COINCIDENCE POINTS FOR MULTIMAPS DEFINED ON SUBSETS OF FRÉCHET SPACES

HAMED H. ALSULAMI¹ AND DONAL O'REGAN^{1,2}

¹NAAM Research Group, King Abdulaziz University, Jeddah, Saudi Arabia ²School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

ABSTRACT. We establish coincidence points for maps defined on Fréchet spaces. The proofs rely on the notion of a Φ -essential map and on viewing the Fréchet space as the projective limit of a sequence of Banach spaces.

AMS(MOS) subject classification: 47H04

Keywords. coincidence theory, Φ -essential maps.

1. INTRODUCTION

This paper presents a number of coincidence point results for multivalued maps defined between Fréchet spaces. To establish these results we use recent results in Banach spaces (see [1, 6]) and we view the Fréchet space E as a projective limit of a sequence of Banach spaces $\{E_n\}_{n\in N}$ (see [2, 4, 5] and the references therein); here $N = \{1, 2, ...\}$. Our approach relies on constructing maps F_n and Φ_n defined on subsets of E_n whose coincidence points "converge" to a coincidence point of the original operators F and Φ .

Now we recall some coincidence results [6] which will be needed in Section 2. Let E be a normed space and U an open subset of E.

We will consider classes **A** and **B** of maps.

Definition 1.1. We say $F \in A(\overline{U}, E)$ if $F \in \mathbf{A}(\overline{U}, E)$ and $F : \overline{U} \to K(E)$ is an upper semicontinuous map; here \overline{U} denotes the closure of U in E and K(E) denotes the family of nonempty compact subsets of E.

Definition 1.2. We say $F \in B(\overline{U}, E)$ if $F \in \mathbf{B}(\overline{U}, E)$ and $F : \overline{U} \to K(E)$ is an upper semicontinuous map.

In this section we fix a $\Phi \in B(\overline{U}, E)$.

Definition 1.3. We say $F \in A_{\partial U}(\overline{U}, E)$ if $F \in A(\overline{U}, E)$ with $F(x) \cap \Phi(x) = \emptyset$ for $x \in \partial U$; here ∂U denotes the boundary of U in E.

Received February 13, 2015

1056-2176 \$15.00 ©Dynamic Publishers, Inc.

Definition 1.4. Let $F, G \in A_{\partial U}(\overline{U}, E)$. We say $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ if there exists an upper semicontinuous map $\Psi : \overline{U} \times [0,1] \to K(E)$ with $\Psi(\cdot,\eta(\cdot)) \in A(\overline{U},E)$ for any continuous function $\eta : \overline{U} \to [0,1]$ with $\eta(\partial U) = 0, \Psi_t(x) \cap \Phi(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0,1], \Psi_1 = F$ and $\Psi_0 = G$ (here $\Psi_t(x) = \Psi(x,t)$).

Definition 1.5. Let $F \in A_{\partial U}(\overline{U}, E)$. We say $F : \overline{U} \to K(E)$ is Φ -essential in $A_{\partial U}(\overline{U}, E)$ if for every map $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$ there exists $x \in U$ with $J(x) \cap \Phi(x) \neq \emptyset$.

In [6] we established the following result.

Theorem 1.6. Let E be a normed space, U an open subset of E and $G, F \in A_{\partial U}(\overline{U}, E)$. Suppose G is Φ -essential in $A_{\partial U}(\overline{U}, E)$ and $G \cong F$ in $A_{\partial U}(\overline{U}, E)$. Then there exists a $x \in U$ with $\Phi(x) \cap F(x) \neq \emptyset$.

Remark 1.7. In fact the result in Theorem 1.6 is true if we change Definition 1.5 as follows: Let $F \in A_{\partial U}(\overline{U}, E)$. We say $F : \overline{U} \to K(E)$ is Φ -essential in $A_{\partial U}(\overline{U}, E)$ if for every map $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$ and $J \cong F$ in $A_{\partial U}(\overline{U}, E)$ there exists $x \in U$ with $J(x) \cap \Phi(x) \neq \emptyset$.

Remark 1.8. In this paper we could replace the Φ -essential maps by the Φ -epi maps [6] and obtain similar results as in Section 2 (we leave this to the interested reader).

The following concepts will be needed in Section 2. Let (X, d) be a metric space and S a nonempty subset of X. For $x \in X$ let $d(x, S) = \inf_{y \in S} d(x, y)$. Also diam S = $\sup\{d(x, y) : x, y \in S\}$. We let B(x, r) denote the open ball in X centered at x of radius r and by B(S, r) we denote $\bigcup_{x \in S} B(x, r)$. For two nonempty subsets S_1 and S_2 of X we define the generalized Hausdorff distance H to be

$$H(S_1, S_2) = \inf\{\epsilon > 0 : S_1 \subseteq B(S_2, \epsilon), S_2 \subseteq B(S_1, \epsilon)\}.$$

Now suppose $G: S \to 2^X$ and $\Phi: S \to 2^X$. Then G is said to be Φ -hemicompact if each sequence $\{x_n\}_{n \in N}$ in S has a convergent subsequence whenever $G(x_n) \cap \Phi(x_n) \neq \emptyset$ (here $N = \{1, 2, ...\}$).

Now let I be a directed set with order \leq and let $\{E_{\alpha}\}_{\alpha \in I}$ be a family of locally convex spaces. For each $\alpha \in I, \beta \in I$ for which $\alpha \leq \beta$ let $\pi_{\alpha,\beta} : E_{\beta} \to E_{\alpha}$ be a continuous map. Then the set

$$\left\{ x = (x_{\alpha}) \in \prod_{\alpha \in I} E_{\alpha} : x_{\alpha} = \pi_{\alpha,\beta}(x_{\beta}) \ \forall \ \alpha, \beta \in I, \alpha \le \beta \right\}$$

is a closed subset of $\prod_{\alpha \in I} E_{\alpha}$ and is called the projective limit of $\{E_{\alpha}\}_{\alpha \in I}$ and is denoted by $\lim_{\leftarrow} E_{\alpha}$ (or $\lim_{\leftarrow} \{E_{\alpha}, \pi_{\alpha,\beta}\}$ or the generalized intersection [3] $\cap_{\alpha \in I} E_{\alpha}$.)

2. COINCIDENCE THEORY IN FRÉCHET SPACES

We now present an approach to establishing coincidence points based on projective limits (see [3]). Let $E = (E, \{|\cdot|_n\}_{n \in N})$ be a Fréchet space with the topology generated by a family of seminorms $\{|\cdot|_n : n \in N\}$; here $N = \{1, 2, ...\}$. We assume that the family of seminorms satisfies

(2.1)
$$|x|_1 \le |x|_2 \le |x|_3 \le \cdots$$
 for every $x \in E$.

A subset X of E is bounded if for every $n \in N$ there exists $r_n > 0$ such that $|x|_n \leq r_n$ for all $x \in X$. For r > 0 and $x \in E$ we denote $B(x, r) = \{y \in E : |x - y|_n \leq r \forall n \in N\}$. To E we associate a sequence of Banach spaces $\{(\mathbf{E}_n, |\cdot|_n)\}$ described as follows. For every $n \in N$ we consider the equivalence relation \sim_n defined by

(2.2)
$$x \sim_n y \text{ iff } |x - y|_n = 0$$

We denote by $\mathbf{E}^n = (E/\sim_n, |\cdot|_n)$ the quotient space, and by $(\mathbf{E}_n, |\cdot|_n)$ the completion of \mathbf{E}^n with respect to $|\cdot|_n$ (the norm on \mathbf{E}^n induced by $|\cdot|_n$ and its extension to \mathbf{E}_n are still denoted by $|\cdot|_n$). This construction defines a continuous map $\mu_n : E \to \mathbf{E}_n$. Now since (2.1) is satisfied the seminorm $|\cdot|_n$ induces a seminorm on \mathbf{E}_m for every $m \ge n$ (again this seminorm is denoted by $|\cdot|_n$). Also (2.2) defines an equivalence relation on \mathbf{E}_m from which we obtain a continuous map $\mu_{n,m} : \mathbf{E}_m \to \mathbf{E}_n$ since \mathbf{E}_m/\sim_n can be regarded as a subset of \mathbf{E}_n . Now $\mu_{n,m}\mu_{m,k} = \mu_{n,k}$ if $n \le m \le k$ and $\mu_n = \mu_{n,m}\mu_m$ if $n \le m$. We now assume the following condition holds:

(2.3)
$$\begin{cases} \text{for each } n \in N, \text{ there exists a Banach space } (E_n, |\cdot|_n) \\ \text{and an isomorphism (between normed spaces) } j_n : \mathbf{E}_n \to E_n \end{cases}$$

Remark 2.1. (i). For convenience the norm on E_n is denoted by $|\cdot|_n$.

(ii). In many applications $\mathbf{E}_n = \mathbf{E}^n$ for each $n \in N$.

(iii). Note if $x \in \mathbf{E}_n$ (or \mathbf{E}^n) then $x \in E$. However if $x \in E_n$ then x is not necessarily in E and in fact E_n is easier to use in applications (even though E_n is isomorphic to \mathbf{E}_n). For example if $E = C[0, \infty)$, then \mathbf{E}^n consists of the class of functions in E which coincide on the interval [0, n] and $E_n = C[0, n]$.

Finally we assume

(2.4)
$$\begin{cases} E_1 \supseteq E_2 \supseteq \cdots \text{ and for each } n \in N, \\ |j_n \mu_{n,n+1} j_{n+1}^{-1} x|_n \le |x|_{n+1} \forall x \in E_{n+1} \end{cases}$$

(here we use the notation from [3] i.e. decreasing in the generalized sense). Let $\lim_{\leftarrow} E_n$ (or $\cap_1^{\infty} E_n$ where \cap_1^{∞} is the generalized intersection [3]) denote the projective limit of $\{E_n\}_{n\in\mathbb{N}}$ (note $\pi_{n,m} = j_n\mu_{n,m}j_m^{-1}: E_m \to E_n$ for $m \ge n$) and note $\lim_{\leftarrow} E_n \cong E$, so for convenience we write $E = \lim_{\leftarrow} E_n$. For each $X \subseteq E$ and each $n \in N$ we set $X_n = j_n \mu_n(X)$, and we let $\overline{X_n}$, $int X_n$ and ∂X_n denote respectively the closure, the interior and the boundary of X_n with respect to $|\cdot|_n$ in E_n . Also the pseudo-interior of X is defined by

pseudo-int
$$(X) = \{x \in X : j_n \mu_n(x) \in \overline{X_n} \setminus \partial X_n \text{ for every } n \in N\}.$$

The set X is pseudo-open if X = pseudo-int(X). For r > 0 and $x \in E_n$ we denote $B_n(x,r) = \{y \in E_n : |x - y|_n \le r\}.$

Remark 2.2. If X is pseudo-open then for every $n \in N$ we claim that X_n is an open subset of E_n . Fix $n \in N$. We show $X_n = \operatorname{int} X_n$. To see this note $X_n \subseteq \overline{X_n} \setminus \partial X_n$ since if $y \in X_n$ then there exists $x \in X$ with $y = j_n \mu_n(x)$ and this together with $X = \operatorname{pseudo-int} X$ yields $j_n \mu_n(x) \in \overline{X_n} \setminus \partial X_n$ i.e. $y \in \overline{X_n} \setminus \partial X_n$. In addition notice

$$\overline{X_n} \setminus \partial X_n = (\text{int } X_n \cup \partial X_n) \setminus \partial X_n = \text{int } X_n \setminus \partial X_n = \text{int } X_n$$

since int $X_n \cap \partial X_n = \emptyset$. Consequently

$$X_n \subseteq \overline{X_n} \setminus \partial X_n = \text{int } X_n, \text{ so } X_n = \text{int } X_n$$

Let $M \subseteq E$ and consider the map $F: M \to 2^E$. Assume for each $n \in N$ and $x \in M$ that $j_n \mu_n F(x)$ is closed. Let $n \in N$ and $M_n = j_n \mu_n(M)$. Since we first consider Volterra type operators we assume (note this assumption is only needed in Theorems 2.3)

(2.5) if
$$x, y \in E$$
 with $|x - y|_n = 0$ then $H_n(Fx, Fy) = 0$;

here H_n denotes the appropriate generalized Hausdorff distance (alternatively we could assume $\forall n \in N, \forall x, y \in M$ if $j_n \mu_n x = j_n \mu_n y$ then $j_n \mu_n F x = j_n \mu_n F y$ and of course here we do not need to assume that $j_n \mu_n F(x)$ is closed for each $n \in N$ and $x \in M$). Now (2.5) guarantees that we can define (a well defined) F_n on M_n as follows:

For $y \in M_n$ there exists a $x \in M$ with $y = j_n \mu_n(x)$ and we let

$$F_n y = j_n \mu_n F x$$

(we could of course call it Fy since it is clear in the situation we use it); note F_n : $M_n \to C(E_n)$ and note if there exists a $z \in M$ with $y = j_n \mu_n(z)$ then $j_n \mu_n Fx = j_n \mu_n Fz$ from (2.5) (here $C(E_n)$ denotes the family of nonempty closed subsets of E_n). In our next result we assume F_n will be defined on $\overline{M_n}$ i.e. we assume the F_n described above admits an extension (again we call it F_n) $F_n : \overline{M_n} \to 2^{E_n}$ (we will assume certain properties on the extension).

Now we present some results in Fréchet spaces. Our first result is motivated by Volterra type operators. **Theorem 2.3.** Let E and E_n be as described above, U a pseudo-open subset of Eand $F: U \to 2^E$, $G: U \to 2^E$ and $\Phi: U \to 2^E$. Also assume for each $n \in N$ and $x \in U$ that $j_n \mu_n F(x)$, $j_n \mu_n G(x)$ and $j_n \mu_n \Phi(x)$ are closed and in addition for each $n \in N$ that $F_n: \overline{U_n} \to 2^{E_n}$, $G_n: \overline{U_n} \to 2^{E_n}$ and $\Phi_n: \overline{U_n} \to 2^{E_n}$ are as described above. Suppose the following conditions are satisfied:

(2.6)
$$\begin{cases} \text{for each } n \in N, G_n \in A_{\partial U_n}(\overline{U_n}, E_n), \Phi_n \in B(\overline{U_n}, E_n) \\ \text{and } G_n \text{ is } \Phi_n \text{-essential in } A_{\partial U_n}(\overline{U_n}, E_n) \end{cases}$$

(2.7) for each
$$n \in N, F_n \in A_{\partial U_n}(\overline{U_n}, E_n)$$
 is Φ_n -hemicompact

(2.8) for each
$$n \in N, G_n \cong F_n$$
 in $A_{\partial U_n}(\overline{U_n}, E_n)$

and

(2.9)
$$\begin{cases} \text{for each } n \in \{2, 3, \dots\} \text{ if } y \in U_n \text{ is such} \\ \text{that } F_n(y) \cap \Phi_n(y) \neq \emptyset \text{ in } E_n \text{ then} \\ j_k \mu_{k,n} j_n^{-1}(y) \in U_k \text{ for } k \in \{1, \dots, n-1\}. \end{cases}$$

Then there exists $x \in E$ with $F(x) \cap \Phi(x) \neq \emptyset$ in E; here $x = (z_k)$ where $z_k \in U_k$ for each $k \in N$.

Proof. For each $n \in N$, from Theorem 1.6 there exists $y_n \in U_n$ with $F_n(y_n) \cap \Phi_n(y_n) \neq \emptyset$ in E_n . Lets look at $\{y_n\}_{n \in N}$. Notice $y_1 \in U_1$ and $j_1\mu_{1,k}j_k^{-1}(y_k) \in U_1$ for $k \in N \setminus \{1\}$ from (2.9). Fix $n \in N$. There exists a $x \in E$ with $y_n = j_n\mu_n(x)$ so

(2.10)
$$j_n \mu_n F(x) \cap j_n \mu_n \Phi(x) \neq \emptyset \text{ on } E_n$$

We now claim

(2.11)
$$F_1(j_1\mu_{1,n}j_n^{-1}y_n) \cap \Phi_1(j_1\mu_{1,n}j_n^{-1}y_n) \neq \emptyset \text{ on } E_1.$$

To see this note on E_1 that

$$F_{1}(j_{1}\mu_{1,n}j_{n}^{-1}y_{n}) \cap \Phi_{1}(j_{1}\mu_{1,n}j_{n}^{-1}y_{n}) = F_{1}(j_{1}\mu_{1,n}j_{n}^{-1}j_{n}\mu_{n}(x))$$

$$\cap \Phi_{1}(j_{1}\mu_{1,n}j_{n}^{-1}j_{n}\mu_{n}(x))$$

$$= F_{1}(j_{1}\mu_{1,n}\mu_{n}(x))$$

$$= f_{1}(j_{1}\mu_{1,n}\mu_{n}(x))$$

$$= j_{1}\mu_{1}F(x) \cap f_{1}(\mu_{1}(x))$$

$$= j_{1}\mu_{1,n}j_{n}^{-1}j_{n}\mu_{n}F(x)$$

$$\cap j_{1}\mu_{1,n}j_{n}^{-1}j_{n}\mu_{n}\Phi(x)$$

$$\neq \emptyset$$

from (2.10). We can do this for each $n \in N$ so (2.11) holds for each $n \in N$. Now (2.7) guarantees that there is a subsequence N_1^* of N and a $z_1 \in \overline{U_1}$ with $j_1\mu_{1,n}j_n^{-1}(y_n) \to z_1$ in E_1 as $n \to \infty$ in N_1^* . Let $w_n \in F_1(j_1\mu_{1,n}j_n^{-1}y_n)$ and $w_n \in \Phi_1(j_1\mu_{1,n}j_n^{-1}y_n)$. Now since F_1 is upper semicontinuous then [7] there exists a $w_1 \in F_1(z_1)$ and a subsequence (w_m) of (w_n) with $w_m \to w_1$. The upper semicontinuity of the map Φ_1 together with $w_m \to w_1$ and $w_m \in \Phi_1(j_1\mu_{1,m}j_m^{-1}y_m)$ implies $w_1 \in \Phi_1(z_1)$. Thus $F_1(z_1) \cap \Phi_1(z_1) \neq \emptyset$ on E_1 . Also note $z_1 \in U_1$ since $F_1 \in A_{\partial U_1}(\overline{U_1}, E_1)$.

Let $N_1 = N_1^* \setminus \{1\}$. Now $j_2 \mu_{2,n} j_n^{-1}(y_n) \in U_2$ for $n \in N_1$. Note also (argument similar to the above) for $n \in N_1$ that

$$F_2(j_2\mu_{2,n}j_n^{-1}y_n) \cap \Phi_2(j_2\mu_{2,n}j_n^{-1}y_n) \neq \emptyset$$
 on E_2

Now (2.7) guarantees that there is a subsequence N_2^* of N_1 and a $z_2 \in \overline{U_2}$ with $j_2\mu_{2,n}j_n^{-1}(y_n) \to z_2$ in E_2 as $n \to \infty$ in N_2^* . Similar reasoning as above yields $F_2(z_2) \cap \Phi_2(z_2) \neq \emptyset$ on E_2 . Also note $z_2 \in U_2$ since $F_2 \in A_{\partial U_2}(\overline{U_2}, E_2)$. Note from (2.4) and the uniqueness of limits that $j_1\mu_{1,2}j_2^{-1}z_2 = z_1$ in E_1 since $N_2^* \subseteq N_1$ (note $j_1\mu_{1,n}j_n^{-1}(y_n) = j_1\mu_{1,2}j_2^{-1}j_2\mu_{2,n}j_n^{-1}(y_n)$ for $n \in N_2^*$). Let $N_2 = N_2^* \setminus \{2\}$. Proceed inductively to obtain subsequences of integers

$$N_1^\star \supseteq N_2^\star \supseteq \cdots N_k^\star \subseteq \{k, k+1, \dots\}$$

and $z_k \in \overline{U_k}$ with $j_k \mu_{k,n} j_n^{-1}(y_n) \to z_k$ in E_k as $n \to \infty$ in N_k^{\star} . Also note $F_k(z_k) \cap \Phi_k(z_k) \neq \emptyset$ on $E_k, z_k \in U_k$ since $F_k \in A_{\partial U_k}(\overline{U_k}, E_k)$, and $j_k \mu_{k,k+1} j_{k+1}^{-1} z_{k+1} = z_k$ in E_k for $k \in \{1, 2, \ldots\}$. Also let $N_k = N_k^{\star} \setminus \{k\}$.

Fix $k \in N$. Now $F_k(z_k) \cap \Phi_k(z_k) \neq \emptyset$ in E_k . Note as well that

$$z_{k} = j_{k}\mu_{k,k+1}j_{k+1}^{-1}z_{k+1} = j_{k}\mu_{k,k+1}j_{k+1}^{-1}j_{k+1}\mu_{k+1,k+2}j_{k+2}^{-1}z_{k+2}$$
$$= j_{k}\mu_{k,k+2}j_{k+2}^{-1}z_{k+2} = \dots = j_{k}\mu_{k,m}j_{m}^{-1}z_{m} = \pi_{k,m}z_{m}$$

for every $m \ge k$. We can do this for each $k \in N$. As a result $y = (z_k) \in \lim_{\leftarrow} E_n = E$ and also note $z_k \in U_k$ for each $k \in N$. Now for each $k \in N$, $j_k \mu_k(y) = z_k$ in E_k , and $F_k(z_k) \cap \Phi_k(z_k) \ne \emptyset$ in E_k (i.e. $j_k \mu_k F(y) \cap j_k \mu_k \Phi(y) \ne \emptyset$ in E_k). Thus $F(y) \cap \Phi(y) \ne \emptyset$ in E.

Our next result is motivated by Urysohn type operators. In this case the maps F_n , Φ_n will be related to F, Φ by the closure property (2.16). For the convenience of the reader we write the hemicompact condition in an easy verifiable form (see (2.15) and Remark 2.5).

Theorem 2.4. Let E and E_n be as described above, U a pseudo-open subset of Eand $F: Y \to 2^E$, $G: Y \to 2^E$ and $\Phi: Y \to 2^E$ with $U \subseteq Y$ and $\overline{U_n} \subseteq Y_n$ for each $n \in N$. Also for each $n \in N$ assume there exist $F_n: \overline{U_n} \to 2^{E_n}$, $G_n: \overline{U_n} \to 2^{E_n}$ and

$$\Phi_{n}: \overline{U_{n}} \to 2^{E_{n}} \text{ and suppose the following conditions hold:}$$

$$(2.12) \qquad \begin{cases} \text{for each } n \in N, F_{n}, G_{n} \in A_{\partial U_{n}}(\overline{U_{n}}, E_{n}), \Phi_{n} \in B(\overline{U_{n}}, E_{n}) \\ \text{and } G_{n} \text{ is } \Phi_{n}\text{-essential in } A_{\partial U_{n}}(\overline{U_{n}}, E_{n}) \end{cases}$$

(2.13) for each
$$n \in N, G_n \cong F_n$$
 in $A_{\partial U_n}(\overline{U_n}, E_n)$

(2.14)
$$\begin{cases} \text{for each } n \in \{2, 3, \dots\} \text{ if } y \in U_n \text{ is such} \\ \text{that } F_n(y) \cap \Phi_n(y) \neq \emptyset \text{ in } E_n \text{ then} \\ j_k \mu_{k,n} j_n^{-1}(y) \in U_k \text{ for } k \in \{1, \dots, n-1\}. \end{cases}$$

(2.15)
$$\begin{cases} \text{for any sequence } \{y_n\}_{n \in N} \text{ with } y_n \in U_n \\ \text{and } F_n(y_n) \cap \Phi_n(y_n) \neq \emptyset \text{ in } E_n \text{ for } n \in N \text{ and} \\ \text{for every } k \in N \text{ there exists a subsequence} \\ N_k \subseteq \{k+1, k+2, \dots\}, N_k \subseteq N_{k-1} \text{ for} \\ k \in \{1, 2, \dots\}, N_0 = N, \text{ and } a \ z_k \in \overline{U_k} \text{ with} \\ j_k \mu_{k,n} j_n^{-1}(y_n) \to z_k \text{ in } E_k \text{ as } n \to \infty \text{ in } N_k \end{cases}$$

and

(2.16)
$$\begin{cases} \text{if there exists } a \ w \in Y \text{ and } a \text{ sequence } \{y_n\}_{n \in N} \\ \text{with } y_n \in U_n \text{ and } F_n(y_n) \cap \Phi_n(y_n) \neq \emptyset \text{ in } E_n \text{ such that} \\ \text{for every } k \in N \text{ there exists } a \text{ subsequence } S \subseteq \\ \{k+1, k+2, \dots\} \text{ of } N \text{ with } j_k \mu_{k,n} j_n^{-1}(y_n) \to j_k \mu_k(w) \\ \text{in } E_k \text{ as } n \to \infty \text{ in } S, \text{ then } F(w) \cap \Phi(w) \neq \emptyset \text{ in } E. \end{cases}$$

Then there exists $x \in E$ with $F(x) \cap \Phi(x) \neq \emptyset$ in E; here $x = (z_k)$ where $z_k \in \overline{U_k}$ for each $k \in N$.

Remark 2.5. Notice to check (2.15) we need to show that for each $k \in N$, $\{j_k \mu_{k,n} j_n^{-1}(y_n)\}_{n \in N_{k-1}} \subseteq \overline{U_k}$ is sequentially compact.

Remark 2.6. If we replace (2.15) with

 $\begin{cases} \text{for any sequence } \{y_n\}_{n \in N} \text{ with } y_n \in U_n \\ \text{and } F_n(y_n) \cap \Phi_n(y_n) \neq \emptyset \text{ in } E_n \text{ for } n \in N \text{ and} \\ \text{for every } k \in N \text{ there exists a subsequence} \\ N_k \subseteq \{k+1, k+2, \dots\}, N_k \subseteq N_{k-1} \text{ for} \\ k \in \{1, 2, \dots\}, N_0 = N, \text{ and a } z_k \in U_k \text{ with} \\ j_k \mu_{k,n} j_n^{-1}(y_n) \to z_k \text{ in } E_k \text{ as } n \to \infty \text{ in } N_k, \end{cases}$

then Y is the statement of Theorem 2.4 can be replaced by U.

Proof. For each $n \in N$ there exists $y_n \in U_n$ with $F_n(y_n) \cap \Phi_n(y_n) \neq \emptyset$ in E_n . Lets look at $\{y_n\}_{n \in N}$. Notice $y_1 \in U_1$ and $j_1 \mu_{1,k} j_k^{-1}(y_k) \in U_1$ for $k \in \{2, 3, ...\}$. Now (2.15) with k = 1 guarantees that there exists a subsequence $N_1 \subseteq \{2, 3, ...\}$ and a $z_1 \in \overline{U_1}$ with $j_1\mu_{1,n}j_n^{-1}(y_n) \to z_1$ in E_1 as $n \to \infty$ in N_1 . Look at $\{y_n\}_{n \in N_1}$. Now $j_2\mu_{2,n}j_n^{-1}(y_n) \in U_2$ for $k \in N_1$. Now (2.15) with k = 2 guarantees that there exists a subsequence $N_2 \subseteq \{3, 4, \ldots\}$ of N_1 and a $z_2 \in \overline{U_2}$ with $j_2\mu_{2,n}j_n^{-1}(y_n) \to z_2$ in E_2 as $n \to \infty$ in N_2 . Note from (2.4) and the uniqueness of limits that $j_1\mu_{1,2}j_2^{-1}z_2 = z_1$ in E_1 since $N_2 \subseteq N_1$ (note $j_1\mu_{1,n}j_n^{-1}(y_n) = j_1\mu_{1,2}j_2^{-1}j_2\mu_{2,n}j_n^{-1}(y_n)$ for $n \in N_2$). Proceed inductively to obtain subsequences of integers

$$N_1 \supseteq N_2 \supseteq \cdots N_k \subseteq \{k+1, k+2, \dots\}$$

and $z_k \in \overline{U_k}$ with $j_k \mu_{k,n} j_n^{-1}(y_n) \to z_k$ in E_k as $n \to \infty$ in N_k . Note $j_k \mu_{k,k+1} j_{k+1}^{-1} z_{k+1} = z_k$ in E_k for $k \in \{1, 2, \dots\}$.

Fix $k \in N$. Note

$$z_{k} = j_{k}\mu_{k,k+1}j_{k+1}^{-1}z_{k+1} = j_{k}\mu_{k,k+1}j_{k+1}^{-1}j_{k+1}\mu_{k+1,k+2}j_{k+2}^{-1}z_{k+2}$$
$$= j_{k}\mu_{k,k+2}j_{k+2}^{-1}z_{k+2} = \dots = j_{k}\mu_{k,m}j_{m}^{-1}z_{m} = \pi_{k,m}z_{m}$$

for every $m \ge k$. We can do this for each $k \in N$. As a result $y = (z_k) \in \lim_{\leftarrow} E_n = E$ and also note $z_k \in \overline{U_k}$ for each $k \in N$. Also since $F_n(y_n) \cap \Phi_n(y_n) \neq \emptyset$ in E_n for $n \in N_k$ and $j_k \mu_{k,n} j_n^{-1}(y_n) \to z_k = y$ in E_k as $n \to \infty$ in N_k we have from (2.16) that $F(y) \cap \Phi(y) \neq \emptyset$ in E.

Remark 2.7. From the proof we see that condition (2.14) can be removed from the statement of Theorem 2.2. We include it only to explain condition (2.15) (see Remark 2.5).

REFERENCES

- G. Gabor, L. Gorniewicz and M. Slosarski, Generalized topological essentiality and coincidence points of multivalued maps, *Set-Valued Anal.* 17 (2009), 1–19.
- [2] A. Granas and J. Dugundji, Fixed point theory, Springer, New York, 2003.
- [3] L. V. Kantorovich and G. P. Akilov, Functional analysis in normed spaces, Pergamon Press, Oxford, 1964.
- [4] D. O'Regan, An essential map approach for multimaps defined on closed subsets of Fréchet spaces, Applicable Analysis 85 (2006), 503–513.
- [5] D. O'Regan, Index and fixed point theory for compact absorbing contractive permissible maps, J. Nonlinear Convex Anal. 10(2009), 369–381.
- [6] D. O'Regan, Coincidence points for multivalued maps based on Φ-epi and Φ-essential maps, Dynamic Systems and Applications, to appear.
- [7] C. H. Su and V. M. Sehgal, Some fixed point theorems for condensing multifunctions in locally convex spaces, Proc. Amer. Math. Soc. 50 (1975), 150–154.