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ABSTRACT. In this paper, we study the existence results of positive solutions for p-Laplacian

fractional differential systems by means of fixed point theorems on cones. As an application, an

example is given to demonstrate our main results.
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1. INTRODUCTION

In this paper, we study the existence of positive solutions to the following frac-

tional differential systems involving the p-Laplacian fractional operator

(1.1) Dβ1(φp1
(Dα1u(t))) + f1(t, v(t)) = 0, t ∈ (0, 1),

(1.2) Dβ2(φp2
(Dα2v(t))) + f2(t, u(t)) = 0, t ∈ (0, 1),

(1.3)











a1u(0) − b1u
′(0) =

∫ 1

0
u(s)dA(s),

c1u(1) + d1u
′(1) =

∫ 1

0
u(s)dB(s),

Dα1u(0) = 0,

(1.4)











a2v(0) − b2v
′(0) =

∫ 1

0
v(s)dA(s),

c2v(1) + d2v
′(1) =

∫ 1

0
v(s)dB(s),

Dα2v(0) = 0,

where φp(s) = |s|p−2s, p > 1, φ−1
p = φq,

1
p
+ 1

q
= 1, 1 < αi ≤ 2, 0 < βi ≤ 1, for i = 1, 2,

fi : [0, 1]×R
+ −→ R

+ are continuous functions, ai, bi, ci, di are nonnegative constants

satisfying bi >
2−αi

αi−1
ai with Di = aici + aidi + bici > 0, Dαi and Dβi for i = 1, 2 are

the Caputo fractional derivatives, A,B : [0, 1] −→ R
+ are nondecreasing functions of

bounded variation and the integrals are the Riemann-Stieltjes integrals.

Differential equations of fractional order occur in different research areas and

engineering, such as mechanics, electricity, chemistry, biology, economics, control

theory. For details, see [5,6,7,10] and the references therein.
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To our knowledge, very few authors studied the existence result of positive so-

lution for p-Laplacian fractional order differential systems with boundary conditions

involving the Riemann-Stieltjes integrals. For the case of nonlinear fractional differ-

ential systems, we would like to mention the papers [1,2,4,6,8].

The rest of the paper is organized as follows. In section 2, we present some

preliminaries and lemmas that will be used to prove our main results. We also develop

some properties of the Green’s function. In section 3, we discuss the existence of

positive solution for the BVP (1.1)–(1.4). In section 4, we study the nonexistence

of positive solution for the problem (1.1)–(1.4). Finally, in section 5, one example is

also included to illustrate the main results.

The proof of our main results is based on the well-known Guo-Krasnosel’skii fixed

point theorem, which we present now.

Theorem 1.1 ([10]). Let B be a Banach space, and let ℘ ⊂ B be a cone in B.

Assume Ω1, Ω2 are open subsets of B with θ ∈ Ω1, Ω1 ⊂ Ω2 and let

A : ℘
⋂

(Ω2\Ω1) → ℘

be a completely continuous operator such that, either

(i) ‖Ay‖ ≤ ‖y‖, y ∈ ℘ ∩ ∂Ω1, and ‖Ay‖ ≥ ‖y‖, y ∈ ℘ ∩ ∂Ω2; or

(ii) ‖Ay‖ ≥ ‖y‖, y ∈ ℘ ∩ ∂Ω1, and ‖Ay‖ ≤ ‖y‖, y ∈ ℘ ∩ ∂Ω2.

Then A has at least one fixed point in ℘
⋂

(Ω2\Ω1).

2. PRELIMINARIES AND LEMMAS

In this section, we give the necessary definitions and lemmas from fractional

calculus theory. These definitions and lemmas can be found in [11] and [12].

Definition 2.1. The Riemann Liouville fractional integral of order α ∈ R
+ for a

continuous function h : (0,∞) → R is defined by

Iαh(t) = 1
Γ(α)

∫ t

0
(t− s)α−1h(s)ds,

where Γ(·) is the Euler Gamma function, provided that the integral exists.

Definition 2.2. If h ∈ Cn[0, 1], then the Caputo fractional derivative of order α is

defined by

Dαh(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1h(n)(s)ds = In−αh(n)(t),

n− 1 < α < n, n = [α] + 1, where [α] denotes the integer part of the real number α.

Remark 2.3. If α = n ∈ N0, then the Caputo derivative coincides with a conventional

n-th order derivative of the function h(t).
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Lemma 2.4. Let α > 0 and n = [α] + 1 for α /∈ N and n = α for α ∈ N. If

h(t) ∈ C[0, 1], then the homogeneous fractional differential equation

cDαh(t) = 0

has a solution

h(t) = c1 + c2t+ c3t
2 + · · · + cnt

n−1,

where ci ∈ R, (i = 1, 2, . . . , n).

Lemma 2.5. Let n = [α]+ 1 for α /∈ N and n = α for α ∈ N. If y(t) ∈ Cn[0, 1], then

(IαcDαy)(t) = y(t) −
n−1
∑

i=0

yi(0)

i!
ti.

Lemma 2.6 ([3]). Let 1 < α ≤ 2 and h ∈ C[0, 1]. Then the fractional order boundary-

value problem

(2.1)











Dα1u(t) + h(t) = 0, t ∈ (0, 1),

a1u(0) − b1u
′

(0) = 0,

c1u(1) + d1u
′

(1) = 0

has a unique solution

(2.2) u(t) =
∫ 1

0
G1(t, s)h(s)ds,

where

(2.3) G1(t, s) =















−(t− s)α1−1

Γ(α1)
+
b1 + a1t

D1
[
c1(1 − s)α1−1

Γ(α1)
+
d1(1 − s)α1−2

Γ(α1 − 1)
], s ≤ t;

b1 + a1t

D1

[

c1(1 − s)α1−1

Γ(α1)
+
d1(1 − s)α1−2

Γ(α1 − 1)

]

, t ≤ s.

For convenience, we list the following condition.

(H1) 0 ≤
∫ 1

0
dA(s) < ai and 0 ≤

∫ 1

0
dB(s) < ci for i = 1, 2.

where A,B are nondecreasing functions of bounded variation.

Lemma 2.7. Let (H1) be satisfied, then the fractional order integral boundary-value

problem

(2.4)











Dα1u(t) + h(t) = 0, t ∈ (0, 1)

a1u(0) − b1u
′

(0) =
∫ 1

0
u(s)dA(s),

c1u(1) + d1u
′

(1) =
∫ 1

0
u(s)dB(s)

has a unique solution

(2.5) u(t) =
∫ 1

0
H1(t, s)h(s)ds,
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where

(2.6) H1(t, s) = G1(t, s) +G2(t, s), t, s ∈ [0, 1].

Here, G1(t, s) is given by (2.3) and

(2.7) G2(t, s) =
1

δ
[c1 + d1 −

∫ 1

0

sdB(s)]

∫ 1

0

G1(τ, s)dA(τ) +
1

δ
[a1 −

∫ 1

0

dA(s)

+
∫ 1

0
dB(s)]t

∫ 1

0
G1(τ, s)dB(τ), t, s ∈ [0, 1],

and

(2.8) δ =

∣

∣

∣

∣

∣

a1 −
∫ 1

0
dA(s) −(b1 +

∫ 1

0
sdA(s))

c1 −
∫ 1

0
dB(s) c1 + d1 −

∫ 1

0
sdB(s)

∣

∣

∣

∣

∣

> 0.

Proof. Let

(2.9) w(t) =
∫ 1

0
G1(t, s)h(s)ds.

Then by Lemma 2.6, w(t) satisfies

(2.10)











Dα1w(t) + h(t) = 0, t ∈ (0, 1)

a1w(0) − b1w
′

(0) = 0,

c1w(1) + d1w
′

(1) = 0.

Assume that u(t) is a solution of (2.4), and let

(2.11) z(t) = u(t) − w(t), t ∈ [0, 1].

Then,

(2.12)











Dα1z(t) = 0, t ∈ (0, 1)

a1z(0) − b1z
′

(0) =
∫ 1

0
z(s)dA(s) +

∫ 1

0
w(s)dA(s),

c1z(1) + d1z
′

(1) =
∫ 1

0
z(s)dB(s) +

∫ 1

0
w(s)dB(s)

By Lemma 2.4, we have

(2.13) z(t) = k1 + k2t, t ∈ [0, 1].

Substituting z(t) into (2.12), we obtain that

k1(a1 −
∫ 1

0
dA(s)) − k2(b1 +

∫ 1

0
sdA(s)) =

∫ 1

0
w(s)dA(s)

k1(c1 −
∫ 1

0
dB(s)) + k2(c1 + d1 −

∫ 1

0
sdB(s)) =

∫ 1

0
w(s)dB(s).

It follows from (H1) that
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δ =

∣

∣

∣

∣

∣

a1 −
∫ 1

0
dA(s) −(b1 +

∫ 1

0
sdA(s))

c1 −
∫ 1

0
dB(s) c1 + d1 −

∫ 1

0
sdB(s)

∣

∣

∣

∣

∣

> 0,

(2.14) k1 =
1

δ
[c1 + d1 −

∫ 1

0

sdB(s)]

∫ 1

0

w(s)dA(s) > 0

and

(2.15) k2 =
1

δ
[a1 −

∫ 1

0

dA(s) +

∫ 1

0

dB(s)]

∫ 1

0

w(s)dB(s) > 0.

Substituting (2.14) and (2.15) into (2.13), we have

(2.16) z(t) =
1

δ

[

c1 + d1 −

∫ 1

0

sdB(s)

]
∫ 1

0

∫ 1

0

G1(τ, s)h(s)dsdA(τ)

+
1

δ

[

a1 −

∫ 1

0

dA(s) +

∫ 1

0

dB(s)

]

t

∫ 1

0

∫ 1

0

G1(τ, s)h(s)dsdB(τ).

Lemma 2.8. Let (H1) be satisfied and 1 < α1 ≤ 2, 0 < β1 ≤ 1. Then the fractional

order boundary value problem

(2.17)























Dβ1(φp1
(Dα1u(t)) + h(t) = 0, t ∈ (0, 1)

a1u(0) − b1u
′

(0) =
∫ 1

0
u(s)dA(s)

c1u(1) + d1u
′

(1) =
∫ 1

0
u(s)dB(s)

Dα1u(0) = 0

has a unique solution

(2.18) u(t) =
∫ 1

0
H1(t, s)

1
Γ(β1)q1−1

(∫ s

0
(s− τ)β1−1h(τ)dτ

)q1−1
ds.

Proof. By Lemma 2.5, the equation Dβ1(φp1
(Dα1u(t))) + h(t) = 0 subject to the

boundary conditions given by (1.3) can be written as

φp1
(Dα1u(t)) = −Iβ1h(t) − c1t

β−1.

Using boundary condition Dα1u(0) = 0, we get c1 = 0. Hence, we obtain

−Dα1u(t) = φq1
(Iβ1h(t)).

Thus, the boundary value problem (2.17) is equivalent to the following problem:










−Dα1u(t) = φq1
(Iβ1h(t)), t ∈ (0, 1),

a1u(0) − b1u
′

(0) =
∫ 1

0
u(s)dA(s),

c1u(1) + d1u
′

(1) =
∫ 1

0
u(s)dB(s).

Lemma 2.7 implies that boundary value problem (2.17) has a unique solution,

u(t) =
∫ 1

0
H1(t, s)

1
Γ(β1)q1−1

(∫ s

0
(s− τ)β1−1h(τ)dτ

)q1−1
ds.
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Lemma 2.9 ([3]). The Green’s function G1(t, s) defined by (2.3) is continuous on

[0, 1] × [0, 1). Assume b1 >
2−α1

α1−1
a1, then G1(t, s) also have the following properties:

(1): G1(t, s) > 0 for (t, s) ∈ (0, 1) × (0, 1);

(2): G1(t, s) ≤ G1(s, s) for (t, s) ∈ (0, 1) × (0, 1);

(3): there exists a positive number λ1 such that G1(t, s) ≥ λ1G1(s, s), for (t, s) ∈

[0, 1] × [0, 1), where

λ1 = min{
4a1c1d1((α1 − 2)a1 + (α1 − 1)b1)

((α1 − 1)a1d1 + a1c1 − b1c1) + 4a1c1((α1 − 1)b1d1 + b1c1)
,

4a1b1c1d1((α1 − 2)a1 + (α1 − 1)b1)

((α1 − 1)a1d1 + a1c1 − b1c1) + 4a1c1((α1 − 1)b1d1 + b1c1)
} < 1.

Lemma 2.10. For (t, s) ∈ (0, 1) × (0, 1), H1(t, s) satisfies the following inequalities:

(i): H1(t, s) > 0;

(ii): H1(t, s) ≤ Ψ1G1(s, s);

(iii): H1(t, s) ≥ Θ1G1(s, s),

where

(2.19) Ψ1 = 1 +
1

δ
[c1 + d1 −

∫ 1

0

sdB(s)]

∫ 1

0

dA(τ)

+[a1 −
∫ 1

0
dA(s) +

∫ 1

0
dB(s)]

∫ 1

0
dB(τ)

(2.20) Θ1 = λ1[1 +
1

δ
(c1 + d1 −

∫ 1

0

sdB(s)]

∫ 1

0

dA(τ).

Proof. i) It is easy to see that assumption (i) holds. Now, we will verify property (ii).

ii) By (2, 6) and Lemma 2.9, we have

G2(t, s) ≤
G1(s, s)

δ

[

[c1 + d1 −

∫ 1

0

sdB(s)]

∫ 1

0

dA(τ)

+[a1 −
∫ 1

0
dA(s) +

∫ 1

0
dB(s)]

∫ 1

0
dB(τ)

]

So, we have

H1(t, s) ≤ G1(s, s)[1 +
1

δ
(c1 + d1 −

∫ 1

0

sdB(s))

∫ 1

0

dA(τ)

+ (a1 −

∫ 1

0

dA(s) +

∫ 1

0

dB(s))

∫ 1

0

dB(τ)].

iii) G2(t, s) ≥
1

δ
[c1 + d1 −

∫ 1

0

sdB(s)]

∫ 1

0

G1(τ, s)dA(τ)

≥
λ1G1(s, s)

δ
[c1 + d1 −

∫ 1

0

sdB(s)]

∫ 1

0

dA(τ).
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Therefore, we have

H1(t, s) = G1(t, s) +G2(t, s)

≥ λ1G1(s, s) +
λ1G1(s, s)

δ

[

c1 + d1 −

∫ 1

0

sdB(s)

]
∫ 1

0

dA(τ)

= λ1G1(s, s)

[

1 +
1

δ

(

c1 + d1 −

∫ 1

0

sdB(s)

)]
∫ 1

0

dA(τ)

= G1(s, s)Θ1.

In a similar manner, the results of the Green functions H2(t, s) = G1(t, s) +

G2(t, s) and G1(t, s) for the homogeneous BVP’s corresponding to the fractional order

BVP (1.2), (1.4) are obtained.

Remark 2.11. It is easy to see the following inequalities:

H1(t, s) ≤ ΨG1(s, s) and H2(t, s) ≤ ΨG1(s, s),

for all (t, s) ∈ (0, 1) × (0, 1), where Ψ = max{Ψ1,Ψ2}.

H1(t, s) ≥ ΘG1(s, s) and H2(t, s) ≥ ΘG1(s, s)

for all (t, s) ∈ (0, 1) × (0, 1), where Θ = min{Θ1,Θ2}.

Let C = C([0, 1],R) denote the Banach space of all continuous functions from

[0, 1] −→ R endowed with the norm defined by ‖u‖ = sup
t∈[0,1]

|u(t)|, and define a cone

℘ in C([0, 1],R) by

℘ = {u ∈ C([0, 1],R+) : min
t∈[0,1]

u(t) ≥
Θ

Ψ
‖ u ‖}.

It is well known that (u, v) is a solution of the system (1.1)–(1.4) if and only if (u, v)

is a solution of the following nonlinear integral system

(2.21)















u(t) =
1

Γ(β1)q1−1

∫ 1

0

H1(t, s)

(
∫ s

0

(s− τ)β1−1f1(τ, v(τ))dτ

)q1−1

ds,

v(t) =
1

Γ(β2)q2−1

∫ 1

0

H2(t, s)

(
∫ s

0

(s− τ)β2−1f2(τ, u(τ))dτ

)q2−1

ds.

Now define the operator

(Au)(t) =
1

Γ(β2)q2−1

∫ 1

0

H2(t, s)

(
∫ s

0

(s− τ)β2−1f2(τ, u(τ))dτ

)q2−1

ds

then the integral system (2.21) is equivalent to the following nonlinear integral equa-

tion

u(t) =
1

Γ(β1)q1−1

∫ 1

0

H1(t, s)

(
∫ s

0

(s− τ)β1−1f1(τ, Au(τ))dτ

)q1−1

ds.
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Next, for any u ∈ ℘, define an operator T as follows.

Tu(t) =
1

(Γ(β1))q1−1

∫ 1

0

H1(t, s)

(
∫ s

0

(s− τ)β1−1f1(τ, Au(τ))dτ

)q1−1

ds.

Lemma 2.12. Suppose that (H1) hold. Then T (℘) ⊂ ℘ and T : ℘ −→ ℘ is completely

continuous.

Proof. From the expression of T, it is easy to see that T (℘) ⊂ ℘ ∀u ∈ ℘. Besides,

using the Arzela Ascoli theorem and the standard arguments, one can easily show

that T : ℘ −→ ℘ is completely continuous operator.

3. EXISTENCE OF ONE POSITIVE SOLUTIONS

In this section, we impose growth conditions on f1 and f2 which allow us to

apply Theorem 1.1 to establish the existence of one positive solution for the BVP

(1.1)–(1.4). Now, we begin by introducing some notation.

f10 = lim
u−→0+

inf min
t∈[0,1]

f1(t, u)

φp1
(u)

, f20 = lim
u−→0+

inf min
t∈[0,1]

f2(t, u)

φp2
(u)

,

f 0
1 = lim

u−→0+
sup max

t∈[0,1]

f1(t, u)

φp1
(u)

, f 0
2 = lim

u−→0+
sup max

t∈[0,1]

f2(t, u)

φp2
(u)

,

f1∞ = lim
u−→∞

inf min
t∈[0,1]

f1(t, u)

φp1
(u)

, f2∞ = lim
u−→∞

inf min
t∈[0,1]

f2(t, u)

φp2
(u)

,

f∞

1 = lim
u−→∞

sup max
t∈[0,1]

f1(t, u)

φp1
(u)

, f∞

2 = lim
u−→∞

sup max
t∈[0,1]

f2(t, u)

φp2
(u)

,

A1 =
1

Γ(β1 + 1)(q1−1)
Ψ

∫ 1

0

G1(s, s)s
β1(q1−1)ds,

A2 =
Θ2

Ψ

1

Γ(β1 + 1)(q1−1)

∫ 1

0

G1(s, s)s
β1(q1−1)ds,

B1 =
1

Γ(β2 + 1)(q2−1)
Ψ

∫ 1

0

G1(s, s)s
β2(q2−1)ds,

B2 =
Θ2

Ψ

1

Γ(β2 + 1)(q2−1)

∫ 1

0

G1(s, s)s
β2(q2−1)ds.

Theorem 3.1. Suppose that (H1) is satisfied. In addition, we assume that f 0
1 <

φp1
( 1

A1
), f 0

2 < φp2
( 1

B1
) and f1∞ > φp1

( 1
A2

), f2∞ > φp2
( 1

B2
). Then the BVP (1.1)–(1.4)

has at least one positive solution.

Proof. In view of f 0
1 < φp1

( 1
A1

), f 0
2 < φp2

( 1
B1

), there exists ǫ1 > 0 such that

(3.1) (f 0
1 + ǫ1) ≤ φp1

( 1
A1

), (f 0
2 + ǫ1) ≤ φp2

( 1
B1

).
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By the definition of f 0
1 and f 0

2 , we may choose σ1 > 0 so that

(3.2) f1(t, u) ≤ (f 0
1 + ǫ1)φp1

(u),

f2(t, u) ≤ (f 0
2 + ǫ1)φp2

(u), t ∈ [0, 1], u ∈ [0, σ1].

Set Ω1 = {u ∈ E |‖ u ‖< σ1}. It follows from (3.1) and (3.2) that for any u ∈ ℘∩∂Ω1,

we get

(3.3) Au(t) =
1

(Γ(β2))q2−1

∫ 1

0

H2(t, s)(

∫ s

0

(s− τ)β2−1f2(τ, u(τ))dτ)
q2−1ds

≤
‖u‖

(Γ(β2))q2−1
(f 0

2 + ǫ1)
q2−1Ψ

∫ 1

0

G1(s, s)(
sβ2

β2
)q2−1ds

=
‖ u ‖

(Γ(β2 + 1))q2−1
(f 0

2 + ǫ1)
q2−1Ψ

∫ 1

0

G1(s, s)s
β2(q2−1)ds

≤‖ u ‖.

Then, by (3.1), (3.2) and (3.3), we have

Tu(t) =
1

(Γ(β1))q1−1

∫ 1

0

H1(t, s)(

∫ s

0

(s− τ)β1−1f1(τ, Au(τ))dτ)
q1−1ds

≤
‖ u ‖

(Γ(β1 + 1))q1−1
(f 0

1 + ǫ1)
q1−1Ψ

∫ 1

0

G1(s, s)s
β1(q1−1)ds

= ‖u‖.

Therefore,

(3.4) ‖Tu‖ ≤ ‖u‖, u ∈ ℘ ∩ ∂Ω1.

On the other hand, since f1∞ > φp1
( 1

A2
), f2∞ > φp2

( 1
B2

) there exists ǫ2 > 0 such that

(3.5) (f1∞ − ǫ2) ≥ φp1
( 1

A2
)

(3.6) (f2∞ − ǫ2) ≥ φp2
( 1

B2
).

By the definition of f1∞ and f2∞, we may choose σ′

2 > σ1 so that

(3.7) f1(t, u) ≥ (f1∞ − ǫ2)φp1
(u),

f2(t, u) ≥ (f2∞ − ǫ2)φp2
(u), t ∈ [0, 1], u ∈ [σ′

2,∞).

Let σ2 = max{2σ1,
σ′

2Ψ

Θ
} and set Ω2 = {u ∈ E | ‖u‖ < σ2}. Then u ∈ ℘∩ ∂Ω2 implies

that σ′

2 ≤
Θ
Ψ
‖u‖ ≤ u(t) for any t ∈ [0, 1]. So, for t ∈ [0, 1] in view of Remark 2.11, we
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have

Au(t) ≥
Θ2

ψ

‖u‖

(Γ(β2 + 1))q2−1
(f2∞ − ǫ2)

q2−1

∫ 1

0

G1(s, s)s
β2(q2−1)ds

= ‖u‖.

Then, for t ∈ (0, 1), by (3.5), (3.6), (3.7), we have

(3.8) Tu(t) ≥
Θ2

ψ

‖ u ‖

(Γ(β1 + 1))q1−1
(f1∞ − ǫ2)

q1−1

∫ 1

0

G1(s, s)s
β1(q1−1)ds

≥‖ u ‖.

Therefore,

(3.9) ‖Tu‖ ≥ ‖u‖, u ∈ ℘ ∩ ∂Ω2.

Hence, it follows from the first part of Theorem 1.1 that T has a fixed point u ∈

℘
⋂

(Ω2\Ω1). Consequently, the BVP (1.1) − (1.4) has a positive solution (u1, v1) ∈

℘× ℘, where

u1(t) > 0, v1(t) > 0 for all t ∈ (0, 1) and

v1(t) =
1

Γ(β2)q2−1

∫ 1

0

H2(t, s)

(
∫ s

0

(s− τ)β2−1f2(τ, u1(τ))dτ

)q2−1

ds.

Theorem 3.2. Suppose that (H1) is satisfied. In addition, we assume that f∞

1 <

φp1
( 1

A1
), f∞

2 < φp2
( 1

B1
) and f10 > φp1

( 1
A2

), f20 > φp2
( 1

B2
). Then the BVP (1.1)–(1.4)

has at least one positive solution.

Proof. The proof is similar to Theorem 3.1 and therefore omitted.

4. THE NONEXISTENCE OF A POSITIVE SOLUTION

Our last result corresponds to the case when the BVP (1.1)–(1.4) has no positive

solution.

Theorem 4.1. Assume that (H1) holds and f1(t, u) < φp1
( u

A1
), f2(t, u) < φp2

( u
B1

)

for all t ∈ (0, 1), u > 0. Then the BVP (1.1)–(1.4) has no positive solution.

Proof. Assume to the contrary that u(t) is a positive solution of the BVP (1.1)–(1.4).

Then u(t) > 0 for t ∈ (0, 1) and

‖Au(t)‖ =

∫ 1

0

H2(t, s)φq2

(

1

Γ(β2)

∫ s

0

(s− τ)β2−1f2(τ, u(τ))dτ

)

ds

< Ψ
‖u‖

B1

1

(Γ(β2 + 1))q2−1

∫ 1

0

G1(s, s)s
β2(q2−1)ds = ‖u‖,
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and thus we have

u(t) =
1

Γ(β1)q1−1

∫ 1

0

H1(t, s)

(
∫ s

0

(s− τ)β1−1f1(τ, Au(τ))dτ

)q1−1

ds

<
Ψ‖Au‖

(Γ(β1 + 1))q1−1A1

∫ 1

0

G1(s, s)s
β1(q1−1)ds <‖ u ‖,

which is a contradiction, and this completes the proof.

Similarly, we have the following results.

Theorem 4.2. Assume that (H1) holds and f1(t, u) > φp1
( u

A2
), f2(t, u) > φp2

( u
B2

)

for all t ∈ (0, 1), u > 0. Then the BVP (1.1)–(1.4) has no positive solution.

Proof. The proof is similar to Theorem 4.1 and therefore omitted.

5. EXAMPLE

To illustrate how our main results can be used in practice, we present an example.

(5.1) D
1

2 (φ2(D
2u(t)) + f1(t, u) = 0, t ∈ (0, 1),

(5.2) D
1

2 (φ2(D
2v(t)) + f2(t, v) = 0, t ∈ (0, 1),

(5.3)











u(0) − u′(0) =
∫ 1

0
u(s)dA(s),

u(1) − u′(1) =
∫ 1

0
u(s)dB(s),

D2u(0) = 0,

(5.4)











v(0) − v′(0) =
∫ 1

0
v(s)dA(s),

v(1) − v′(1) =
∫ 1

0
v(s)dB(s),

D2v(0) = 0,

where β1 = β2 = 1
2
, p = q = 2, α1 = α2 = 2, a1 = b1 = c1 = d1 = 1 and

a2 = b2 = c2 = d2 = 1, A(s) = s2

2
, B(s) = s3

3
,

f1(t, u) =
1

1 + t2

[

u2

eu2
+

3000u3

1 + u

]

,

f2(t, u) =
1

2(1 + t2)

[

u2

eu2
+

5000u3

1 + u

]

.

Then, by easy calculation, we have δ = 127
72

, Ψ = 1, 014, Θ = 0, 476, A1 = B1 = 0, 564,

A2 = B2 = 0, 022. It is easy to compute that f 0
1 = 1, f1∞ = 3000, f 0

2 =
1

2
, f2∞ = 2500,

which yields that the BVP (5.1)–(5.4) has at least one positive solution.
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