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ABSTRACT. In the case of oscillatory potential, we present a Lyapunov type inequality for second

order differential equations of the form

(r(t)Φβ(x′(t)))′ + q(t)Φγ(x(t)) = 0,

in the sub-half-linear (0 < γ < β) and the super-half-linear (0 < β < γ < 2β) cases where Φ∗(s) =

|s|∗−1s.

AMS (MOS) Subject Classification. 34C10, 34C15.

1. INTRODUCTION

Consider the second-order differential equation

(1.1) (r(t)Φβ(x′(t)))′ + q(t)Φγ(x(t)) = 0; a ≤ t ≤ b,

with the Dirichlet boundary conditions

(1.2) x(a) = x(b) = 0,

where r, q are real-valued functions with r(t) > 0. Our interest is to establish a new

Lyapunov type inequality for Eq. (1.1) which does not assume that the potential q

be of definite sign.

When β = γ, Prb. (1.1)–(1.2) reduces to the half-linear equation

(1.3) (r(t)Φγ(x
′(t)))′ + q(t)Φγ(x(t)) = 0; a ≤ t ≤ b,

satisfying (1.2).

In 2003, Yang [47] showed that there is a striking similarity between linear and

half-linear equations and obtained the following result.
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Theorem 1.1 (Lyapunov Type Inequality). If x(t) is a nontrivial solution of Eq. (1.3)

satisfying (1.2), where a, b ∈ R are consecutive zeros, then the inequality

(1.4)

∫ b

a

q+(t)dt > 2γ+1

(
∫ b

a

r−1/γ(t)dt

)−γ

holds, where q+(t) = max{q(t), 0} and γ is positive constant.

Similar Lyapunov type inequalities with (1.4) were obtained by O. Došlý and

P. Řehák [8, p. 190], Lee et al. [20] and Pinasco [33, 34].

In 2010, Sim and Lee [37] proved the following inequality

(1.5)

∫ b

a

(b − t)γ(t − a)γq(t)dt ≥ 21−γ(b − a)γ

for Eq. (1.3) with r(t) = 1 and q(t) > 0. However, Ineq. (1.5) is not correct:

Ineq.’s (2.4) and (2.6) obtained in [37, pp. 4] are on the intervals [a, (a + b)/2]

and [(a + b)/2, b], respectively, and they cannot be just added to get Ineq. (1.5).

In 2011, Wang [45], and Tang and He [39], removing the positivity condition on

q(t), extended Ineq.’s (1.4) and (1.5) to

(1.6)

∫ b

a

Iγ
a (t)Iγ

b (t)q+(t)dt > Cγ [Ia(t) + Ib(t)]
γ = Cγ

(
∫ b

a

r−1/γ(t)dt

)γ

and

(1.7)

∫ b

a

[

I−γ
a (t) + I−γ

b (t)
]

−1
q+(t)dt > 1

respectively, where

Ia(t) =

∫ t

a

r−1/γ(s)ds, Ib(t) =

∫ b

t

r−1/γ(s)ds

and

Cγ =

{

1, 0 < γ ≤ 1;

21−γ, γ > 1.

Here, we note that the Ineq. (1.7) is sharper than Ineq. (1.6) in both cases i.e. γ ∈
(0, 1) and γ ∈ (1,∞) that follows from the inequality:

ηµ
1 + ηµ

2 ≥ (η1 + η2)
µ ×

{

1, 0 < µ ≤ 1;

21−µ, µ > 1;
η1, η2 ∈ [0,∞).

We note that the above inequality is an immediate consequence of following lemma.

Lemma 1.2 (Jensen’s Inequality [23]). Let f(u) be a convex function defined on an

interval J ⊂ R. If uk ∈ J and ck ∈ R
+, k = 1, . . . , n with

∑n
k=1 ck = 1, then the

inequality

(1.8) f

(

n
∑

k=1

ckuk

)

≤
n
∑

k=1

ckf(uk)
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holds.

In 2012, Tiryaki et al. [42] improved Ineq. (1.7) and obtained similar Lyapunov

type inequalities for equations of the form

(r(t)|x′(t)|α−2x′(t))′ + q(t)|x(t)|α∗−2x(t) = 0,

where α∗ is the conjugate exponent of α > 1, i.e., (α∗ − 1)(α − 1) = 1.

Basically, Ineq. (1.4) is a generalization of the classical Lyapunov inequality

(1.9)

∫ b

a

|q(t)|dt > 4(b − a)−1,

established by Lyapunov [21] for Hill’s equation

(1.10) x′′(t) + q(t)x(t) = 0; a ≤ t ≤ b

satisfying (1.2). Here the constant 4 in the right hand side of Ineq. (1.9) is the best

possible largest number (see [21] and [15, Thm. 5.1]). In fact, the best Lyapunov

inequality for Eq. (1.10) satisfying (1.2) is

(1.11)

∫ b

a

(b − t)(t − a)q+(t)dt > b − a,

obtained by Hartman [15]. Note that Ineq.’s (1.6) and (1.7) reduce to Ineq. (1.11)

when r(t) = 1 and γ = 1.

The Lyapunov inequality (1.9) and its several generalizations have proved to

be useful tools in oscillation and Sturmian theory, disconjugacy, asymptotic theory,

eigenvalue problems, boundary value problems and various properties of the solutions

of (1.1) and associated equations, see for instance [1–3,6,7,11,15,16,19,20,22,24–26,

29, 35, 36, 38, 46] and the references cited therein. For some extensions to Hamilton-

ian systems, higher order differential equations, nonlinear and half-linear differential

equations, difference and dynamic equations, functional and impulsive differential

equations, we refer in particular to [4–10,12–14,17, 18, 27, 28, 30–32,40, 43, 44, 48, 49].

Motivated by the half-linear equations, we attempt to obtain in this work the

analogous Lyapunov type inequalities for second-order equations of the form (1.1)

satisfying the Dirichlet boundary condition (1.2). Moreover we shall show how they

can be carried over to linear, half-linear, sub-linear and super-linear equations.

It is clear that two special cases of Eq. (1.1) are the sub-half-linear equation

(0 < γ < β) and the super-half-linear equation (0 < β < γ < 2β). Although the

nonlinear results require the coefficient functions to be non-negative, as an important

feature of our work, we allow q(t) to be negative in equation (1.1). Further, we note

that letting β = γ results in (1.3), and as a consequence our results extend some of
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the existing Lyapunov type results for half-linear equations. We also give two new

Lyapunov type inequalities for the Emden-Fowler equations

(1.12) (r(t)x′(t))′ + q(t)Φγ(x(t)) = 0,

in the sub-linear (0 < γ < 1) and the super-linear (1 < γ < 2) cases by taking β = 1.

We note that the Lyapunov type inequalities of this type have been studied by

many authors, but to the best of our knowledge, there is no result in the literature

for nonlinear equations of type (1.1) and (1.12), see for instance the survey papers of

Cheng [6] and Tiryaki [41] and the references therein.

2. MAIN RESULTS

Throughout this paper we shall assume that the function r(t) ∈ L(−1/β)[a, b],

β > 0, and the potential q(t) ∈ L1[a, b].

We will need the following lemma.

Lemma 2.1. If A is positive, and B, z are nonnegative, then

(2.1) Az2τ − Bzσ + ΓστA
−σ/(2−σ)B2τ/(2−σ) ≥ 0

for any σ ∈ (0, 2τ), where

Γστ = (2τ − σ)σσ/(2τ−σ)τ−2τ/(2τ−σ)2−2τ/(2τ−σ)

with equality holding if and only if B = z = 0.

Proof. Let

(2.2) G(z) = Az2τ − Bzσ; z ≥ 0

where A > 0 and B ≥ 0. Clearly, when z = 0 or B = 0, (2.1) is obvious. On

the other hand, if B > 0, then it is easy to see that G attains its minimum at

z0 = (σA−1B/(2τ))1/(2τ−σ) and

Gmin = −ΓστA
−σ/(2τ−σ)B2τ/(2τ−σ).

Thus, (2.1) holds. Note that if B > 0, then Ineq. (2.1) is strict.

Now we state and prove our first result.

Theorem 2.2 (Lyapunov Type Inequality). If x(t) is a nontrivial solution of Eq. (1.1)

satisfying (1.2), where a, b ∈ R with a < b are consecutive zeros, then the inequality

(2.3)

∫ b

a

q+(t)dt >
2β

√

Γγβ

(
∫ b

a

r−1/β(t)dt

)−β

holds, where γ ∈ (0, 2β) and

(2.4) Γγβ = (2β − γ)γγ/(2β−γ)β−2β/(2β−γ)2−2β/(2β−γ) > 0.
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Proof. Let x(t) be a nontrivial solution of Eq. (1.1) satisfying (1.2), where a, b ∈ R

with a < b are consecutive zeros. Without loss of generality, we may assume that

x(t) > 0 for t ∈ (a, b). In fact, if x(t) < 0 for t ∈ (a, b), then we can consider −x(t),

which is also a solution. Let c ∈ (a, b) be the least point of the local maxima of x(t)

in (a, b), i.e., x′(c) = 0 and x′(t) > 0 on [a, c). Then we have

xβ+1(c) =

(
∫ c

a

x′(t)dt

)β+1

=

(
∫ c

a

r−1/(β+1)(t) r1/(β+1)(t)x′(t)dt

)β+1

≤
(
∫ c

a

r−1/β(t)dt

)β ∫ c

a

r(t)[x′(t)]β+1dt(2.5)

by Hölder’s inequality. On the other hand, multiplying (1.1) by x(t) and integrating

from a to c by parts, we get

(2.6)

∫ c

a

r(t)[x′(t)]β+1dt =

∫ c

a

q(t)xγ+1(t)dt ≤ xγ+1(c)

∫ c

a

q+(t)dt.

Now using (2.5) and (2.6) we obtain xβ(c) ≤ K0x
γ(c), where

K0 =

(
∫ c

a

r−1/β(t)dt

)β ∫ c

a

q+(t)dt.

Using this and Ineq. (2.1) in Lemma 2.1 with A = B = 1, we have the quadratic

inequality

K0x
2β(c) − xβ(c) + K0Γγβ > 0.

This is possible only if K2
0Γγβ > 1/4, i.e.,

(2.7)

∫ c

a

q+(t)dt >
1

2
√

Γγβ

(
∫ c

a

r−1/β(t)dt

)

−β

.

Similarly, if d is the greatest point of local maxima of x(t) in (a, b), i.e., x′(d) = 0 and

x′(t) < 0 on (d, b), we have

(2.8)

∫ b

d

q+(t)dt >
1

2
√

Γγβ

(
∫ b

d

r−1/β(t)dt

)−β

.

Consequently, adding up (2.7) and (2.8) we obtain

∫ b

a

q+(t)dt ≥
∫ c

a

q+(t)dt +

∫ b

d

q+(t)dt

>
1

2
√

Γγβ

{

(
∫ c

a

r−1/β(t)dt

)

−β

+

(
∫ b

d

r−1/β(t)dt

)−β
}

.
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On the other hand, since the function f(u) = u−β is convex for u > 0, Ineq. (1.8) in

Lemma 1.2 with u1 =
∫ c

a
r−1/β(t)dt, u2 =

∫ b

d
r−1/β(t)dt and c1 = c2 = 1/2 implies

(
∫ c

a

r−1/β(t)dt

)

−β

+

(
∫ b

d

r−1/β(t)dt

)−β

≥ 2β+1

(
∫ c

a

r−1/β(t)dt +

∫ b

d

r−1/β(t)dt

)−β

≥ 2β+1

(
∫ b

a

r−1/β(t)dt

)−β

,

which completes the proof of Theorem 2.2.

Remark 2.3. Thm. 2.2 is interesting because it covers all sub-half-linear, half-linear

and super-half-linear equations i.e., the cases γ ∈ (0, β), γ = β and γ ∈ (β, 2β),

respectively. Moreover when γ = β, it is easy to see that Thm. 2.2 improves the

main result of Yang [47], i.e., Thm. 1.1. In fact, since Γγγ = 1/4, condition (2.3) of

Thm. 2.2 reduces to condition (1.4) of Thm. 1.1.

Remark 2.4. Thm. 2.2 is of particular interest, in fact, it improves the classical

Lyapunov’s inequality not only for the Hill’s equation, but also the Sturm-Liouville

equation satisfying (1.2) for β = γ = 1.

Next we present a new result where Eq. (1.1) has two special type of nonlinearities,

namely Emden-Fowler sub-linear (0 < γ < 1) and super-linear (1 < γ < 2) equations.

Theorem 2.5 (Lyapunov Type Inequality). If x(t) is a nontrivial solution of Eq. (1.12)

satisfying (1.2), where a, b ∈ R with a < b are consecutive zeros, then the inequality

∫ b

a

q+(t)dt ≥ 2(3−γ)/(2−γ)

γγ/(4−2γ)
√

2 − γ

(
∫ b

a

r−1(t)dt

)−1

holds, where γ ∈ (0, 2).

We note that when γ = 1, classical results can be obtained from Thm. 2.5.

We conclude this paper with the following remark. The results obtained in this

paper for Eq. (1.1) can be easily extended to the second order equations with negative

coefficients

(r(t)Φβ(x′(t)))′ − q(t)Φγ(x(t)) = 0.

The formulation of the results are left to the reader.

It will be of interest to find a Hartman type inequality for Eq. (1.1), and similar

results for the mixed nonlinear equations with positive and negative coefficients

(r(t)Φβ(x′(t)))′ ± p(t)Φα(x(t)) ∓ q(t)Φγ(x(t)) = 0

for 0 < γ < β < α or Emden-Fowler super-linear Eq. (1.12) for γ ∈ [2,∞).
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