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ABSTRACT. We use the concepts of statistical convergence and Berezin symbols for solving of

some problems of operator theory. Namely, we prove that under some conditions the weak statistical

limit of compact operators is compact. We also use statistical convergence for the solving of similar

problem for the sequence of operators from Schatten-Neuman class. Some related questions are also

discussed.
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1. Introduction and Background

In this paper, we use the concept of statistical convergence for solving of some

problems of operator theory.

Recall that the concept of statistical convergence was firstly introduced by Fast

in [4], see also Steinhaus [14]. In what follows statistical convergence studied in many

further papers (see, for instance, Fridy [5, 6], Kolk [8], Pehlivan and Karaev [11],

Connor et al. [2]). Following [9], note that if S is a subset of the positive integers N,

then Sn denotes the set {s ∈ S : s ≤ n} and |Sn| denotes the number of elements in

Sn. The natural density of S by Niven and Zuckerman [9] is given by

δ (S) = lim
n→∞

|Sn|

n
.

Definition 1.1. A sequence (xk)k≥1
of real (or complex) numbers is said to be sta-

tistically convergent to some number L, if for each ε > 0 the set

Sε := {k ∈ N : |xk − L| ≥ ε}

has natural density zero; in this case we abbreviate st-limk xk = L.

We recall that (see Fridy [5]) for two sequences x = (xk)k≥1
and y = (yk)k≥1

the

notion “xk = yk for almost all k” means that δ ({k : xk 6= yk}) = 0. The following is

the classical result of Fridy [5].
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Lemma 1.2. The following statements are equivalent:

(i) (xk)k≥1
is a statistically convergent sequence;

(ii) (xk)k≥1
is a sequence for which there is a convergent sequence (yk)k≥1

such

that xk = yk for almost all k.

An immediate and useful corollary of this lemma is the following.

Corollary 1.3. If (xk)k≥1
is a sequence such that st-limk xk = L, then (xk)k≥1

has a

subsequence (yk)k≥1
such that limk yk = L (in the usual sense).

The notion of statistically convergence was extended to the sequences of Banach

spaces by Connor, Ganichev and Kadets in their paper [2] as follows.

Definition 1.4 ([2]). Let X be a Banach space, (xk)k≥1
be a X-valued sequence, and

x ∈ X be an element.

(i) The sequence (xk)k≥1
is norm statistically convergent to x provided that

δ ({k : ‖xk − x‖X > ε}) = 0 for all ε > 0.

(ii) The sequence (xk)k≥1
is weakly statistically convergent to x provided that, for

any continuous linear functional f on X, the sequence (f (xk − x))k≥1
is statistically

convergent to 0.

Note that similar to the sequences of numbers, if a Banach space valued sequence

x = (xk)k≥1
is norm statistically convergent, then there exists a usual convergent

sequence y = (yk)k≥1
such that xk = yk for almost all k, i.e., δ ({k : xk 6= yk}) = 0

(see [2]). As a consequence, many of the results for real statistically convergent

sequences carry over to norm statistically convergent sequences (see Kolk [8]). It

is also natural to define a series
∑

kxk to be norm statistically convergent to x by

requiring the sequence of partial sums (
∑n

k=1
xk) to be norm statistically convergent

to x.

2. Statistical convergence and compactness of operators

The following definition is well known (see, for example, in Pehlivan and Karaev

[11]).

Definition 2.1. The sequence (Tn)n≥1
∈ B (H) (Banach algebra of bounded linear

operators on the Hilbert space H) is called weakly statistically convergent to T ∈

B (H) if 〈Tnx, y〉 statistically converges to 〈Tx, y〉 for any x, y ∈ H .

Here we will interested with the following question: if (Tn)n≥1
∈ B (H) is a

sequence of compact operators weakly statistically converging to the operator T ,

then under which additional conditions T is also compact?
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Note that for the detail of this question for the usual weakly convergent sequences

of compact operators, the reader can be consult in the paper by Karaev [7].

In this section, we will prove a positive result under some assumption on the

so-called Berezin symbols of compact operators Tn. So, let us first introduce some

necessary notations and preliminaries.

Recall that a Reproducing Kernel Hilbert Space (RKHS) H = H(Ω) is the Hilbert

space of complex-valued functions on some set Ω with nonempty boundary ∂Ω such

that the evaluation functionals f → f (λ), λ ∈ Ω, are continuous H. Then by the

classical Riesz theorem about representation of linear continuous functionals on the

Hilbert space, for each λ ∈ Ω there exists a unique function kH,λ ∈ H such that

〈f, kH,λ〉 = f(λ)

for all f ∈ H. The functions kH,λ (z), λ ∈ Ω, are called the reproducing kernels of the

space H. It is well-known that (see Aronzajn [1] and Saitoh [12, 13]) the reproducing

kernel kH,λ of H is represented by

kH,λ (z) =

∞∑

n=0

en (λ)en (z)

for any orthonormal basis (en (z))n≥1
of the space (separable) H(Ω).

For example, the classical Hardy, Bergman and Fock spaces are RKHSs.

Following Nordgren and Rosenthal [10], we say that RKHS H(Ω) is standard if

the underlying set Ω is a subset of a topological space and the boundary ∂Ω is non-

empty and has the property that the normalized reproducing kernel
(
k̂λn,H

)
n≥1

=
(
kλn,H/ ‖kλn,H‖H

)
n≥1

converges weakly to 0 whenever (λn)n≥1
∈ Ω converges to any

point in ∂Ω.

Note that the most of RKHS, including Hardy, Bergman and Fock Hilbert spaces,

are standard in this sense. (Also note that every finite dimensional Hilbert space is

non-standard, because in the finite dimensional space the weak and strong conver-

gence coincide.)

For any bounded operator T : H → H its Berezin symbol (see, Nordgren and

Rosenthal [10] and Zhu [15]) is defined by

T̃ (λ) :=
〈
T k̂H,λ, k̂H,λ

〉
, λ ∈ Ω.

It is clear that
∣∣∣T̃ (λ)

∣∣∣ ≤ ‖T‖ for all λ ∈ Ω, and hence T̃ is a bounded function on Ω.

It is also easy to see that for every compact operator T on the standard RKHS H its

Berezin symbol T̃ vanish on the boundary.

The following result of Nordgren and Rosenthal [10, Corollary 2.8] characterizes

compact operator on the standard RKHS H, in terms of boundary behavior of Berezin

symbols its unitary orbits U−1TU , U ∈ B (H).
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Lemma 2.2. Let T ∈ B (H) be an operator on the standard RKHS H = H(Ω). Then

T is compact if and only if for every unitary operator U ∈ B (H), Ũ−1TU (λ) tends

to 0 whenever λ tends to the boundary points of ∂Ω.

The main result of this section is the following, which generalizes a result of the

paper [7, Theorem 4.1].

Theorem 2.3. Let H = H(Ω) be a standard RKHS on some set Ω and (Tn)n≥1
be

a sequence of compact operators on H weakly statistically converging to an operator

T ∈ B (H). If the double statistical limit

(1) st- lim
m→∞
n→∞

˜U−1TnU (λm) = l

exists for every unitary operator U ∈ B (H), then T is compact and l = 0 holds.

Proof. By condition, Tn → T (n → ∞) weakly statistically, which means that

st- lim
n→∞

〈Tnf, g〉 = 〈Tf, g〉

for all f, g ∈ H. In particular, for f = k̂λm,H and g = k̂λm,H, where (λm)m≥1
is any

sequence tending to a point in ∂Ω, we have

st- lim
n→∞

〈
Tnk̂λm,H, k̂λm,H

〉
=

〈
T k̂λm,H, k̂λm,H

〉
,

thus

st- lim
n→∞

T̃n (λm) = T̃ (λm)

for any m ≥ 1. On the other hand, since

˜U−1TnU (λm) =
〈
U−1TnUk̂λm,H, k̂λm,H

〉

=
〈
U∗TnUk̂λm,H, k̂λm,H

〉

=
〈
TnUk̂λm,H, Uk̂λm,H

〉

and

st- lim
n→∞

〈
TnUk̂λm,H, Uk̂λm,H

〉
=

〈
TUk̂λm,H, Uk̂λm,H

〉
,

we obtain that

st- lim
n→∞

˜U−1TnU (λm) =
〈
U−1TnU (λm) k̂λm,H, k̂λm,H

〉

for every unitary operator U ∈ B (H) and m ≥ 1. Since Tn, n ≥ 1, are compact

operators and H is standard, by Lemma 2.2 we have limm→∞
˜U−1TnU (λm) = 0, and

hence st-limm→∞
˜U−1TnU (λm) = 0 for any unitary operator U ∈ B (H).
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Now by considering condition (1) of the theorem, and also the equality st-

limn→∞
˜U−1TnU (λm) = Ũ−1TU (λm), we obtain

0 = st- lim
n→∞

st- lim
m→∞

˜U−1TnU (λm) = st- lim
m→∞

st- lim
n→∞

˜U−1TnU (λm)

= st- lim
m→∞

Ũ−1TU (λm) .

This shows that st-limm→∞ Ũ−1TU (λm) = l = 0 for any unitary operator U ∈ B (H).

Then, by Corollary 1.3, there exists a subsequence (λmk
)k≥1

∈ Ω tending to a point

in ∂Ω such that

lim
k→∞

Ũ−1TU (λmk
) = 0

for any unitary operator U ∈ B (H). So, by Lemma 2.2 we assert that T is compact,

which proves the theorem.

3. Statistical convergence and Schatten-Neumann class operators

Recall that if T is a compact operator on a separable Hilbert space H , then there

exists orthonormal sets (un)n≥0
and (vn)n≥0

in H such that

Tx =
∞∑

n=0

λn 〈x, un〉 vn, x ∈ H,

where λn is the nth singular value (s-number) of T . Given p ∈ (0,∞), we define the

Schatten-Neumann p-class of H , denoted by Sp (H) or simply Sp, to be the space of

compact operators T on H with its singular value sequence (λn)n≥1
belonging to ℓp

(the p-summable sequences space). We will only consider the case 1 ≤ p < +∞, since

in this case Sp is a Banach space with the norm ‖T‖p := (
∑∞

n=1
|λn|

p)
1/p

. The class

S1 is also called the trace class of H (or nuclear operator class) and S2 is called the

Hilbert-Schmidt class. It is easy to show that if T is a compact operator on H and

p ≥ 1, then T ∈ Sp if and only if |T |p := (T ∗T )p/2 ∈ S1 and ‖T‖p
p = ‖|T |‖p

p = ‖|T |p‖
1
.

Our following result improves and generalizes a similar result of the paper [3] by

using the concept of statistical convergence and by considering any RKHS instead of

weighted Bergman space L2

a (dAα) ; see [3, Lemma 5.2].

Lemma 3.1. Let p ∈ [1, +∞), T ∈ B (H) and Tn ∈ Sp for all n ≥ 1, where

H = H(Ω) is a RKHS on some suitable set Ω. If Tn weakly statistically converges to

T in B (H) and ‖Tn‖p ≤ C < +∞ for all n ≥ 1 and for some constant C > 0, then

T ∈ Sp and ‖T‖p ≤ C.

Proof. The proof essentially uses the similar arguments from [3], and we present it

here only for the sake of completeness. So, for any n ∈ N, define

ξn (K) = tr (TnK) .
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Then we have ξn ∈ S
∗
q, where 1

p
+ 1

q
= 1 and ‖ξn‖ = ‖Tn‖p ≤ C < +∞. By

Banach-Alaoğlu’s theorem, there exists a subsequence {ξnk
} such that ξnk

→ ξ in

w∗-topology and ξ ∈ S
∗
q. Therefore tr (Tnk

K) = ξnk
(K) → ξ (K), for all K ∈ Sq and

|ξ (K)| ≤ M ‖K‖q for some M > 0. On the other hand, since Tn weakly statistically

converges to T , we deduce that st-tr (TnK) → tr (TK) for all operators K of finite

rank. Thus, the lemma follows since

‖T‖p = sup
{
|tr (TK)| : rank (K) < ∞ and ‖K‖q ≤ 1

}
< ∞.

Theorem 3.2. Let T ∈ B (H) be an operator on a RKHS H = H (Ω), and let T =

V |T | be its polar decomposition. If T ∈ Sp, then V ∈ Sp, if 1 ≤ p < +∞.

Proof. Put Tn := T (|T | + αn)−1, where αn > 0, n ≥ 1, and st-limn→∞ αn = 0. We

will first prove that st-limn→∞ ‖Tnf − V f‖
H

= 0 for very f ∈ H, that is Tn tends to

T strongly statistically as n → ∞. For this purpose, let (Eλ) be the spectral family

for |T |. Then, by considering that st-limn→∞ αn = 0, we have that

st − lim
n→∞

‖Tnf − (I − E0) f‖
H

= 0, ∀f ∈ H.

In fact, notice that |T | =
∫ ∞

0
λdEλ is the spectral decomposition of |T |. We set

An := |T | (|T | + αn)−1. Then it is clear that

AnE0f = (|T | + αn)−1 |T |E0f = 0

for any f ∈ H, and hence

‖Anf − (I − E0) f‖2

H
= ‖(An − I) (I − E0) f‖2

H

=

∫ ∞

0

∣∣∣∣
λ

λ + αn
− 1

∣∣∣∣
2

d ‖Eλ (I − E0) f‖2

=

∫ ∞

0

∣∣∣∣
αn

λ + αn

∣∣∣∣
2

d ‖Eλ (I − E0) f‖2 .

Since st-limn→∞ αn = 0, by Corollary 1.3 there exists a subsequence (βn)n≥1
of (αn)n≥1

such that limn→∞ βn = 0. So, from Lebesgue’s dominated convergence theorem,

Lemma 1.2 and Corollary 1.3, it follows that An strongly statistically converges to

I − E0 as n → ∞. Thus, we obtain that Tn → V (I − E0) strongly statistically as

n → ∞. Since E0 is the projection onto the eigenspace {f ∈ H : Tf = 0}, we have

V E0 = 0. Consequently, Tn → V strongly statistically as n → ∞.

Now suppose T ∈ Sp. Then Tn ∈ Sp, ‖Tn‖p ≤ C < +∞ for some C > 0 and

Tn → V strongly statistically as n → ∞. By applying Lemma 3.1, we deduce V ∈ Sp.

The theorem is proved.
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