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ABSTRACT. Let v and T be positive numbers, D = (0,∞), Ω = D× (0, T ], and D̄ be the closure

of D. This article studies the first initial-boundary value problem,

ut − uxx = δ(x − vt)f (u(x, t)) in Ω,

u(x, 0) = 0 on D̄,

u(0, t) = 0, u(x, t) → 0 as x → ∞ for 0 < t ≤ T,

where δ (x) is the Dirac delta function, and f is a given function such that limu→c− f(u) = ∞ for

some positive constant c. It is shown that the problem has a unique nonnegative continuous solution

u, and u(vt, t) is a strictly increasing function of t; also, if u exists for t ∈ [0, tq) with tq < ∞, then

sup {u (x, t) : 0 ≤ x < ∞} reaches c− at tq.
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1. INTRODUCTION

Let v and T be positive numbers, D = (0,∞), D̄ = [0,∞), Ω = D × (0, T ], and

Hu = ut − uxx. We consider the following semilinear parabolic first initial-boundary

value problem,

(1.1)











Hu = δ(x − vt)f (u(x, t)) in Ω,

u(x, 0) = 0 on D̄,

u(0, t) = 0, u(x, t) → 0 as x → ∞ for 0 < t ≤ T,

where δ(x) is the Dirac delta function, and f is a given function such that limu→c− f (u) =

∞ for some positive constant c. We assume that f (u), f ′ (u) and f ′′ (u) are positive

for 0 ≤ u < c.

A solution u of the problem (1.1) is a continuous function satisfying (1.1). A

solution u of the problem (1.1) is said to quench if there exists some tq such that
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sup {u (x, t) : x ∈ D} → c− as t → tq. If tq is finite, then u is said to quench in a finite

time. On the other hand, if tq = ∞, u is said to quench in infinite time.

In Section 2, we convert the problem (1.1) into a nonlinear integral equation,

and prove that there exists some tq such that the integral equation has a unique

continuous solution u for 0 ≤ t < tq. We show that the solution u is the solution of

the problem (1.1), and u (vt, t) is a strictly increasing function of t. We also show

that if tq is finite, then u quenches at tq.

2. EXISTENCE, UNIQUENESS AND QUENCHING

Green’s function G(x, t; ξ, τ) corresponding to the problem (1.1) is determined

by the following system: for x and ξ in D, and t and τ in (−∞,∞),

HG(x, t; ξ, τ) = δ(x − ξ)δ(t− τ); G(x, t; ξ, τ) = 0, t < τ,

G(0, t; ξ, τ) = 0, and G(x, t; ξ, τ) → 0 as x → ∞.

For t > τ , it is given by

G(x, t; ξ, τ) =
e
−

(x−ξ)2

4(t−τ) − e
−

(x+ξ)2

4(t−τ)

√

4π (t − τ)

(cf. Duffy [3, p. 183]). To derive the integral equation from the problem (1.1), let us

consider the adjoint operator H∗, which is given by H∗u = −ut − uxx. Using Green’s

second identity, we obtain

(2.1) u(x, t) =

∫ t

0

G(x, t; vτ, τ)f (u(vτ, τ)) dτ.

For ease of reference, we state Lemma 2.1 of Chan, Sawangtong and Treeyaprasert

[2] as Lemma 2.1 below.

Lemma 2.1. If r ∈ C ([0, T ]), then
∫ t

0
G(x, t; vτ, τ)r (τ) dτ is continuous on Ω̄, where

Ω̄ denotes the closure of Ω.

We modified the techniques in proving Theorem 1 of Chan and Jiang [1] for a

stationary source in a bounded domain to obtain the following result for a moving

source in an unbounded domain.

Theorem 2.2. There exists some tq (≤ ∞) such that for 0 ≤ t < tq, the integral equa-

tion (2.1) has a unique nonnegative continuous solution u, and u (vt, t) is a strictly

increasing function of t. If tq is finite, then u quenches at tq.

Proof. Let us construct a sequence {un} by u0 (x, t) = 0, and for n = 0, 1, 2, . . . ,

(2.2) un+1(x, t) =

∫ t

0

G(x, t; vτ, τ)f (un(vτ, τ)) dτ.
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Since G(x, t; vτ, τ) and f (0) are positive in Ω, we have from (2.2) that u1 (x, t) >

u0 (x, t) = 0 in Ω. Let us assume that for some positive integer j,

0 < u1 < u2 < · · · < uj−1 < uj in Ω.

Since f is a strictly increasing function, and uj > uj−1, we have

uj+1(x, t) − uj (x, t) =

∫ t

0

G(x, t; vτ, τ) (f (uj(vτ, τ)) − f (uj−1(vτ, τ))) dτ > 0.

By the principle of mathematical induction,

0 < u1 < u2 < · · · < un−1 < un in Ω

for any positive integer n. To show that un (vt, t) is an increasing function of t,

let us construct a sequence {wn} in D × (0, T − ε] such that for n = 0, 1, 2, . . . ,

wn (vt, t) = un (v (t + ε) , t + ε) − un (vt, t), where ε is any positive number less than

T . We have w0 (vt, t) = 0. By (2.2), we have

w1 (vt, t) = u1 (v (t + ε) , t + ε) − u1 (vt, t)

= f (0)

[
∫ t+ε

0

G(v (t + ε) , t + ε; vτ, τ)dτ −
∫ t

0

G(vt, t; vτ, τ)dτ

]

.(2.3)

Let σ = τ − ε. Then,
∫ t+ε

0

G(v (t + ε) , t + ε; vτ, τ)dτ

=

∫ ε

0

G(v (t + ε) , t + ε; vτ, τ)dτ +

∫ t

0

G(v (t + ε) , t + ε; v (σ + ε) , σ + ε)dσ

=

∫ ε

0

G(v (t + ε) , t + ε; vτ, τ)dτ +

∫ t

0

G(v (t + ε) , t; v (σ + ε) , σ)dσ.(2.4)

For t > σ,

G (v (t + ε) , t; v (σ + ε) , σ) =
e
−

[v(t+ε)−v(σ+ε)]2

4(t−σ) − e
−

[v(t+ε)+v(σ+ε)]2

4(t−σ)

√

4π (t − σ)

>
e
−

(vt−vσ)2

4(t−σ) − e
−

(vt+vσ)2

4(t−σ)

√

4π (t − σ)
= G (vt, t; vσ, σ) > 0.(2.5)

We have from (2.4) and (2.5) that
∫ t+ε

0

G(v (t + ε) , t + ε; vτ, τ)dτ >

∫ ε

0

G(v (t + ε) , t + ε; vτ, τ)dτ

+

∫ t

0

G (vt, t; vσ, σ) dσ.(2.6)

It follows from (2.3) and (2.6) that for 0 < t ≤ T − ε,

w1 (vt, t) > f (0)

∫ ε

0

G(v (t + ε) , t + ε; vτ, τ)dτ > 0.
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Let us assume that for some positive integer j,

wj (vt, t) = uj (v (t + ε) , t + ε) − uj (vt, t) > 0 for 0 < t ≤ T − ε.

Then,

wj+1 (vt, t) =

∫ t+ε

0

G(v (t + ε) , t + ε; vτ, τ)f (uj(vτ, τ)) dτ

−
∫ t

0

G(vt, t; vτ, τ)f (uj(vτ, τ)) dτ.

Let σ = τ − ε. Then,
∫ t+ε

0

G(v (t + ε) , t + ε; vτ, τ)f (uj(vτ, τ)) dτ

=

∫ ε

0

G(v (t + ε) , t + ε; vτ, τ)f (uj(vτ, τ)) dτ

+

∫ t

0

G(v (t + ε) , t; v (σ + ε) , σ)f (uj(v (σ + ε) , σ + ε)) dσ

>

∫ ε

0

G(v (t + ε) , t + ε; vτ, τ)f (uj(vτ, τ)) dτ

+

∫ t

0

G(v (t + ε) , t; v (σ + ε) , σ)f (uj(vσ, σ)) dσ(2.7)

since uj (v (σ + ε) , σ + ε) > uj (vσ, σ) and f is an increasing function. We have from

(2.7) and (2.5) that for 0 < t ≤ T − ε,

wj+1 (vt, t) >

∫ ε

0

G(v (t + ε) , t + ε; vτ, τ)f (uj(vτ, τ)) dτ

+

∫ t

0

G(v (t + ε) , t; v (σ + ε) , σ)f (uj(vσ, σ) dσ

−
∫ t

0

G(vt, t; vτ, τ)f (uj(vτ, τ)) dτ

>

∫ ε

0

G(v (t + ε) , t + ε; vτ, τ)f (uj(vτ, τ)) dτ > 0.

By the principle of mathematical induction, wn (vt, t) > 0 for 0 < t ≤ T − ε for all

positive integers n. Thus, each un (vt, t) is a strictly increasing function of t.

For any given positive constant M (< c), it follows from (2.2) and un (vt, t) being

a strictly increasing function of t that there exists some t1 such that un ≤ M for

0 ≤ t ≤ t1 and n = 0, 1, 2, . . . . In fact, t1 satisfies

f (M)

∫ t1

0

G(x, t1; vτ, τ)dτ ≤ M.

Let u denote limn→∞ un. From (2.2) and the Monotone Convergence Theorem (cf.

Stromberg [4, p. 288]), we have (2.1) for 0 ≤ t ≤ t1.
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Each un is continuous by Lemma 2.1. To show that u is continuous, we note from

(2.2) that

un+1(x, t) − un (x, t) =

∫ t

0

G(x, t; vτ, τ) [f (un(vτ, τ)) − f (un−1(vτ, τ))] dτ.

Let Sn = supD̄×[0,t1] (un − un−1). By using the Mean Value Theorem,

(2.8) Sn+1 ≤ f ′ (M) Sn sup
D̄×[0,t1]

∫ t

0

G(x, t; vτ, τ)dτ.

For any given positive number ε, we have

∫ t

0

G(x, t; vτ, τ)dτ = lim
ε→0

∫ t−ε

0

e
− (x−vτ)2

4(t−τ) − e
− (x+vτ)2

4(t−τ)

√

4π (t − τ)
dτ

≤ lim
ε→0

∫ t−ε

0

1
√

4π (t − τ)
dτ =

√

t

π
.(2.9)

From (2.8) and (2.9), we have

Sn+1 ≤ f ′ (M)

√

t

π
Sn.

Let us choose some positive number σ1 (≤ t1) such that for t ∈ [0, σ1],

(2.10) f ′ (M)

√

t

π
< 1.

Then, the sequence {un} converges uniformly to limn→∞ un (x, t) for 0 ≤ t ≤ σ1. Thus,

the integral equation (2.1) has a nonnegative continuous solution u for 0 ≤ t ≤ σ1. If

σ1 < t1, it follows from (2.1) that

(2.11) u (x, t) =

∫ σ1

0

G(x, t; vτ, τ)f (u(vτ, τ))dτ +

∫ t

σ1

G(x, t; vτ, τ)f (u(vτ, τ)) dτ.

The first term on the right hand side of (2.11) is continuous. Let

z (x, t) =

∫ t

σ1

G(x, t; vτ, τ)f (z(vτ, τ)) dτ.

From (2.11), z < M . For σ1 ≤ t ≤ t1, let us construct a sequence {zi} by z0 (x, t) = 0,

and for n = 0, 1, 2, . . . ,

zi+1 (x, t) =

∫ t

σ1

G(x, t; vτ, τ)f (zi(vτ, τ)) dτ.

A proof similar to that for Lemma 2.1 shows that zi is continuous for i = 1, 2, 3, . . . .

We have

zi+1 (x, t) − zi (x, t) =

∫ t

σ1

G(x, t; vτ, τ) [f (zi(vτ, τ)) − f (zi−1(vτ, τ))] dτ.

Let Zi = supD̄×[σ1,min{2σ1,t1}] |zi − zi−1|. Using the Mean Value Theorem, we have

f (zi(vτ, τ)) − f (zi−1(vτ, τ)) ≤ f ′ (M) Zi.
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Thus,

zi+1 (x, t) − zi (x, t) ≤ f ′ (M) Zi

∫ t

σ1

G(x, t; vτ, τ)dτ ≤ f ′ (M)
√

t − σ1√
π

Zi.

It follows from (2.10) that for t ∈ [σ1, min {2σ1, t1}] ,

(2.12)
f ′ (M)

√
t − σ1√

π
< 1.

Therefore, {zi} converges uniformly to z, and hence, z is a continuous function for

t ∈ [σ1, min {2σ1, t1}]. From (2.12), u is continuous for t ∈ [σ1, min {2σ1, t1}]. If

2σ1 < t1, then for 2σ1 ≤ t ≤ t1,

u (x, t) =

∫ 2σ1

0

G(x, t; vτ, τ)f (u(vτ, τ)) dτ +

∫ t

2σ1

G(x, t; vτ, τ)f (u(vτ, τ)) dτ.

Since the first term on the right-hand side is continuous, we consider the second

term. An argument analogous to the above shows that u is continuous for 0 ≤ t ≤
min {3σ1, t1}. By proceeding in this way, the integral equation (2.1) has a continuous

solution u for 0 ≤ t ≤ t1.

To prove that u is unique, let us assume that the integral equation (2.1) has two

solutions u and ũ on the interval [0, t1]. Let Θ = supD̄×[0,t1] |u − ũ|. From (2.1), we

have

u (x, t) − ũ (x, t) =

∫ t

0

G(x, t; vτ, τ) (f (u(vτ, τ)) − f (ũ(vτ, τ))) dτ.

By using the Mean Value Theorem,

Θ ≤ f ′ (M) Θ

∫ t

0

G(x, t; vτ, τ)dτ ≤ f ′ (M)
√

t√
π

Θ.

By (2.10), we have a contradiction for 0 ≤ t ≤ σ1. Thus, u is unique for 0 ≤ t ≤ σ1.

If σ1 < t1, then it follows from (2.1) that

u (x, t) =

∫ σ1

0

G(x, t; vτ, τ)f (u(vτ, τ)) dτ +

∫ t

σ1

G(x, t; vτ, τ)f (u(vτ, τ)) dτ.

Since u = ũ for 0 ≤ t ≤ σ1, we have for σ1 ≤ t ≤ t1,

|u (x, t) − ũ (x, t)| =

∫ t

σ1

G(x, t; vτ, τ) |f (u(vτ, τ)) − f (ũ(vτ, τ))| dτ,

from which we obtain

Θ ≤ f ′ (M) Θ

∫ t

σ1

G(x, t; vτ, τ)dτ ≤ f ′ (M)
√

t − σ1√
π

Θ.

By (2.12), we have a contradiction for t ∈ [0, min {2σ1, t1}] . Thus, we have uniqueness

of a solution for t ∈ [0, min {2σ1, t1}]. By proceeding in this way, the integral equation

(2.1) has a unique continuous solution u for 0 ≤ t ≤ t1.

Let tq be the supremum of all t1, where [0, t1] is the interval for which the integral

equation (2.1) has a unique continuous solution u (< c). If tq is finite, and supD̄ u (x, t)
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does not reach c− at tq, then for any positive constant greater than supD̄ u (x, tq),

a proof similar to the above shows that there exists an interval [tq, t2] such that the

integral equation (2.1) has a unique continuous solution u that is bounded away from

c. This contradicts the definition of tq. Hence, if tq is finite, supD̄ u (x, t) reaches c−

at tq.

It follows from un (vt, t) being an increasing function of t that u (vt, t) is a non-

decreasing function of t. Let σ = τ − ε. Since f is an increasing function, and

u(v (σ + ε) , σ + ε) ≥ u(vσ, σ), we have
∫ t+ε

0

G(v (t + ε) , t + ε; vτ, τ)f (u(vτ, τ)) dτ

=

∫ ε

0

G(v (t + ε) , t + ε; vτ, τ)f (u(vτ, τ)) dτ

+

∫ t

0

G(v (t + ε) , t + ε; v (σ + ε) , σ + ε)f (u(v (σ + ε) , σ + ε)) dσ

≥
∫ ε

0

G(v (t + ε) , t + ε; vτ, τ)f (u(vτ, τ)) dτ

+

∫ t

0

G(v (t + ε) , t; v (σ + ε) , σ)f (u(vσ, σ)) dσ.

By (2.5),

u (v (t + ε) , t + ε) − u (vt, t) ≥
∫ ε

0

G(v (t + ε) , t + ε; vτ, τ)f (u(vτ, τ)) dτ

+

∫ t

0

G(v (t + ε) , t; v (σ + ε) , σ)f (u(vσ, σ)) dσ

−
∫ t

0

G(vt, t; vτ, τ)f (u(vτ, τ)) dτ

>

∫ ε

0

G(v (t + ε) , t + ε; vτ, τ)f (u(vτ, τ)) dτ

+

∫ t

0

G(vt, t; vσ, σ)f (u(vσ, σ)) dσ

−
∫ t

0

G(vt, t; vτ, τ)f (u(vτ, τ)) dτ

=

∫ ε

0

G(v (t + ε) , t + ε; vτ, τ)f (u(vτ, τ)) dτ > 0.

Hence, u (vt, t) is a strictly increasing function of t.

An argument similar to the proof of Theorem 2.3 of Chan, Sawangtong and

Treeyaprasert [2] gives the following result.

Theorem 2.3. The solution of the integral equation (2.1) is the unique solution of

the problem (1.1).
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We remark from the above two theorems that if tq is finite, u quenches at tq.
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