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ABSTRACT. The optimal reinsurance and investment problem for insurance has attracted a lot of
attention of researchers in the field of stochastic control for a long time. Along this line we discuss this
problem in the case of jump diffusion markets when neither short-selling nor borrowing is allowed.
Here, we specifically assume that the risk process of the insurance company is a diffusion process.
The insurance company can transfer its risk by reinsurance and also invest its surplus in the financial
market, where we model the price of the risky asset by a geometric Lévy process. To maximize the
CARA (Constant Absolute Risk Aversion) utility of terminal wealth, the HJB equation with no
short-selling constraint has been considered, and we obtain the closed form of the value function
by a standard method. However, only a handful of people have discussed this problem under both
constraints, (i.e. no short-selling and no borrowing). This is because the problem is much more
general in this context, and becomes so complex that analytical solution could hardly be obtained.
Therefore, we provide, under the no short-selling and no borrowing constraints, a numerical solution
via Markov chain approximation, which proves to be effective and amenable.
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1. Introduction

In recent years, optimal control in insurance has been widely discussed. The top-

ics can mainly be divided into three categories: optimal investment and reinsurance,

optimal dividend payments, and pension plans. Three kinds of objective functions are

treated: the expected utility, the expected discounted value, and the ruin probability.

Minimization of the ruin probability attracted much interest in the earlier period, but

in recent days that interest gradually faded from people’s attention since it is a little

far from the practice. The other two cases continue to attract further research.
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For an insurance company, insurance services and investment activities are two

channels to make profits. The reduction of the underwritten risk and the choice of

the right portfolio policy are major factors deeply related to its further development.

The company buys reinsurance treaties to transfer part of its underwritten risk to

another insurance company in case that the risk of claim is too intensive, which

inversely make its earnings increase. Meanwhile, it has to invest the surplus asset

in the financial market to earn more. However, only when the company manages its

portfolio well that it will be competitive. In other words, a weak portfolio will pull

down its business performance.

To get acquainted with the insurance company’s action, mathematical models

have been built to simulate the dynamics of the associated economy. Based on the

characterization of the surplus process, recent results can be mainly divided into

three categories. Hipp and Plum (2000), Schmidli (2002) considered this kind of

risk process, and solved the problem of minimizing the ruin probability. However,

they did not take into account the borrowing constraints. Azcue and Muler (2009)

reconsidered the problem under borrowing constraints. In the second type, the surplus

process is approximated by a diffusion process. More papers are based on this model

because the diffusion processes are well studied and convenient for numerical analysis.

Luo and Taksar (2011) represented the surplus process by a pure diffusion. They

assumed the company invested its surplus into a Black-Scholes risky asset and a

risk free asset, aiming at minimizing the probability of absolute ruin. Precisely, they

assumed that only a limited amount was invested in the risky asset and that no short-

selling was allowed. But they allowed the company to borrow to continue financing.

Furthermore, Luo, Taksar and Tsoi (2008) discussed similar problems under presence

or absence of short-selling and/or borrowing. On the other aspect, i.e. aiming at

maximizing the expected exponential utility of terminal wealth, Bai and Guo (2008)

considered the model with no-shorting constraint,(they also considered the object of

minimizing the probability of ruin). Cao and Wan (2009) completed the problem.

They discussed the company’s optimal policy in all cases. Zhang et al. (2009) added

transaction costs to the risky asset, with CVaR controlling the risk, and found the

optimal value function and corresponding strategies. In the third type, the surplus

process is represented by a jump diffusion process. Yang and Zhang (2005) assumed

the risk process to be a compound Poisson process perturbed by a standard Brownian

motion. And they derived the optimal investment policies when the insurer can invest

in the money market and in a risky asset. Wang (2007) went further: the claim process

is only supposed to be a pure jump process. But they all ignored the reinsurance

and the corresponding restrictions. Liang et al. (2011) went even further; they added

reinsurance to the model both in the compound Poisson risk model and the Brownian

motion model. However, they didn’t impose restrictions on the control variables, i.e.
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they didn’t consider no borrowing constraint. Zhang et al. (2011) discussed a similar

situation under the classical risk model with no short-selling and no borrowing.

In the aforementioned works, the dynamics of the risky assets all follow a geomet-

ric Brownian motion. But as we all know, in fact, the price of the risky asset doesn’t

always move like this. More practical types have to be taken into consideration. The

first one should be a geometric Lévy process, i.e. we can assume the financial mar-

ket to be a Lévy type Black-Scholes market. Framstad et al. (1998) first discussed

this. But their problem is to decide the optimal consumption when the portfolio is

constructed in a jump diffusion market. Kostadinova (2007) considered the optimal

investment for an insurance company under a risk constraint on the Value-at-Risk.

Lin and Yang (2011) considered the optimal investment and reinsurance in a jump

diffusion market. They assumed the surplus of the insurance company and the return

of the risky asset both to be a jump diffusion risk process under no short-selling.

However, they didn’t consider no borrowing constraint and their assumption was too

strong to get a unique root â with 0 < â < 1.

In our paper, we consider the problem of optimal reinsurance and investment

by an insurance company. The company (1) purchases a proportional reinsurance

to transfer its risk and (2) invests its surplus to a jump diffusion financial market

consisting of a bank account (a risk-free asset) and a stock (a risky asset), while the

price of the stock is governed by a geometric Lévy process. We adopt the diffusion

approximation to represent the surplus process. We do not allow short-selling and/or

borrowing. In the case of no short-selling constraint, we solve the problem analytically.

The method to derive the explicit solution is standard, which is the same as that in

Browne (1995), Yang and Zhang (2005), Liang, Bai, and Guo (2011), and Zhang, Liu,

and Kannan (2011). Next, we use the Markov chain approximation method to present

the numerical results for the more general case, (i.e. with both constraints). It was

first used in Zhang, Liu, and Kannan (2011), and we discussed it more carefully here.

Our goal is to find the optimal reinsurance and investment policy which maximizes

the CARA utility of the terminal wealth.

The rest of the paper is organized as follows. Section 2 is devoted to build up

our model, present the necessary assumptions, and state the optimization problem.

We present there the HJB equation and the verification theorem. Section 3 solves the

corresponding HJB equation and finds the closed form expression for the solution un-

der the constraint of no short-selling. In section 4, we solve the general problem, (i.e.

with no short-selling and no borrowing), numerically through one example. Section

5 provides a discussion of this work and also of ongoing work.
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2. Problem Formulation

2.1. The Model. We consider the problem of optimal reinsurance and investment

of an insurance company that purchases proportional reinsurance to transfer its risk

and invests its surplus to a jump diffusion market consisting of a bank account and

a stock. Here the price of the stock is modeled by a geometric Lévy process.

In the classical risk model, the surplus of a collective contract or a large portfolio

is modeled as

Rt = x+ ct−
Nt∑
i=1

Yi.

Here, x is the initial capital, N is a Poisson process with rate λ, and {Yi} forms a

sequence of strictly positive iid random variables representing the payouts, which are

independent of N , and having the first moment κ and the second moment s2, and

c = (1 + γ0)λκ > 0 is the premium rate, in which γ0 is a relative safety loading.

As discussed by Taksar and Markussen (2003), the surplus process can be ap-

proximated by a diffusion process

dRt = µdt+ σ1 dw
1
t ,

where µ = c − λκ represents the constant drift, σ1 =
√
s2 + κ2 is the diffusion

coefficient that implies the volatility of the surplus, and w1
t is a standard Brownian

motion.

In Bäuerle (2005) and Chen et al. (2010), they assumed that at each moment,

the insurance company was allowed to reinsure part of its losses or to acquire new

business (e.g, to be reinsurer for other insurance companies). They used the value

of risk exposure at ∈ [0,∞) to indicate the reinsurance or the new business decision,

that is,

at ∈

{
[0, 1], reinsurance;

(1,∞), new business.

However, we do not take new business decision in our model, which limits at to take

values in [0, 1].

Combining this reinsurance in the above SDE for surplus, we get

dRt =
(
µ− (1− at)θ

)
dt+ atσ1dw

1
t .

We note here that the assumption θ > µ implies that the reinsurance is not cheap.

Thus the reinsurance turns out to be cheap when θ = µ.

The insurance company has two kinds of investments in its portfolio; one is the

non-risky bank (bond, money-market) account and the other is an investment in the

risky stock market. Assuming that the bank account offers a fixed interest rate r0 > 0,
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the price P1(t) of the bond is given by

dP1(t) = r0P1(t)dt.

The initial price of the bond is P1(0) = p1 > 0.

The price P2(t) of the stock is a càdlàg process satisfying the following stochastic

differential equation

(2.1) dP2(t) = r1P2(t) dt+ σ2P2(t) dw2
t + P2(t−)

∫ ∞
−1

ηÑ(dt, dη)

The initial price of the stock is P2(0−) = p2 > 0. Here, r1 > r0 is the expected

yield rate of the stock, which is assumed to be a positive constant and should be

higher than that of the bank account, σ2 is a positive constant, and w2
t is a standard

Brownian motion independent of w1
t . Furthermore,

Ñ(t, z) = N(t, z)− tq(z), t ≥ 0, z ∈ B(−1,∞)

is the compensator of a homogeneous Possion random measure N(t, z) on R+ ×
B(−1,∞) with intensity measure E[N(t, z)] = tq(z), where dq(η) is the Lévy measure

associated to N . We only allow jump sizes η ∈ (−1,∞) so that the process P2(t) will

remain positive for all t ≥ 0 a.s, see Framstad, Øksendal and Sulem (1998).

As pointed out above, the insurance company invests its surplus in two assets,

with a fraction bt ∈ [0, 1] to purchase in the risky asset, and the balance 1− bt in the

bond market. Note that when there is no short-selling, bt ≥ 0. Furthermore, if there

is no borrowing, then bt ≤ 1.

Therefore, our model is built as follows: we start with a filtered complete proba-

bility space (Ω,F , {Ft}t≥0, P ), and two independent standard Brownian motions w1
t

and w2
t adapted to {Ft}. Once the portfolio policy (a(·), b(·)) is chosen, the dynamics

of the surplus process Ra,b
t is given by

dRt = [µ− (1− at)θ + r0(1− bt)Rt + r1btRt]dt+ atσ1dw
1
t

+btσ2Rtdw
2
t + btRt−

∫ ∞
−1

ηÑ(dt, dη),(2.2)

with R0 = x, where θ is the reinsurance premium rate. Under mild conditions (see

e.g. Øksendal (2003), Theorem 11.2.3), it suffices to consider Markov controls, i.e.

controls of the form

(at−, bt−) = (a(Rt−), b(Rt−)).

With a slight abuse of notation, we continue to write (at, bt) in place of (a(Rt−), b(Rt−)).

Next, we give the definition of admissible Markovian control in our framework.

Definition 2.1. Considering (at, bt) as our Markov control, we call it admissible

and write (at, bt) ∈ Π if:

• the processes at and bt are predictable;



174 Z. JINGXIAO, C. KAI, AND D. KANNAN

• the processes at and bt satisfy the integrability condition∫ t

0

(a2
s + b2

s)ds <∞, a.e., forall t ≥ 0;

• the SDE(2.2) has a unique solution corresponding to (at, bt);

• if the initial endowment x ∈ S, then Rt ∈ S for all t > 0, where S is the

solvency region:

S = {x ∈ R;x > 0}.

Now the problem can be stated as follows: We consider the CARA (Constant

Absolute Risk Aversion) utility function, (which is also called the exponential utility

function), given by

(2.3) u(x) = c0 −
δ

γ
e−γx,

where c0, δ and γ are all positive constants. The value function V (t, x) is given by

(2.4) V (t, x) = sup
(a,b)∈Π

V a,b(t, x) = sup
(a,b)∈Π

E[u(Ra,b
T )|Ra,b

t = x].

The problem is that the insurer desires to maximize her expected terminal utility of

wealth at a terminal time T .

2.2. HJB equation and Verification Theorem. We note, from Øksendal and

Sulem (2007), that the generator Aa,b of the time-space process (dt, dRt) is given by

Aa,bV (t, x) = Vt + [µ− (1− at)θ + r0(1− bt)x+ r1btx]Vx +
1

2
(a2
tσ

2
1 + b2

tσ
2
2x

2)Vxx

+

∫ ∞
−1

[
V (t, x+ bxη)− V (t, x)− Vx(t, x)bxη

]
dq(η)(2.5)

Using the standard proof it is not difficult to obtain the associated Hamilton-Jacobi-

Bellman (HJB) equation.

Theorem 2.2. Assume that the value function V defined by (2.4) is in C1,2([0, T ]×
R+). Then V satisfies the following Hamilton-Jacobi-Bellman equation:

(2.6) sup
(a,b)∈Π

Aa,bV (t, x) = 0,

with the boundary condition

(2.7) V (T, x) = u(x),

where, the utility function u(x) is given in (2.3).

Similar to Theorem 3.1 in Øksendal and Sulem (2007), we get the verification

theorem for our case. The proof is standard and we omit it.
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Theorem 2.3 (Verification Theorem). a) Suppose that φ ∈ C1,2([0, T ) × R+) ∩
C0([0, T ]× R+) satisfies the following conditions

(i)

(2.8) sup
(a,b)∈Π

A(a,b)φ(t, x) ≤ 0, (t, x) ∈ [0, T )× R+ ,

(ii)

(2.9) φ(T, x) ≥ u(x), x ∈ R+ ,

(iii) and for all π ∈ Π,

Ex

[
|φ(T,Rπ

T )| +

∫ T

0

{
|A(a,b)φ(T,Rπ

T )|+ [a2σ2
1 + b2σ2

2(Rπ
T )2]φ2

x(t, R
π
t )

+

∫ ∞
−1

|φ(t, Rπ
t + bRπ

t η)− φ(t, Rπ
t )|2q(dη)

}]
dt <∞.

Then, φ ≥ V on [0, T ]× R+.

b) Suppose further that, for each x ∈ S, there exists an admissible control (a∗, b∗) ∈
Π such that

(iv)

(2.10) Aa∗,b∗φ(t, x) = 0,

(v) and {φ(τ, Ra∗,b∗
τ )}τ≤T is uniformly integrable.

Then,(a∗t , b
∗
t ) is an optimal control and

φ = V on [0, T ]× R+ .

3. The Solution of HJB Equation under no short-selling

In this section, we solve the HJB Equation (2.6) under the assumption of no

short-selling in the investment. This implies that bt ≥ 0. For technical consideration,

set b̃t = btx though we continue to write bt here instead of b̃t.

To solve the HJB equation, we shall fit a solution of the form

(3.1) V (t, x) = c0 −
δ

γ
exp

{
−γxer0(T−t) + h(T − t)

}
,

where h(·) is a suitable function such that (3.1) is a solution to (2.6), with the bound-

ary condition h(0) = 0.

From (3.1), we note

Vt = (V − c0)
(
γxr0e

r0(T−t) − h′(T − t)
)

Vx = (V − c0)
(
−γer0(T−t)) > 0

Vxx = (V − c0)
(
γ2e2r0(T−t)) < 0

V (t, x+ btη)− V (t, x)− Vx(t, x)btη = (V − c0)
(
exp

{
−γbtηer0(T−t)}− 1 + γbtηe

r0(T−t))
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Substituting these into (2.5), differentiating the generator (2.5) with respect to

at, and setting the derivative equal to zero, we get

(3.2) ât = − θ

σ2
1

· Vx
Vxx

=
θ

γσ2
1

e−r0(T−t) > 0.

Recall that at ∈ [0, 1]. Based on the relationship between ât and the interval

[0, 1], in order to get the optimal policy a∗t we have to discuss the optimal value of at

in three cases:

• θ ≤ γσ2
1;

• γσ2
1 < θ < γσ2

1 e
r0T ;

• θ ≥ γσ2
1 e

r0T .

CASE I: Let γσ2
1 < θ < γσ2

1 e
r0T .

Since at ∈ [0, 1], we can conclude that the optimal policy a∗t should be

a∗t =

{
ât, ât ≤ 1;

1, ât > 1.

When 0 ≤ t ≤ T +
1

r0

ln
γσ2

1

θ
, we have ât ≤ 1, and a∗t = ât =

θ

γσ2
1

e−r0(T−t). The HJB

equation (2.6) becomes:

0 = inf
bt
G(bt) = −h′(T − t)− (µ− θ)γ er0(T−t) − θ2

2σ2
1

+ inf
bt

{
− γ(r1 − r0)bt e

r0(T−t) +
1

2
b2
tσ

2
2γ

2 e2r0(T−t)(3.3)

+

∫ ∞
−1

(
exp

{
−γbtη er0(T−t)}− 1 + γbtη e

r0(T−t)) dq(η)

}
Differentiating G(bt) with respect to bt and setting the derivative equal to zero,

we get

(3.4)

g(bt) = btσ
2
2γ

2er0(T−t) − γ(r1 − r0) +

∫ ∞
−1

γη
(
1− exp{−γbtη er0(T−t)}

)
dq(η) = 0.

Lemma 3.1. Equation (3.4) has a unique finite positive root b∗t .

Proof. Since

g′(bt) = σ2
2γ

2er0(T−t) +

∫ ∞
−1

γ2η2 exp
{
−γbtη er0(T−t)} dq(η) · er0(T−t) > 0,

g(bt) is a strictly increasing function of bt, we have

g(0) = −γ(r1 − r0) < 0, and g(∞) =∞.

Thus, g(bt) = 0 has a unique positive root b∗t .
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Remark 3.2. 1. From Equation (3.4), we see that b∗t is dependent on σ2, r0, r1,

T − t, γ, and the distribution of the jump sizes, which implies the risk tolerance

of the insurer.

2. Note that b∗t is an increasing function with respect to r1 − r0 and γ, and a

decreasing function respect to σ2 and t.

3. Larger the positive jumps are, the bigger b∗t is, and vice versa.

Returning back to our study in Case I, let us substitute b∗t into (3.3) so that

h′(T − t) = −(µ− θ)γ er0(T−t) − θ2

2σ2
1

− γ(r1 − r0)b∗t e
r0(T−t) +

1

2
b∗t

2σ2
2γ

2e2r0(T−t)

+

∫ ∞
−1

(
exp

{
−γb∗tη er0(T−t)}− 1 + γb∗tη e

r0(T−t)) dq(η)

Integrating this over [0, t] we obtain

h(T − t) =
γ

r0

(µ− θ)(er0T − er0(T−t)) + γ(r1 − r0)

∫ t

0

b∗s e
r0(T−s)ds

+
θ2

2σ2
1

t− 1

2
σ2

2γ
2

∫ t

0

b∗s
2 e2r0(T−s)ds(3.5)

−
∫ t

0

∫ ∞
−1

(
exp

{
−γb∗sη er0(T−s)}− 1 + γb∗sη e

r0(T−s)) dq(η)ds+ h(T )

where h(T ) will be deduced later.

When T + 1
r0

ln
γσ2

1

θ
≤ t ≤ T , we have ât > 1. Then, a∗t = 1. The HJB equation

(2.6) now takes the form:

0 = inf
bt
G̃(bt)

= −h′(T − t)− γµer0(T−t) +
1

2
σ2

1γ
2e2r0(T−t)

+ inf
bt

{
− γ(r1 − r0)bt e

r0(T−t) +
1

2
b2
tσ

2
2γ

2e2r0(T−t)(3.6)

+

∫ ∞
−1

(
exp

{
−γbtη er0(T−t)}− 1 + γbtη e

r0(T−t)) dq(η)

}
Differentiating G̃(bt) with respect to bt and setting the derivative equal to zero,

we get the same equation as (3.4). It follows now from Lemma3.1 that, if the jump

part is explicitly defined, we can derive the root b∗t or get the numeric solution, after

all, the root does exist and is unique. Therefore,

h′(T − t) = −γµ er0(T−t) +
1

2
σ2

1γ
2 e2r0(T−t) − γ(r1 − r0)b∗t e

r0(T−t)

+
1

2
b∗t

2σ2
2γ

2e2r0(T−t)

+

∫ ∞
−1

(
exp

{
−γb∗tη er0(T−t)}− 1 + γb∗tη e

r0(T−t)) dq(η).
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Integration of this from t to T yields

h(T − t) =
γ

r0

µ(1− er0(T−t))− γ(r1 − r0)

∫ T

t

b∗s e
r0(T−s)ds

− γ2

4r0

σ2
1(1− e2r0(T−t)) +

1

2
σ2

2γ
2

∫ T

t

b∗s
2e2r0(T−s)ds(3.7)

+

∫ T

t

∫ ∞
−1

(
exp

{
−γb∗s ηer0(T−s)}− 1 + γb∗s ηe

r0(T−t)) dq(η)ds

By the continuity in t of the value function at t = t0 = T +
1

r0

ln
γσ2

1

θ
, it is easy

to show that

h(T ) =
γ

r0

µ(1− er0T )− γ(r1 − r0)

∫ T

0

b∗s e
r0(T−s) ds+

γ

r0

θ(er0T − er0(T−t0))

− θ

2σ2
1

t0 −
γ2

4r0

σ2
1(1− e2r0(T−t0)) +

1

2
σ2

2γ
2

∫ T

0

b∗s
2 e2r0(T−s)ds(3.8)

+

∫ T

0

∫ ∞
−1

(
exp

{
−γb∗s ηer0(T−s)}− 1 + γb∗sη e

r0(T−s)) dq(η)ds.

By the Verification Theorem (2.3) supra, we can confirm that the solution of the

HJB equation is the value function that we are looking for.

Theorem 3.3. Let γσ2
1 < θ < γσ2

1e
r0T .

The value function is given by

(3.9) V (t, x) = c0 −
δ

γ
exp{−γxer0(T−t) + h(T − t)}

Set t0 = T +
1

r0

ln
γσ2

1

θ
.

1. When 0 ≤ t ≤ t0, we have

h(T − t) =
γ

r0

(µ− θ)(er0T − er0(T−t)) + γ(r1 − r0)

∫ t

0

b∗s e
r0(T−s) ds

+
θ2

2σ2
1

t− 1

2
σ2

2γ
2

∫ t

0

b∗s
2 e2r0(T−s) ds(3.10)

−
∫ t

0

∫ ∞
−1

exp
{
−γb∗sη er0(T−s)}− 1 + γb∗sη e

r0(T−s) dq(η)ds+ h(T ),

where

h(T ) =
γ

r0

µ(1− er0T )− γ(r1 − r0)

∫ T

0

b∗s e
r0(T−s)ds+

γ

r0

θ
(
er0T − er0(T−t0)

)
− θ

2σ2
1

t0 −
γ2

4r0

σ2
1

(
1− e2r0(T−t0)

)
+

1

2
σ2

2γ
2

∫ T

0

b∗s
2 e2r0(T−s) ds

+

∫ T

0

∫ ∞
−1

exp
{
−γb∗sη er0(T−s)}− 1 + γb∗sη e

r0(T−s) dq(η)ds.
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The optimal retention level is

a∗t =
θ

γσ2
1

e−r0(T−t)

.

2. Next when t0 ≤ t ≤ T , we have

h(T − t) =
γ

r0

µ(1− er0(T−t))− γ(r1 − r0)

∫ T

t

b∗s e
r0(T−s) ds

− γ2

4r0

σ2
1

(
1− e2r0(T−t))+

1

2
σ2

2γ
2

∫ T

t

b∗s
2 e2r0(T−s) ds(3.11)

+

∫ T

t

∫ ∞
−1

exp
{
−γb∗sηer0(T−s)}− 1 + γb∗sη e

r0(T−t) dq(η)ds

And the optimal retention level is a∗t = 1.

Moreover, the optimal fund invested in the risky asset, b∗t , is the unique positive

root of the Equation (3.4).

We shall be very concise in the next two cases.

CASE II: Let θ ≤ γσ2
1.

In this case, we have ât ≤ 1, and therefore a∗t = ât =
θ

γσ2
1

e−r0(T−t), for 0 ≤ t ≤ T .

The expression of h(T − t) is the same as (3.5). For t = T , that expression gives us

h(T ) =
γ

r0

(µ− θ)(1− er0T )− γ(r1 − r0)

∫ T

0

b∗s e
r0(T−s) ds

− θ2

2σ2
1

T +
1

2
σ2

2γ
2

∫ T

0

b∗s
2 e2r0(T−s)ds(3.12)

+

∫ T

0

∫ ∞
−1

exp
{
−γb∗s ηer0(T−s)}− 1 + γb∗s ηe

r0(T−s) dq(η)ds

We shall proceed now to summarize the results for the Case II.

Theorem 3.4. Assume that θ ≤ γσ2
1. For all 0 ≤ t ≤ T , we have

(3.13) V (t, x) = c0 −
δ

γ
exp

{
−γxer0(T−t) + h̃(T − t)

}
,

where h̃(T − t) has the same expression as h(T − t) in (3.10) with

h(T ) =
γ

r0

(µ− θ)(1− er0T )− γ(r1 − r0)

∫ T

0

b∗s e
r0(T−s)ds− θ2

2σ2
1

T

+
1

2
σ2

2γ
2

∫ T

0

b∗s
2 e2r0(T−s) ds

+

∫ T

0

∫ ∞
−1

exp
{
−γb∗sη er0(T−s)}− 1 + γb∗sη e

r0(T−s) dq(η)ds
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Moreover, the optimal policy is given by a∗t =
θ

γσ2
1

e−r0(T−t), and b∗t is the unique

positive root of the Equation (3.4).

CASE III: Let θ ≥ γσ2
1e
r0T .

Here, we get ât ≥ 1, so that a∗t = 1, for 0 ≤ t ≤ T . Now h(T − t) is the same as

the expression in (3.7).

Summary of the results for the final case.

Theorem 3.5. Assume that θ ≥ γσ2
1e
r0T .

For all 0 ≤ t ≤ T , we have

(3.14) V (t, x) = c0 −
δ

γ
exp

{
−γx er0(T−t) + h̄(T − t)

}
,

where h̄(T − t) has the same expression as h(T − t) in (3.11).

Moreover, a∗t = 1, and b∗t is the same as the above.

Remark 3.6. The problem is categorized into three cases, based on the relationships

among θ, γ, σ1, r0 and T , which mainly manifests the risk tolerance of the insurer

versus the cost of reinsurance.

(a) When θ is relatively small (CASE II), the insurer is willing to buy reinsurance,

as can be seen from Theorem 3.4.

(b) As θ takes moderate values,(CASE I), the insurer buys reinsurance at the early

stages (time) of the contract. However, as the initial/contract time is close to the

maturity time, the insurer gives up reinsurance to keep more surplus as benefits.

(c) As θ increases, the insurer is unwilling to buy any reinsurance, (CASE III, a∗t = 1

means non-reinsurance).

Remark 3.7. When the insurer is willing to purchase reinsurance, the optimal reten-

tion level is a∗t = θ
γσ2

1
e−r0(T−t), (in fact, 1− a∗t is the optimal reinsurance proportion).

Therefore, larger the σ1 is, the smaller a∗t is. Therefore, the more uncertain the claims

are, the more the risk is transferred to the reinsurer in case of bankruptcy.

When t is larger, i.e. the present time is nearer to the terminal time, a∗t is larger,

too. The reason is that when the time interval of contract period becomes smaller,

it is less likely that much payout will be claimed. So, the insurer is more willing to

keep the surplus to herself rather than buying reinsurance.

Remark 3.8. We also note that a∗t and b∗t do not affect one another. This is because

we assumed independence between the compensation process and the dynamics of

the risky asset. In fact, if the two processes are related, a more complex model could

be built, such as plugging in copula or just correlation coefficient. We will discuss it

in a future work.
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4. Markov chain approximation method under both constraints

In this section, we take a specific case as an example. The parameters are listed

below:

• the minimal and maximal surplus of the company are respectively m = 0 and

M = 1.

• µ = 0.01, θ = 0.012 > µ which means it is not a cheap reinsurance.

• r0 = 0.05, r1 = 0.2, σ1 = 0.1, σ2 = 0.5.

• c0 = 5, δ = 0.5, γ = 2.

• λ = 2, T = 5.

We use the Markov chain approximation method to tackle this problem. The

approximation scheme is similar to that in Section 4 of Zhang, Liu, Kannan (2011):

(1) Firstly, we discretize the problem, cutting the x-interval into M−m
h

pieces with

h = 0.05, and slicing the t-interval into
T − 0

τ
pieces with τ = 0.1.

(2) Next, we construct the Markov chain to approximate the initial process, write

down the matrix of transition probability, including the diffusion part and the jump

part. As for the jump part, we assume the jump sizes have the exponential distribution

on [−1,∞) with the intensity λ = 2.

(3) Finally, we calculate the value function according to the dynamic programming

equation:

V h,τ (x, nτ) = sup
(a,b)∈[0,1]×[0,1]

{∑
y

p(JD)(x, y|a, b, λ)V h,τ (y, nτ + τ)

}
.

This can be solved by a simple backward iteration procedure. Here, p(JD)(x, y|a, b, λ)

denotes the transition probability of the Markov chain from state x to state y, (with

the given variables a, b and λ). We use the function fmincon in Matlab to solve

this problem.

After establishing the algorithm, the value function and the optimal policy could

be obtained. The results are presented in Figures 1, 2, and 3.

Figure 1 depicts the value function related to time and wealth. It’s concave and

smooth.

Figure 2 depicts the optimal retention level. Affected by the boundary for wealth

x and the jump-diffusion process, it fluctuates and depends some what to the wealth

x. Fortunately, we can still observe the broad outline and the tendency.

When the wealth is small, the insurer does not possess enough fund to buy

reinsurance, so it is prone to accept the risk of claims herself.

As the wealth grows, the insurer is more willing to buy reinsurance to transfer

risk to some extent. Figure 3 shows the optimal fraction invested on the risky asset.



182 Z. JINGXIAO, C. KAI, AND D. KANNAN

It is interesting that the more wealth the insurer has, the less likely that she will buy

the risky asset. Of course, why would anyone want to take the risk of loss as the one

already owns nearly the expected wealth?

Remark 4.1. As can be seen from the figures, except for the value function, the

retention level and the proportion of stock have some volatility and are not that

smooth. There are at least two reasons for this.
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Figure 1. Value function as a function of time and initial wealth at

time t
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Figure 2. Optimal retention level as a function of time and initial

wealth at time t
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(1) Firstly, there exists some errors when we discretize the model, especially the jump

part.

(2) Secondly, we cannot make h quite small, or else the transition probabilities would

not exist, which will lead to the failure of this numerical method. It means, we have

to limit the upper bound of the term
τ

h2
.

Remark 4.2. When we do the backward iteration procedure, we use the function

fmincon in Matlab. If the constraints become more complex, e.g. when the explicit

expression couldnot be derived, we will not be able to use the existing function, and

have to look for other algorithms. We are still working on it, and we have found the

alternative optimization method to solve similar stochastic control problems. Results

will appear in another article.

5. Concluding Remarks

In this paper, we discussed the optimal proportional reinsurance and investment

in jump diffusion markets with the constraints of no short-selling and no borrowing.

Closed form of the value function was derived under the no short-selling condition.

If both no short-selling and no borrowing constraints are taken into consideration, it

is difficult to separate t and x. However, we can use Markov chain approximation

method to solve this problem numerically. It has the advantage that the business

strategy can be dynamically optimized, even Rt exists in the HJB equation, when

analytical solutions are hard to derive due to the inseparability of t and x. Strict

conditions are imposed to make sure that the matrix of transition probabilities are

well defined, which is also strongly related to the partition of t and x. Also the

question of more effective algorithm might be raised, and we are still working on it.

In addition, more realistic factors can be brought in, such as the transaction costs,

the related structure of the different dynamic processes, and the risk management.

However, as more factors are taken into consideration, the more difficult the problem

becomes, leading to tougher and more challenging work. Indeed, analytical solutions

will be even harder to derive, so we have to apply numerical algorithms to solve those

problems. Markov chain approximation method is effective in certain situations, and

it still has a long way to go.
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