A% (1) a’(t) At
As a special case when b = ¢ and p(t) = 1 for all ¢, we see that P(t) = A(t) and then
(2.17) reduces to
AR (A7(1)° ¢ c/‘x’
2.1 — At < “(t)At.
(2.18) /a (A D) t < —1) /| A(t)a(t) At

As a special case when A(f) = 1, we have the inequality

(2.19) /aoo <ﬁ /ag(t) a(s)As)cAt < (CEI)C/;O a(H)At.

As a special case when T = N, we have that u(¢) = 1 and then the inequality (2.17)

becomes the Copson inequality

o S (1) S

n=a
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where ¢ > 1 and b > 1, and for all n, a(n) > 0, A(n) > 0 and

(2.21) A(n) = Z A(s)a(s), and A(n Z A(s

As a special case when T = N, we have that u(¢) = 1 and then the inequality (2.18)

becomes the following Copson discrete inequality

(2.22) gk(n) <%) < (C_ 1) ZA

where ¢ > 1 and A(n) and A(n) are defined as in (2.21). As a special case when
T =N and a = 1, we have that p(t) = 1 and then the inequality (2.18) becomes the
following Hardy discrete inequality

(2.23) i (%ia(S))c < (C_ 1) Za

n=1 s=1

Theorem 2.3. Let T be a discrete time scale and ¢ > 1, b > 1 and A(t), A(t) and
P(t) are defined as in Theorem 2.1. If

pPOAT (1) _ p(HA7(t)
(2.24) P (1) < Po(l)
then
(2.25)

ABEHE) (A7(1) P () ¢\ [F MG (Ba (1) (A7)
/a (Po(t))o+e=1 (Ao (2))' A= <b— 1) /a ¢

Proof. Fix t € (a,00)r. We proceed as in the proof of Theorem 2.1, to get

(u(ta(e)* X0
(Ao(t))"
it MO (P () = (P (A0))
- (Po ()~ (A7(0)) (A7 ()"
N ORPOA®) 4y el - DN
2.26 ble—1 — .
220 e e T er

Multiplying both sides of (2.26) by

AE(E) (A7 ()" (A7 ()"~ (P ()"~
() ’




120 S. H. SAKER, D. O'REGAN, AND R. P. AGARWAL

we get that

eA(t) (alt)u(t))® (A7()""

>b(n) L(t)
M) (A0 Tole—Du(®p(®) »0 . cl—b)
(227) T o e @)

Now, we consider the last term on the right hand side, namely
fi(n) = Min® + K,

as a function of 7, where

_ ble=Du(®)p() . _c(1-b) (P (1)
K= =y and M JEOr

By differentiation, we see that the function fi(n) has a maximum value at

e LA
= ey Y

and the maximum value of fi(n) is given by

_ (e= D" pPpt() (A7 (t))b 1
max fi(n) = a1 (P7(1))e :

n>0

Fix T € (a,00)r. Integrate from a to T' to obtain (the 7(t) is as above)

>b [ () At
o u(t)
(e 1" [T MDD (A7) (An(e)*
(22%) e R (el

Using the product rule and the integration by parts formula, we see that

T [P () — (P (AD)]
| o) o

- / (6" [(P(£) (A(£))]* At

At

T

= ) [P@) AT = [ () e (o) a

a
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since A(a) = P(a) = 0. From the chain rule and condition (2.24), we see that

(@) = 6=06w* [ o+ -1 a
-1 (p“(t)AU%w p(tw(t))

u(t) Pe(t)  Po(t)
X /1 [hn” + (1 — h)n)" "> dh < 0.

This implies that

/ ’ (1) [(P7()" (A7(t)" — (P(t)"° (A(1))"]

At > 0.
pu(t)

Using this in (2.28) and we obtain

TeAa (Ot () (A7) =" T AR () (A1) (A0(1)"
/a (P"(t))c_l (Aa(t))l—b At Z Cb_l /a p_b(t)(PU(t))b+C—1 A

Let T'— oo and we obtain (2.25). The proof is complete. O

t.

Remark 2.4. As a special case when T =N, we see that o(t) = ¢t + 1 and then

condition (2.24) becomes

p(n)A(n+1)
P(n+1)

p(n+1)A(n+2)

(2.29) Pln+2)

>
where A(n +1) = >  A(n) and P(n+ 1) = > A(n)p(n). One can easily see that
condition (2.29) is the same condition (1.10) imposed by Walsh.

Theorem 2.5. Let T be a discrete time scale and b > 1, ¢ > 1 and define

;

A(t) = [T A(s)As,

(2.30) I(t) := [~ a(s)A(s)As, for t € [a, 00)r.

[ F (1) = [T p(s)A(s)As,
If
(231) (F ()~ (00 = (7)™ (T ()",

then
(2.32)
[ AT 0 o) srs (= ) [y cor,

(F (£))pret =\:_1 (F(t))c_l(AU(t))l‘b t.
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Proof. Fix t € (a,00)r. Let

_ ()

Fe(t) At)
) <1, and

(2.33) 0 , o= nAU(t)’

<1, p:=

where 7 (= n(t)) is positive and will be determined below such that o < 1. As a
result of these substitutions in (1.12), we get that

)

= ("z\t(ft))b_l (1 (i) Gé?))

b M OR@POAD) | (1= DNE)

. blc —
(23 e T o e T ey
Multiplying both sides by
(2.35) AP () (T () (A7(8)"H (F(8)'°,
gives
eA(t)(a(t)u(t)’ (D(E)°
(F) " (Ae(t)'
> b ()" [(F &) (@) — (F() (7(t)]
e [0(e = Dp(t)u(t) 4y c(1—b) b
(2.36) +A(t) (I'(¢)) GO GO (Ag(t))n :

Now, we consider the last term on the right hand side, namely g(n) := M;n®+ Kn*~!,

as a function of 7, where

M= Dp@u) | e1=b)

Fe(t) (P
The function g(n) has a maximum value at

_ e 1p(Hu(HA(r)
' c F(t)

(2.37) > 0,

and the maximum value is given by

C(e= 1) (pu)’ (A7)
(2.38) I?ggi g(n) = b1 (F (£))bteT

From (2.33) and (2.37), we see that (with the above 1)

LA e—1puOND) _ c—1—p®F ()
I X ) R o ) B 1)
c—1—(F ()= F(t) _c—1F() = F°()

c F(t) c F(t)
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and note 0 < a < 1. Then (2.31), (2.36) and (2.38) imply that

NGO T 0 [t~ 0y 7 17
b

Llem 1A A (p(t)u(1))" (D) (A7 (1)"
(

(T
b1 (F (t))rte-1
o (=10 (p(B)p(®)’

- ot (F(t
Integration from a to oo yields
A (a(t)" (D(1) " (c=1)" [ A(#) (T®) p(t) (A7(t)"
C/a (F() (A“(t))l_bAt S /a (F (£))ret

(D(8))° (A7 (1))
))b+c ’

At.

Thus
M) (D) (1) (A (1) ¢ \" [* ABate) ()"
/a (F (1))t A= (c - 1) / (F() (Ao(t))l_bAt’
which is the desired inequality (2.30). The proof is complete. a

Remark 2.6. As a special case of Theorem 2.5 when T = N, we see that u(t) =1

and

Z)\ )As, T'(n Za( )JA(s), and F(n Zp

sS=n

and the condition (2.31) becomes

(F(n)' (T

)= (F(n+1)" (D(n +1))°.

“(I(n
In this time scale inequality (2.32) reduces to
p’(n

% \(n b—1 c b An)ab(n) (T(n))<™°
pan S ACEIF Q) (e Y $ A Ty

Theorem 2.7. Let T be a discrete time scale and b > 1, ¢ > 1 and define

(Al = [ As)A

n=a n=a

(2.40) A(t) = [Ta(s)\(s)As, for t € [a, c0)r.
= ["p s,

If

(2.41) (F ()7 (A7) = (F7 ()" (A®)",

then

(2.42)

(1) (A7(0)° p(8) (A7 ()" ¢\ [ AWa() (A7)
tl (F (@)t “S( )A = At
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Proof. Fix t € (a,00)r. Let

A1) Fo(t) oo A(t)

A F ) RSOl

where 7 (= n(t)) is positive and will be determined below such that o < 1. As a

(2.43) <1, and

<1, p:=

result of these substitutions in (1.12), we get that

C(“ﬁ@))b B C(”%i(t))b:c<M(t)aa(§); (t))b

o) (-5 ) (%))

b1 A l(t)p( JA() wc(l—b)nbkb(t)'
(Ao(t)"” F ( ) (Ao (1))
Multiplying both sides by A2(¢) (47 (¢))° (A (¢))" " (F(¢))* ™, we have that

cA(t)(a(t)u(t))" (A ())C '
( () 1(A"( t)'"
b ()" [(F (£)" 7 (A7(8) = (F ())1 “(A®)°]

o [be— Up(Ould) (1)
A0 (A <t>>{ - <F<t>>c—1<Aa(t))””]

The rest of the proof is similar to the proof of Theorem 2.1. The proof is complete. [

+b(c —1)n

Remark 2.8. As a special case in Theorem 2.7, when T =N and b > 1, ¢ > 1, we
see that

A(n) := i)\(s), A(n) = ; a(s)A(s), and F (n Zp ), forn>1,

and condition (2.41) becomes
(F ()™ (Aln +1)" = (F (n+ 1)) (A(n))".
Then, we have the following discrete inequality

* A(n) (A(n + 1) pb(n ‘
- A0 (5

n=1

V'S Am)(am) T
: <c— 1) 2 ) A+ D) (ZA(WO |

n=1 i=1

If c=0band p(n) =1 for all n, then we have the following inequality

n+1)) o\ ¢\ A(n)(a(n))
Z n))2e-1 (;A(Z)“(ZO = (c—l) Z(F(n»c—l A+ 1)

n=1 n=1

In the following, we will prove a new inequality which as a special case contains

the inequality (1.9) proved by Leindler.
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Theorem 2.9. Let T be a discrete time scale and b > 1, ¢ > 1 and define

[ Q) == [T As)As,

(2.44) A(t) = [Ta(s)\(s)As,  for t € [a,00)r.

[ F (1) = [ p(s)A(s)As,
If
(2.45) (A7) Fe() = (F7(8) (A()°,

then

(2.46)

[ ao,,
a (F (£))bre! -

Proof. Fix t € (a,00)7. Let
A(t) Fo(t) Alt)
= 1 = 1 d =
x A7 (1) <1, B ) <1, and « nQ(t)’
where 7 (= n(t)) is positive and will be determined below such that « < 1. As a

(2.47)

result of these substitutions in (1.12), we get that

. (u(t)a(t)k(t))b
A7 (1)
A\ O\ 7 A® \°
= () (- () (o) )
AT Op@pAE) | el = bn°A(t)

2.48 blc —1)n"!
249 T T @)y
Multiplying both sides by AL2(¢) (A7 (£))° ()" (F (¢))' ¢, we have that

> PO (0 (A (D))"
2a9) (ol (MR S

Now, we consider the last term on the right hand side, namely
(2.50) F(n) == Mn" + Kn"~,
as a function of 7, where

b(c = Dp(H)u(?) and M =

S O Q) (F )
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The function F(n) has a maximum value at

250 S UG LI

¢ F(t)
and the maximum value of F'(n) is given by
_ (="t )"
(2.52) max FOn) = =y
From (2.47) and (2.51), we see that (with the above 7)

oM e 1A

Q(t) c F(t)
and note 0 < o < 1. Then (2.49) and (2.52) imply that
At (alt)p(t)’ (A7 ()" ()"
(F)~"
A\ (A7) P () — (A1) (7 () (A®)°
o) j
)

DA (1)) (A7 (8)" ((t)"
p=*(@)(F (£))0+e

Using the condition (2.45), we have that
A (a(®)u(t)’ (A(#)" (= 1" Mo ()’ (A7) ()"
-5 = b n 1 :

(c—1
b1

The result follows now. O

Remark 2.10. As a special case in Theorem 2.9, when T =N and b > 1, ¢ > 1, we
get that
(2.53)

00 n—1 o0
Qn) :=> As), A(n) = a(s)A(s), and F(n) =D F(s)A(s), for n > 1,
s=n s=1 s=n
and the condition (2.45) becomes
(F ()™ (Aln +1)" = (F (n+ 1)) (A(n))",
and the inequality (2.46) reduces to the following discrete inequality

- >“ M) < () S A’
E <Z )<<c—1)E(F(n»*l(ﬂ(n»l-b‘

n=1

f F(n) =1, we have the following inequality of Leindler’s type

> Al(n . . ' b—c
> (Q(<n)))c (; )\(z)a(z)) < (c_ 1) Z)\ (n))"=¢.

n=1
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Remark 2.11. If ¢ = b, then we have the following inequality of Hardy’s type

[1]

[16]
[17]

18]

b

>~ iy (2000 ) < (755) S awa

n=1
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