Dynamic Systems and Applications 24 (2015) 135-142

EXISTENCE, UNIQUENESS AND QUENCHING FOR A PARABOLIC PROBLEM WITH A MOVING NONLINEAR SOURCE ON A SEMI-INFINITE INTERVAL

C. Y. CHAN AND T. TREEYAPRASERT

Department of Mathematics, University of Louisiana at Lafayette Lafayette, Louisiana 70504-1010, USA chan@louisiana.edu Department of Mathematics and Statistics, Thammasat University

Rangsit Center, Pathumthani 12120, Thailand tawikan@tu.ac.th

ABSTRACT. Let v and T be positive numbers, $D = (0, \infty)$, $\Omega = D \times (0, T]$, and \overline{D} be the closure of D. This article studies the first initial-boundary value problem,

$$\begin{aligned} u_t - u_{xx} &= \delta(x - vt) f\left(u(x, t)\right) \text{ in } \Omega, \\ u(x, 0) &= 0 \text{ on } \bar{D}, \\ u(0, t) &= 0, u(x, t) \to 0 \text{ as } x \to \infty \text{ for } 0 < t \leq T, \end{aligned}$$

where $\delta(x)$ is the Dirac delta function, and f is a given function such that $\lim_{u\to c^-} f(u) = \infty$ for some positive constant c. It is shown that the problem has a unique nonnegative continuous solution u, and u(vt, t) is a strictly increasing function of t; also, if u exists for $t \in [0, t_q)$ with $t_q < \infty$, then $\sup \{u(x, t) : 0 \le x < \infty\}$ reaches c^- at t_q .

AMS (MOS) Subject Classification. 35K61, 35B35, 35K57

1. INTRODUCTION

Let v and T be positive numbers, $D = (0, \infty)$, $\overline{D} = [0, \infty)$, $\Omega = D \times (0, T]$, and $Hu = u_t - u_{xx}$. We consider the following semilinear parabolic first initial-boundary value problem,

(1.1)
$$\begin{cases} Hu = \delta(x - vt)f(u(x, t)) \text{ in } \Omega, \\ u(x, 0) = 0 \text{ on } \overline{D}, \\ u(0, t) = 0, u(x, t) \to 0 \text{ as } x \to \infty \text{ for } 0 < t \le T, \end{cases}$$

where $\delta(x)$ is the Dirac delta function, and f is a given function such that $\lim_{u \to c^-} f(u) = \infty$ for some positive constant c. We assume that f(u), f'(u) and f''(u) are positive for $0 \le u < c$.

A solution u of the problem (1.1) is a continuous function satisfying (1.1). A solution u of the problem (1.1) is said to quench if there exists some t_q such that

 $\sup \{u(x,t) : x \in D\} \to c^{-}$ as $t \to t_q$. If t_q is finite, then u is said to quench in a finite time. On the other hand, if $t_q = \infty$, u is said to quench in infinite time.

In Section 2, we convert the problem (1.1) into a nonlinear integral equation, and prove that there exists some t_q such that the integral equation has a unique continuous solution u for $0 \le t < t_q$. We show that the solution u is the solution of the problem (1.1), and u(vt,t) is a strictly increasing function of t. We also show that if t_q is finite, then u quenches at t_q .

2. EXISTENCE, UNIQUENESS AND QUENCHING

Green's function $G(x, t; \xi, \tau)$ corresponding to the problem (1.1) is determined by the following system: for x and ξ in D, and t and τ in $(-\infty, \infty)$,

$$HG(x,t;\xi,\tau) = \delta(x-\xi)\delta(t-\tau); \ G(x,t;\xi,\tau) = 0, \ t < \tau,$$
$$G(0,t;\xi,\tau) = 0, \ \text{and} \ G(x,t;\xi,\tau) \to 0 \ \text{as} \ x \to \infty.$$

For $t > \tau$, it is given by

$$G(x,t;\xi,\tau) = \frac{e^{-\frac{(x-\xi)^2}{4(t-\tau)}} - e^{-\frac{(x+\xi)^2}{4(t-\tau)}}}{\sqrt{4\pi(t-\tau)}}$$

(cf. Duffy [3, p. 183]). To derive the integral equation from the problem (1.1), let us consider the adjoint operator H^* , which is given by $H^*u = -u_t - u_{xx}$. Using Green's second identity, we obtain

(2.1)
$$u(x,t) = \int_0^t G(x,t;v\tau,\tau) f\left(u(v\tau,\tau)\right) d\tau.$$

For ease of reference, we state Lemma 2.1 of Chan, Sawangtong and Treeyaprasert [2] as Lemma 2.1 below.

Lemma 2.1. If $r \in C([0,T])$, then $\int_0^t G(x,t;v\tau,\tau)r(\tau) d\tau$ is continuous on $\overline{\Omega}$, where $\overline{\Omega}$ denotes the closure of Ω .

We modified the techniques in proving Theorem 1 of Chan and Jiang [1] for a stationary source in a bounded domain to obtain the following result for a moving source in an unbounded domain.

Theorem 2.2. There exists some $t_q (\leq \infty)$ such that for $0 \leq t < t_q$, the integral equation (2.1) has a unique nonnegative continuous solution u, and u(vt,t) is a strictly increasing function of t. If t_q is finite, then u quenches at t_q .

Proof. Let us construct a sequence $\{u_n\}$ by $u_0(x,t) = 0$, and for n = 0, 1, 2, ...,

(2.2)
$$u_{n+1}(x,t) = \int_0^t G(x,t;v\tau,\tau) f(u_n(v\tau,\tau)) d\tau$$

Since $G(x,t;v\tau,\tau)$ and f(0) are positive in Ω , we have from (2.2) that $u_1(x,t) > u_0(x,t) = 0$ in Ω . Let us assume that for some positive integer j,

$$0 < u_1 < u_2 < \cdots < u_{j-1} < u_j$$
 in Ω .

Since f is a strictly increasing function, and $u_j > u_{j-1}$, we have

$$u_{j+1}(x,t) - u_j(x,t) = \int_0^t G(x,t;v\tau,\tau) \left(f\left(u_j(v\tau,\tau)\right) - f\left(u_{j-1}(v\tau,\tau)\right) \right) d\tau > 0.$$

By the principle of mathematical induction,

 $0 < u_1 < u_2 < \cdots < u_{n-1} < u_n$ in Ω

for any positive integer n. To show that $u_n(vt,t)$ is an increasing function of t, let us construct a sequence $\{w_n\}$ in $D \times (0, T - \varepsilon]$ such that for $n = 0, 1, 2, ..., w_n(vt, t) = u_n(v(t + \varepsilon), t + \varepsilon) - u_n(vt, t)$, where ε is any positive number less than T. We have $w_0(vt, t) = 0$. By (2.2), we have

(2.3)
$$w_1(vt,t) = u_1(v(t+\varepsilon), t+\varepsilon) - u_1(vt,t)$$
$$= f(0) \left[\int_0^{t+\varepsilon} G(v(t+\varepsilon), t+\varepsilon; v\tau, \tau) d\tau - \int_0^t G(vt, t; v\tau, \tau) d\tau \right].$$

Let $\sigma = \tau - \varepsilon$. Then,

$$\int_{0}^{t+\varepsilon} G(v(t+\varepsilon), t+\varepsilon; v\tau, \tau) d\tau$$

$$= \int_{0}^{\varepsilon} G(v(t+\varepsilon), t+\varepsilon; v\tau, \tau) d\tau + \int_{0}^{t} G(v(t+\varepsilon), t+\varepsilon; v(\sigma+\varepsilon), \sigma+\varepsilon) d\sigma$$

$$(2.4) = \int_{0}^{\varepsilon} G(v(t+\varepsilon), t+\varepsilon; v\tau, \tau) d\tau + \int_{0}^{t} G(v(t+\varepsilon), t; v(\sigma+\varepsilon), \sigma) d\sigma.$$
For $t \ge \sigma$

For $t > \sigma$,

$$(2.5) \qquad G\left(v\left(t+\varepsilon\right),t;v\left(\sigma+\varepsilon\right),\sigma\right) = \frac{e^{-\frac{\left[v(t+\varepsilon)-v(\sigma+\varepsilon)\right]^{2}}{4(t-\sigma)}} - e^{-\frac{\left[v(t+\varepsilon)+v(\sigma+\varepsilon)\right]^{2}}{4(t-\sigma)}}}{\sqrt{4\pi\left(t-\sigma\right)}}}{\sqrt{4\pi\left(t-\sigma\right)}} \\ > \frac{e^{-\frac{\left(vt-v\sigma\right)^{2}}{4(t-\sigma)}} - e^{-\frac{\left(vt+v\sigma\right)^{2}}{4(t-\sigma)}}}{\sqrt{4\pi\left(t-\sigma\right)}}}{\sqrt{4\pi\left(t-\sigma\right)}} = G\left(vt,t;v\sigma,\sigma\right) > 0.$$

We have from (2.4) and (2.5) that

(2.6)
$$\int_{0}^{t+\varepsilon} G(v(t+\varepsilon), t+\varepsilon; v\tau, \tau) d\tau > \int_{0}^{\varepsilon} G(v(t+\varepsilon), t+\varepsilon; v\tau, \tau) d\tau + \int_{0}^{t} G(vt, t; v\sigma, \sigma) d\sigma.$$

It follows from (2.3) and (2.6) that for $0 < t \leq T - \varepsilon$,

$$w_1(vt,t) > f(0) \int_0^{\varepsilon} G(v(t+\varepsilon), t+\varepsilon; v\tau, \tau) d\tau > 0.$$

Let us assume that for some positive integer j,

$$w_j(vt,t) = u_j(v(t+\varepsilon), t+\varepsilon) - u_j(vt,t) > 0 \text{ for } 0 < t \le T - \varepsilon.$$

Then,

$$w_{j+1}(vt,t) = \int_0^{t+\varepsilon} G(v(t+\varepsilon), t+\varepsilon; v\tau, \tau) f(u_j(v\tau, \tau)) d\tau$$
$$-\int_0^t G(vt, t; v\tau, \tau) f(u_j(v\tau, \tau)) d\tau.$$

Let $\sigma = \tau - \varepsilon$. Then,

$$(2.7) \qquad \int_{0}^{t+\varepsilon} G(v(t+\varepsilon), t+\varepsilon; v\tau, \tau) f(u_{j}(v\tau, \tau)) d\tau \\= \int_{0}^{\varepsilon} G(v(t+\varepsilon), t+\varepsilon; v\tau, \tau) f(u_{j}(v\tau, \tau)) d\tau \\+ \int_{0}^{t} G(v(t+\varepsilon), t; v(\sigma+\varepsilon), \sigma) f(u_{j}(v(\sigma+\varepsilon), \sigma+\varepsilon)) d\sigma \\> \int_{0}^{\varepsilon} G(v(t+\varepsilon), t+\varepsilon; v\tau, \tau) f(u_{j}(v\tau, \tau)) d\tau \\+ \int_{0}^{t} G(v(t+\varepsilon), t; v(\sigma+\varepsilon), \sigma) f(u_{j}(v\sigma, \sigma)) d\sigma \end{cases}$$

since $u_j(v(\sigma + \varepsilon), \sigma + \varepsilon) > u_j(v\sigma, \sigma)$ and f is an increasing function. We have from (2.7) and (2.5) that for $0 < t \le T - \varepsilon$,

$$\begin{split} w_{j+1}\left(vt,t\right) &> \int_{0}^{\varepsilon} G(v\left(t+\varepsilon\right),t+\varepsilon;v\tau,\tau)f\left(u_{j}(v\tau,\tau)\right)d\tau \\ &+ \int_{0}^{t} G(v\left(t+\varepsilon\right),t;v\left(\sigma+\varepsilon\right),\sigma)f\left(u_{j}(v\sigma,\sigma)\,d\sigma\right. \\ &- \int_{0}^{t} G(vt,t;v\tau,\tau)f\left(u_{j}(v\tau,\tau)\right)d\tau \\ &> \int_{0}^{\varepsilon} G(v\left(t+\varepsilon\right),t+\varepsilon;v\tau,\tau)f\left(u_{j}(v\tau,\tau)\right)d\tau > 0. \end{split}$$

By the principle of mathematical induction, $w_n(vt, t) > 0$ for $0 < t \le T - \varepsilon$ for all positive integers n. Thus, each $u_n(vt, t)$ is a strictly increasing function of t.

For any given positive constant $M(\langle c \rangle)$, it follows from (2.2) and $u_n(vt, t)$ being a strictly increasing function of t that there exists some t_1 such that $u_n \leq M$ for $0 \leq t \leq t_1$ and $n = 0, 1, 2, \ldots$ In fact, t_1 satisfies

$$f(M) \int_0^{t_1} G(x, t_1; v\tau, \tau) d\tau \le M.$$

Let u denote $\lim_{n\to\infty} u_n$. From (2.2) and the Monotone Convergence Theorem (cf. Stromberg [4, p. 288]), we have (2.1) for $0 \le t \le t_1$.

Each u_n is continuous by Lemma 2.1. To show that u is continuous, we note from (2.2) that

$$u_{n+1}(x,t) - u_n(x,t) = \int_0^t G(x,t;v\tau,\tau) \left[f\left(u_n(v\tau,\tau)\right) - f\left(u_{n-1}(v\tau,\tau)\right) \right] d\tau.$$

Let $S_n = \sup_{\bar{D} \times [0,t_1]} (u_n - u_{n-1})$. By using the Mean Value Theorem,

(2.8)
$$S_{n+1} \le f'(M) S_n \sup_{\bar{D} \times [0,t_1]} \int_0^t G(x,t;v\tau,\tau) d\tau.$$

For any given positive number ε , we have

(2.9)
$$\int_0^t G(x,t;v\tau,\tau)d\tau = \lim_{\varepsilon \to 0} \int_0^{t-\varepsilon} \frac{e^{-\frac{(x-v\tau)^2}{4(t-\tau)}} - e^{-\frac{(x+v\tau)^2}{4(t-\tau)}}}{\sqrt{4\pi(t-\tau)}}d\tau \\ \leq \lim_{\varepsilon \to 0} \int_0^{t-\varepsilon} \frac{1}{\sqrt{4\pi(t-\tau)}}d\tau = \sqrt{\frac{t}{\pi}}.$$

From (2.8) and (2.9), we have

$$S_{n+1} \le f'(M) \sqrt{\frac{t}{\pi}} S_n.$$

Let us choose some positive number $\sigma_1 \ (\leq t_1)$ such that for $t \in [0, \sigma_1]$,

$$(2.10) f'(M)\sqrt{\frac{t}{\pi}} < 1$$

Then, the sequence $\{u_n\}$ converges uniformly to $\lim_{n\to\infty} u_n(x,t)$ for $0 \le t \le \sigma_1$. Thus, the integral equation (2.1) has a nonnegative continuous solution u for $0 \le t \le \sigma_1$. If $\sigma_1 < t_1$, it follows from (2.1) that

(2.11)
$$u(x,t) = \int_0^{\sigma_1} G(x,t;v\tau,\tau) f(u(v\tau,\tau)) d\tau + \int_{\sigma_1}^t G(x,t;v\tau,\tau) f(u(v\tau,\tau)) d\tau.$$

The first term on the right hand side of (2.11) is continuous. Let

$$z(x,t) = \int_{\sigma_1}^t G(x,t;v\tau,\tau) f(z(v\tau,\tau)) d\tau.$$

From (2.11), z < M. For $\sigma_1 \le t \le t_1$, let us construct a sequence $\{z_i\}$ by $z_0(x,t) = 0$, and for $n = 0, 1, 2, \ldots$,

$$z_{i+1}(x,t) = \int_{\sigma_1}^t G(x,t;v\tau,\tau) f(z_i(v\tau,\tau)) d\tau.$$

A proof similar to that for Lemma 2.1 shows that z_i is continuous for i = 1, 2, 3, ...We have

$$z_{i+1}(x,t) - z_i(x,t) = \int_{\sigma_1}^t G(x,t;v\tau,\tau) \left[f\left(z_i(v\tau,\tau) \right) - f\left(z_{i-1}(v\tau,\tau) \right) \right] d\tau.$$

Let $Z_i = \sup_{\bar{D} \times [\sigma_1, \min\{2\sigma_1, t_1\}]} |z_i - z_{i-1}|$. Using the Mean Value Theorem, we have

$$f(z_i(v\tau,\tau)) - f(z_{i-1}(v\tau,\tau)) \le f'(M) Z_i.$$

Thus,

$$z_{i+1}(x,t) - z_i(x,t) \le f'(M) Z_i \int_{\sigma_1}^t G(x,t;v\tau,\tau) d\tau \le \frac{f'(M) \sqrt{t-\sigma_1}}{\sqrt{\pi}} Z_i.$$

It follows from (2.10) that for $t \in [\sigma_1, \min\{2\sigma_1, t_1\}]$,

(2.12)
$$\frac{f'(M)\sqrt{t-\sigma_1}}{\sqrt{\pi}} < 1.$$

Therefore, $\{z_i\}$ converges uniformly to z, and hence, z is a continuous function for $t \in [\sigma_1, \min\{2\sigma_1, t_1\}]$. From (2.12), u is continuous for $t \in [\sigma_1, \min\{2\sigma_1, t_1\}]$. If $2\sigma_1 < t_1$, then for $2\sigma_1 \leq t \leq t_1$,

$$u(x,t) = \int_0^{2\sigma_1} G(x,t;v\tau,\tau) f(u(v\tau,\tau)) d\tau + \int_{2\sigma_1}^t G(x,t;v\tau,\tau) f(u(v\tau,\tau)) d\tau.$$

Since the first term on the right-hand side is continuous, we consider the second term. An argument analogous to the above shows that u is continuous for $0 \le t \le \min \{3\sigma_1, t_1\}$. By proceeding in this way, the integral equation (2.1) has a continuous solution u for $0 \le t \le t_1$.

To prove that u is unique, let us assume that the integral equation (2.1) has two solutions u and \tilde{u} on the interval $[0, t_1]$. Let $\Theta = \sup_{\bar{D} \times [0, t_1]} |u - \tilde{u}|$. From (2.1), we have

$$u(x,t) - \tilde{u}(x,t) = \int_0^t G(x,t;v\tau,\tau) \left(f\left(u(v\tau,\tau)\right) - f\left(\tilde{u}(v\tau,\tau)\right) \right) d\tau.$$

By using the Mean Value Theorem,

$$\Theta \le f'(M) \Theta \int_0^t G(x,t;v\tau,\tau) d\tau \le \frac{f'(M)\sqrt{t}}{\sqrt{\pi}} \Theta$$

By (2.10), we have a contradiction for $0 \le t \le \sigma_1$. Thus, u is unique for $0 \le t \le \sigma_1$. If $\sigma_1 < t_1$, then it follows from (2.1) that

$$u(x,t) = \int_0^{\sigma_1} G(x,t;v\tau,\tau) f(u(v\tau,\tau)) d\tau + \int_{\sigma_1}^t G(x,t;v\tau,\tau) f(u(v\tau,\tau)) d\tau.$$

Since $u = \tilde{u}$ for $0 \le t \le \sigma_1$, we have for $\sigma_1 \le t \le t_1$,

$$|u(x,t) - \tilde{u}(x,t)| = \int_{\sigma_1}^t G(x,t;v\tau,\tau) |f(u(v\tau,\tau)) - f(\tilde{u}(v\tau,\tau))| d\tau,$$

from which we obtain

$$\Theta \le f'(M) \Theta \int_{\sigma_1}^t G(x,t;v\tau,\tau) d\tau \le \frac{f'(M)\sqrt{t-\sigma_1}}{\sqrt{\pi}}\Theta.$$

By (2.12), we have a contradiction for $t \in [0, \min\{2\sigma_1, t_1\}]$. Thus, we have uniqueness of a solution for $t \in [0, \min\{2\sigma_1, t_1\}]$. By proceeding in this way, the integral equation (2.1) has a unique continuous solution u for $0 \le t \le t_1$.

Let t_q be the supremum of all t_1 , where $[0, t_1]$ is the interval for which the integral equation (2.1) has a unique continuous solution u (< c). If t_q is finite, and $\sup_{\bar{D}} u (x, t)$

does not reach c^- at t_q , then for any positive constant greater than $\sup_{\bar{D}} u(x, t_q)$, a proof similar to the above shows that there exists an interval $[t_q, t_2]$ such that the integral equation (2.1) has a unique continuous solution u that is bounded away from c. This contradicts the definition of t_q . Hence, if t_q is finite, $\sup_{\bar{D}} u(x, t)$ reaches $c^$ at t_q .

It follows from $u_n(vt, t)$ being an increasing function of t that u(vt, t) is a nondecreasing function of t. Let $\sigma = \tau - \varepsilon$. Since f is an increasing function, and $u(v(\sigma + \varepsilon), \sigma + \varepsilon) \ge u(v\sigma, \sigma)$, we have

$$\begin{split} &\int_{0}^{t+\varepsilon} G(v\left(t+\varepsilon\right),t+\varepsilon;v\tau,\tau)f\left(u(v\tau,\tau)\right)d\tau \\ &= \int_{0}^{\varepsilon} G(v\left(t+\varepsilon\right),t+\varepsilon;v\tau,\tau)f\left(u(v\tau,\tau)\right)d\tau \\ &+ \int_{0}^{t} G(v\left(t+\varepsilon\right),t+\varepsilon;v\left(\sigma+\varepsilon\right),\sigma+\varepsilon)f\left(u(v\left(\sigma+\varepsilon\right),\sigma+\varepsilon\right)\right)d\sigma \\ &\geq \int_{0}^{\varepsilon} G(v\left(t+\varepsilon\right),t+\varepsilon;v\tau,\tau)f\left(u(v\tau,\tau)\right)d\tau \\ &+ \int_{0}^{t} G(v\left(t+\varepsilon\right),t;v\left(\sigma+\varepsilon\right),\sigma)f\left(u(v\sigma,\sigma)\right)d\sigma. \end{split}$$

By (2.5),

$$\begin{split} u\left(v\left(t+\varepsilon\right),t+\varepsilon\right) - u\left(vt,t\right) &\geq \int_{0}^{\varepsilon} G(v\left(t+\varepsilon\right),t+\varepsilon;v\tau,\tau)f\left(u(v\tau,\tau)\right)d\tau \\ &+ \int_{0}^{t} G(v\left(t+\varepsilon\right),t;v\left(\sigma+\varepsilon\right),\sigma)f\left(u(v\sigma,\sigma)\right)d\sigma \\ &- \int_{0}^{t} G(vt,t;v\tau,\tau)f\left(u(v\tau,\tau)\right)d\tau \\ &> \int_{0}^{\varepsilon} G(v\left(t+\varepsilon\right),t+\varepsilon;v\tau,\tau)f\left(u(v\tau,\tau)\right)d\tau \\ &+ \int_{0}^{t} G(vt,t;v\sigma,\sigma)f\left(u(v\sigma,\sigma)\right)d\sigma \\ &- \int_{0}^{t} G(vt,t;v\tau,\tau)f\left(u(v\tau,\tau)\right)d\tau \\ &= \int_{0}^{\varepsilon} G(v\left(t+\varepsilon\right),t+\varepsilon;v\tau,\tau)f\left(u(v\tau,\tau)\right)d\tau > 0. \end{split}$$

Hence, u(vt, t) is a strictly increasing function of t.

An argument similar to the proof of Theorem 2.3 of Chan, Sawangtong and Treeyaprasert [2] gives the following result.

Theorem 2.3. The solution of the integral equation (2.1) is the unique solution of the problem (1.1).

We remark from the above two theorems that if t_q is finite, u quenches at t_q .

REFERENCES

- [1] C. Y. Chan and X. O. Jiang, Quenching for a degenerate parabolic problem due to a concentrated nonlinear source, Quart. Appl. Math., 62: 553–568, 2004.
- [2] C. Y. Chan, P. Sawangtong, and T. Treeyaprasert, Existence, uniqueness and blowup for a parabolic problem with a moving nonlinear source on a semi-infinite interval, Dynam. Systems Appl. 21: 631–644, 2012.
- [3] D. G. Duffy, Green's Functions with Applications, Chapman & Hall/CRC, Boca Raton, FL, 2001, p. 183.
- [4] K. R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth International Group, Belmont, CA, 1981, p. 288.