
Dynamic Systems and Applications 24 (2015) 341-348

IDENTIFICATION OF UNKNOWN COEFFICIENT IN TIME

FRACTIONAL PARABOLIC EQUATION WITH MIXED

BOUNDARY CONDITIONS VIA SEMIGROUP APPROACH

EBRU OZBILGE AND ALI DEMIR

Department of Mathematics, Faculty of Science and Literature, Izmir University

of Economics,Sakarya Caddesi, No. 156, 35330, Balcova - Izmir, Turkey

Department of Mathematics, Kocaeli University, Umuttepe

41380 Izmit - Kocaeli, Turkey

ABSTRACT. This article presents a semigroup approach for the mathematical analysis of the in-

verse coefficient problem of identifying the unknown coefficient k(x) in the linear time fractional par-

abolic equation Dα
t u(x, t) = (k(x)ux)x, 0 < α ≤ 1, with mixed boundary conditions u(0, t) = ψ0(t),

ux(1, t) = ψ1(t). Our aim is the investigation of the distinguishability of the input-output mapping

Φ[·] : K → C[0, T ], via semigroup theory. This work shows that if the null space of the semigroup

Tα,α(t) consists of only zero function, then the input-output mapping Φ[·] has distinguishability

property. Also, the value k(0) of the unknown function k(x) is determined explicitly. In addition to

these the boundary observation f(t) can be shown as an integral representation. This also implies

that the mapping Φ[·] : K → C[0, T ] can be described in terms of the semigroup.

AMS (MOS) Subject Classification. 35R11.

1. PRELIMINARIES

The inverse problem of determining unknown coefficient in a linear time frac-

tional parabolic equation by using over measured data have attracted considerable

interest from engineers and scientist recently. The generalizations of ordinary and

partial differential equations are called fractional differential equations and they are

used for modeling various processes such as fluid mechanics, viscoelasticity and elec-

tromagnetic polymerheology, regular variation in thermodynamics, biophysics, blood

flow phenomena, aerodynamics, electrodynamics of complex medium. This kind of

problems are very useful in engineering, physics and applied mathematics. They help

us to model complex phenomena. Various numerical methods have been developed

to overcome the determination of the unknown coefficient(s) [19, 20, 21, 23]. Luchko

extended the classical maximum principle and uniqueness of solution for nonlinear

fractional differential equation [15, 16].

In this study, we focus our attention on the inverse problem of determining un-

known coefficient k(x) in a one dimensional time fractional parabolic equation by
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semigroup approach. In our analysis we will make extensive use of semigroup and

noisy free measured output data. We first obtain the unique solution of this problem,

written in terms of semigroup with respect to the eigenfunctions of a correspond-

ing Sturm-Liouville eigenvalue problem under certain conditions. As the next step,

the noisy free measured output data is used to introduce the input-output mapping

Φ[·] : K → C[0, T ]. Finally we investigate the distinguishability of the unknown

coefficient via the above input-output mapping Φ[·].
Semigroup approach is an analytical approach for inverse problems of identify-

ing unknown coefficients in parabolic problems. The inverse problem of unknown

coefficients in a quasi-linear parabolic equations was studied by Demir and Ozbilge

[5, 6, 10, 12, 13, 14].

Consider now the following initial boundary value problem:

(1.1)











Dα
t u(x, t) = (k(x)ux)x, 0 < α ≤ 1, (x, t) ∈ ΩT ,

u(x, 0) = g(x), 0 < x < 1,

u(0, t) = ψ0(t), ux(1, t) = ψ1(t), 0 < t < T,

where ΩT = {(x, t) ∈ R2 : 0 < x < 1, 0 < t ≤ T} and the fractional derivative

Dα
t u(x, t) is defined in the Caputo sense Dα

t u(x, t) = (I1−αu′)(t), 0 < α ≤ 1, Iα being

the Riemann-Liouville fractional integral

(Iαf)(t) =

{

1
Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ, 0 < α ≤ 1

f(t), α = 0.

The left and right boundary value functions ψ0(t) and ψ1(t) belong to C[0, T ]. The

functions 0 < c0 ≤ k(x) < c1 and g(x) satisfy the following conditions:

(C1) k(x) ∈ C1[0, 1]

(C2) g(x) ∈ C2[0, 1], g(0) = ψ0(0), g′(1) = ψ1(0).

Under the conditions (C1) and (C2), the initial boundary value problem (1) has the

unique solution u(x, t) defined in the domain ΩT = {(x, t) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤
t ≤ T} which belongs to the space C(ΩT ) ∩W 1

t (0, T ] ∩C2
x(0, 1). The space W 1

t (0, T ]

consist of f ∈ C1(0, T ] such that f ′(x) ∈ L(0, T ).

The problem (1.1) is the mathematical model of various physical and chemical

events such as solute transport in a porous medium where the dependent variable

u(x, t) denotes a solute concentration depending continuously on independent vari-

ables x and t.

The Neumann type measured output data at the boundary x = 0 is given as

k(0)ux(0, t) = f(t) in the determination of the unknown coefficient.

u = u(x, t) is the solution of the parabolic problem (1.1) and f(t) is assumed

to be noisy free measured output data. The problem (1) is called a direct (forward)
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problem, with the inputs g(x) and k(x). It is also assumed that the function f(t)

belongs to C1[0, T ] and satisfy the consistency condition f(0) = k(0)g′(0).

Denote K := {k(x) ∈ C1[0, 1] : c1 > k(x) ≥ c0 > 0, x ∈ [0, 1]} ⊂ C[0, 1], as a

set of admissible coefficients k(x), let us define the input-output mapping Φ[·] : K →
C1[0, T ] as follows:

Φ[k] = k(x)ux(x, t; k)|x=0, k ∈ K

Then the inverse problem with the measured output data f(t) can be formulated as

the following operator equation:

Φ[k] = f, f ∈ C1[0, 1]

The purpose of this paper is to study the distinguishability of the unknown coefficient

via the above input-output mapping. We say that the mapping Φ[·] : K → C1[0, T ]

have the distinguishability if Φ[k1] 6= Φ[k2] implies k1(x) 6= k2(x) which means the

injectivity of the inverse mapping Φ−1. Neumann type measured output data at x = 0

is used in the identification of the unknown coefficient. In addition to this, analytical

results are obtained.

The paper is organized as follows. In section 2, an analysis of the semigroup

approach is given for the inverse problem with the single measured output data f(t)

at the boundary x = 0. Finally, some concluding remarks are given in the last section.

2. AN ANALYSIS OF THE INVERSE PROBLEM WITH GIVEN

MEASURED DATA f(t)

Consider the inverse problem with one measured output data f(t) at x = 0. In

order to formulate the solution of the parabolic problem (1.1) in terms of semigroup,

we have to introduce an auxiliary function v(x, t) as follows:

v(x, t) = u(x, t) − ψ0(t) − ψ1(t)x, x ∈ [0, 1].

v(x, t) transforms the problem (1.1) into a problem with homogeneous boundary

conditions. Hence the problem (1.1) can be rewritten in terms of v(x, t) as in (2.1).

(2.1)










Dα
t v(x, t) + A[v(x, t)] = ((k(x) − 1)vx(x, t))x − xDα

t ψ1(t) −Dα
t ψ0(t) + k′(x)ψ1(t),

v(x, 0) = g(x) − ψ0(0) − ψ1(0)x, 0 < x < 1,

v(0, t) = 0, vx(1, t) = 0, 0 < t < T.

A[·] := −d2[·]
dx2 is a second order differential operator and its domain is DA = {v(x) ∈

C2(0, 1) ∩ C1[0, 1] : v(0) = v′(1) = 0}. Obviously, g(x) ∈ DA, since the initial value

function g(x) belongs to C2[0, 1]. Let Tα,α(t) be the semigroup of linear operators

generated by the operator −A [7, 8]. Note that eigenvalues and eigenfunctions of the
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differential operator A can easily be identified and the semigroup Tα,α(t) can be con-

structed by using these eigenvalues and eigenfunctions of the infinitesimal generator

A. First, the eigenvalue problem (2.2) must be considered:

(2.2) Aφ(x) = λφ(x), φ(0) = 0, φ′(1) = 0.

This problem (2.2) is called the Sturm-Liouville problem. The eigenvalues are deter-

mined, with λn = n2π2

4
, ∀n = 1, 2, . . . the corresponding eigenfunctions as φn(x) =√

2 sin(nπx
2

). In this case, the semigroup Tα,α(t) can be represented in the following

way:

Tα,α(t)U(x, s) =
∞

∑

n=1

〈φn(θ), U(θ, s)〉Eα,α(−λnt
α)φn(x),

where < φn(θ), U(θ, s) >=
∫ 1

0
φn(θ)U(θ, s)dθ and Eβ,α being the generalized Mittag-

Leffler function, playing a special role in solving the fractional differential equation

which is defined by

Eβ,α(z) =
∞

∑

n=0

zn

Γ(βn+ α)
.

The Sturm-Liouville problem (2.2) generates a complete orthogonal family of eigen-

functions so that the null space of the semigroup T (t) is trivial, i.e., N(Tα,α) = {0}.
The null space of the semigroup Tα,α(t) of the linear operators can be defined as

follows:

N(T ) = {U(θ, t) : 〈φn(θ), U(θ, t)〉 = 0, ∀n = 0, 1, 2, . . .}

The unique solution of the initial-boundary value problem (2.2) in terms of semigroup

T (t) can be represented in the following form:

v(x, t) = Tα,1(t)v(x, 0) +

∫ t

0

sα−1Tα,α(t− s)[((k(x) − 1)vx)x + k′(x)ψ1(s)

−Dα
t ψ0(s) −Dα

t ψ1(s)x]ds(2.3)

Hence, by using identity (2.3) and taking the initial value u(x, 0) = g(x) into account,

the solution u(x, t) of the parabolic problem (1.1) in terms of semigroup can be written

in the following form:

u(x, t) = ψ0(t) + ψ1(t)x+ Tα,1(t)(g(x) − ψ0(0) − ψ1(0)x)

+

∫ t

0

sα−1Tα,α(t− s)[((k(x) − 1)vx)x + k′(x)ψ1(s)

−Dα
t ψ0(s) −Dα

t ψ1(s)x]ds

In order to arrange the above solution representation, let us define the following:

ζ(x) = g(x) − ψ0(0) − ψ1(0)x,

ξ(x, t) = ((k(x) − 1)vx(x, t))x − xDα
t ψ1(t) −Dα

t ψ0(t) + k′(x)ψ1(t),
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(2.4) z(x, t) =

∞
∑

n=0

〈φn(θ), ζ(θ)〉Eα,1(−λnt
α)φ′

n(x),

w(x, t, s) =
∞

∑

n=0

〈φn(θ), ξ(θ, s)〉Eα,α(−λnt
α)φ′

n(x).

The solution in terms of ζ(x) and ξ(x, s) can be represented as follows:

u(x, t) = ψ0(t) + ψ1(t)x+ Tα,1(t)ζ(x) +

∫ t

0

sα−1Tα,α(t− s)ξ(x, s)ds

Differentiating both sides of the above identity with respect to x and using semigroup

properties at x = 0 yields:

ux(0, t) = ψ1(t) + z(0, t) +

∫ t

0

sα−1w(0, t− s, s)ds.

Taking into account the over-measured data k(0)ux(0, t) = f(t)

(2.5) f(t) = k(0)

(

ψ1(t) + z(0, t) +

∫ t

0

sα−1w(0, t− s, s)ds

)

,

is obtained which implies that f(t) can be determined analytically. Substituting t = 0

into this yields

f(0) = k(0)g′(0).

Hence, the previous consistency condition is obtained. Using the measured output

data k(0)ux(0, t) = f(t), we can write k(0) = f(t)
ux(0,t)

∀t > 0 which can be rewritten in

terms of semigroup in the following form:

k(0) =
f(t)

ψ1(t) + z(0, t) +
∫ t

0
sα−1w(0, t− s, s)ds

,

Taking limit as t → 0 in the above identity, we obtain the following explicit formula

for the value k(0) of the unknown coefficient k(x):

k(0) =
f(0)

ψ1(0) + z(0, 0)
.

Under the determined value k(0), the set of admissible coefficients can be defined as

follows:

K0 =

{

k(x) ∈ C1[0, 1] : c1 > k(x) ≥ c0 > 0, x ∈ [0, 1], k(0) =
f(0)

ψ1(0) + z(0, 0)

}

The right-hand side of identity (2.5) defines the semigroup representation of the input-

output mapping Φ[k] on the set of admissible source functions K:

Φ[k](t) := k(0)

(

ψ1(t) + z(0, t) +

∫ t

0

sα−1w(0, t− s, s)ds

)

, ∀t ∈ [0, T ].

The following lemma implies the relation between the parameters k1(x), k2(x) ∈ K0

at x = 0 and the corresponding outputs fj(t) := k(0)ux(0, t; kj), j = 1, 2.
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Lemma 2.1. Let υ1(x, t) = υ(x, t; k1) and υ2(x, t) = υ(x, t; k2) be the solutions of

the direct problem (1), corresponding to the admissible parameters k1(x), k2(x) ∈ K0.

Suppose that fj(t) = k(0)ux(0, t; kj), j = 1, 2, are the corresponding outputs and

k1(0) = k2(0) = k(0) holds, then the outputs fj(t), j = 1, 2 satisfy the following

integral identity:

∆f(t) = k(0)

∫ t

0

sα−1∆w(0, t− s, s)ds, ∀t ∈ (0, T ],

where ∆f(t) = f1(t) − f2(t), ∆w(x, t, s) = w1(x, t, s) − w2(x, t, s).

Proof. By using identity (2.5), the measured output data fj(t) := k(0)ux(0, t; kj),

j = 1, 2 can be written as follows:

f1(t) = k(0)

(

ψ1(t) + z1(0, t) +

∫ t

0

sα−1w1(0, t− s, s)ds

)

,

f2(t) = k(0)

(

ψ1(t) + z2(0, t) +

∫ t

0

sα−1w2(0, t− s, s)ds

)

,

respectively. From identity (2.4) it is obvious that z1(0, t) = z2(0, t) for each t ∈ (0, T ].

Hence the difference of these formulas implies the desired result.

The lemma and the definitions enable us to reach the following conclusion:

Corollary 2.1. Let the conditions of Lemma 2.1 hold. If in addition

〈φn(x), ξ
1(x, t) − ξ2(x, t)〉

= 〈φn(x), ((k1(x) − 1)vx)x − ((k2(x) − 1)vx)x + (k′1(x) + k′2(x))ψ1(s)〉 = 0,

∀t ∈ (0, T ], ∀n = 0, 1, . . . holds, then f1(t) = f2(t), ∀t ∈ [0, T ].

Note that if 〈φn(x), ξ1(x, t)− ξ2(x, t)〉 6= 0 then the definition of w(x, t, s) implies

that ∆w(x, t, s) 6= 0. Hence by Lemma 2.1 we conclude that f1(t) 6= f2(t) ∀t ∈ [0, T ].

Moreover, it leads us Φ[k] is distinguishable, i.e., k1(x) 6= k2(x) implies Φ[k1] 6= Φ[k2].

Theorem 2.1. Let conditions (C1), (C2) hold. Assume that Φ[·] : K0 → C1[0, T ] is

the input-output mapping corresponding to the measured output f(t) := k(0)ux(0, t).

Then the mapping Φ[k] has the distinguishability property in the class of admissible

parameters K0, i.e.,

Φ[k1] 6= Φ[k2] ∀k1, k2 ∈ K0 ⇒ k1(x) 6= k2(x).
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3. CONCLUSION

In this paper, we have proved the distinguishability properties of the input-output

mapping Φ[·] : K → C1[0, T ] which is determined by the measured output data for

the linear time fractional parabolic equations with mixed boundary conditions. It is

shown that the semigroup with a trivial null space, i.e. N(Tα,α) = {0} plays a crucial

role in the distinguishability of the input-output mapping. This study also shows

that boundary conditions and the region on which the problem is defined play an

important role on the distinguishability of the input-output mapping Φ[·] since these

key elements determine the structure of the semigroup Tα,α(t) of linear operators and

its null space. This work advances our understanding of the use of semigroup and the

input-output mapping in the investigation of inverse problems for fractional parabolic

equations.
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