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ABSTRACT. In this paper, we obtain a Halanay-type inequality on time scales. By means of the
obtained inequality, we get a new exponential stability condition for linear delay dynamic equations

on time scales. An example is given to illustrate the results.
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1. Introduction and preliminaries

The stability analysis of dynamical systems using differential and difference in-
equalities has attracted a great deal of attention in the existing literature (see [1-12]

and the references therein). For stability analysis of the delay differential equation
a'(t) = —pa(t) +qz(t —7), 7>0,
in [3], Halanay proved the following result.

Lemma 1 (see [4]).

f't) < —af(t)+ 6 sup f(s), fort>t,

set—T,t]

and o > 3 > 0, then there exist v > 0 and K > 0 such that
f(t) < KeU0) fort >t
In 2000, Mohamad and Gopalsamy gave the next lemmas.

Lemma 2 (see Theorem 2.1 of [1]). Let z(-) be a nonnegative function satisfying

dx(t)
dt

(1.1) < —a(t)x(t) + b(t) ( sup) }x(s)) , > to,

seft—7(t
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(1.2) z(s) = |p(s)|  fors € [to— 71" to);

where T(t) denotes a nonnegative, continuous and bounded function defined fort € R
and T = sup,cp 7(t); ©(s) is continuous and defined for s € [ty — 7%, t]; a(t) and

b(t), t € R, denote nonnegative, continuous bounded functions. Suppose
(1.3) a(t) —b(t) > o, teR,

where 0 = inficr(a(t) — b(t)) > 0. Then there exists a positive number i such that

to—7*,to

(1.4) z(t) < < sup x(s)) e Hl=t0) s .
te] ]

Lemma 3 (see Theorem 2.2 of [1]). Let z(-) be a nonnegative function satisfying

d:)s(t)
dt

(1.5) ) +b(t / K(s)x(t —s)ds, t> to,

(1.6) 2(s) = |e(s)|  fors € (=00, 0],

where p(s) defined for s € (—o0,to] is continuous and SUPe (o 4 T(8) = M >0, a(t)
and b(t) are defined for t € R and denote nonnegative, continuous bounded functions;

the delay kernel K(-) is assumed to satisfy the following properties

(1.7) K :[0,00) — [0,00) and / K(s)eMds < oo,
0

for some positive number p. Suppose further that

(1.8) ) — b(t /K )ds >0, teR,

where o = infyeg(a(t) — b(t) [ K (s)ds) > 0. Then there exists a positive number [i
such that

s€(—o0,to]

(1.9) z(t) < ( sup :E(s)) e A=) s .

In this paper, we extend Lemma 2 and Lemma 3 to time scales. As an application,
we obtain a new exponential stability condition for linear delay dynamic equations
on time scales. We remark also that in the paper [18], the authors extended the

Halanay-type inequality to higher dimensional systems on time scales.

For completeness, (see [15] for elementary results for the time scale calculus), we

recall some basic results for dynamic equations and the calculus on time scales.

Definition 1. A function i : T — R is said to be regressive provided 1+ u(t)h(t) # 0
for all ¢ € T, where u(t) = o(t) —t. The set of all regressive rd-continuous functions
¢ : T — R is denoted by PR while the set BT is given by R = {¢ €R : 1+u(t)p(t) >0
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for all ¢ € T}. Let ¢ € M. The exponential function on T is defined by e,(t,s) =
exp ( fst §u(r)(go(r))Ar>. Here &5y is the cylinder transformation given by

Ao ayLog (L4 p(r)e(r)), u(r) >0,
iy (p(1)) - { ey ur) = 0,

It is well known that (see [15, Theorem 2.48]) if p € R, then e,(t,s) > 0 for all t € T.
Also, the exponential function y(t) = e,(¢, s) is the unique solution to the initial value
problem y® = p(t)y, y(s) = 1. Other properties of the exponential function are given

in the following lemma.

Lemma 4 (see [2]). Let p,q € R. Then

) eo(s,t) =1 and ey(t,t) =1,
) ep(0(t),s) = (1+ pt)p(t) ep(t, s),

(iii) epé 5 = €epl(t, s) where Sp(t) = _1+5((;))p(t),
)
)
)

Lemma 5 (see [2]). For a nonnegative ¢ with —p € R, we have the inequalities
t t
(1.10) 1 —/ o(u) <e_y,(t,s) < exp{—/ o(u)}  forallt > s.
If ¢ is rd-continuous and nonnegative, then

t t
(1.11) 1 +/ p(u) <ey(t,s) < exp{/ p(u)}  forallt > s.
Remark 1. If p € BT and p(r) > 0 for all r € [s, t|r, then

(1.12) ep(t,r) <ey(t,s) and ey(a,b) <1lfors<a<b<t.

2. Main Theorem

Theorem 1. Let x(-) be a nonnegative function satisfying

(2.1)  x2(t) < —a(t)z(t) + b(t) /000 K(s)x(t —s)As+c(t) sup x(s), t>t,

selt—7(1).1]

(2.2) x(s) = lp(s)|  fors € (=00, o],

where p(s) defined for s € (—oo,to|r is rd-continuous, bounded and 7(-), a(-), b(-),

c(+) are defined in T and are nonnegative, rd-continuous bounded functions. Denote

sup 7(t) = 7, sup  z(s) =M > 0.

teT s€(—o0,to]T
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The delay kernel K(-) is assumed to satisfy the following properties.
(2.3) K :]0,00)1 — [0,00)7 and Vt € T, / K(s)expp(t,t —s)As < 00,
0

for some positive number Ao, where p(t) is a nonnegative bounded function. Suppose
further that
(2.4)

VteT, a(t)—bt) /000 K(s)As—c(t) > e = %g (a(t) —b(t) /000 K(s)As — c(t)) >0

Then there exists a positive number X such that

(2.5) x(t) < ( (sup | :E(s)) eexpltsto),  t € (to,o0)r.
s€(—oo,to|T
Proof. By (2.3), we define the binary function G(t, A) by
(2.6)
G(t,\) == )+ Ap(t)

+b(t / K(s)exy(t,t — s)As+ c(t)ex,(t,t —77), te€ T, X e 0,

Since a(-),b(+), c(-), p(-) are nonnegative, rd-continuous, and bounded in T, for fixed
t € T the binary function G(¢, \) is continuous for A € [0, \o].

2.7)

By (2.3),3A(\) > 0, such that sup / K (s)exy(t,£ — 8)As = A(N), for A € [0, Aq).
teT

(2.8)

By (1.10),3B(A\) > 0, YVt €T, ey(t,t —7°) < e = supey,(t,t — 7)) = B(\),

teT

where p* = sup,cp p(t).
From (2.6), (2.7), (2.8) and the boundedness of a(t),b(t), c(t), we can define

(2.9) F(X) =supG(t,\) for A € [0, A\g].

teT

Clearly, F'(\) is continuous for A € [0, \g]. Using (2.4) we have

F(0) = sup G 0)_221}?(%( Vi b(t) [ K(s)As + et ))
(2.10) :—12%( ) — bt /K As—c)) e <0,

From (2.10) and continuity, there exists d; > 0, such that for 0 < A < §;, we have
F(A) < —5. In particular, we have

(2.11) F (é) <o
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Set A = 2. From (2.9) and (2.11), it follows that

(2.12)

VteT, —a(t)+ p(t) + b(t)/ K(s)ex,(t,t —s)As + c(t)ex,(t,t —77) < —% < 0.
0

Now we define

o - l’(t)exp(t, t(]), t > to,
(2.13) () = { o Y

Let 6 > 1 be arbitrary. We have from (2.2) and (2.13) that Z(t) < dM for t €

(—o0, to]r. We claim
(2.14) T(t) <M  for t > t.

Let t; = sup{t|z(t) < 0M} > to. We will show ¢; = oo

Suppose t; < co. Clearly we have Z(¢;) < 0M. Then we have two cases:
Case (1). Suppose T(t1) = dM for t; > tg

(2.15) T(t) <M for all t < t; and T2(t;) > 0.

We have from (2.13), (2.15), (2.1), (2.12), (1.12) and Lemma 4

T2 (t1) = (x(t)ey,(t, 1))

A

= 2% (t)ex, (0(t), to) + 2 (t)Ap(t)es, (t, To)

t=t1

< <—a(t1)a:(t1) + b(ty) /000 K(s)x(ty — s)As + c(t1) sup . }a:(s))

s€ft1—7(t1),
(T4 Au(t)p(th)) ex,(tr, to) + (L) Ap(tr)ex, (t, to)
= (1+2u(t)p(tr) (—alts) + Ap(t1)) 6M

(1 + )\,u tl <b tl / K S)6Xp(t1,t1 — S)AS

Ye(t)  sup (s)e/\p(tl,s))—>\,u(t1)p2(t1)5M

s€[t1—7(t1),t1]
< (14 Jute)p(e)) ( — altr) + Rp(t) + (1) /0 T K(s)ey,(htr — 5)As
etr)e, (bt = 7)) 8M =X (b )p?(4)5M
(216) < =5 (14 Nu(t)p(ta) )5M = X'u(t)p*(0)5M <0,

which contradicts (2.15).

Case (2). Suppose ZT(t1) < dM. In this case, t; must be right-scattered, for otherwise
if ¢, is right-dense, then we have Z(t) < M, for t € (—oo, t1|r. Therefore, there exists
£(> 0) sufficiently small so that Z(t) < M, for ¢t € (oo, t; + €|r. This contradicts the

definition of ¢;. Hence, since t; is right-scattered, we have

(2.17) Z(o(t1)) > oM and T(t) < M for all t <ty < o(ty).
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We have from (2.13) and (2.1),

z(o(ty)) —Z(t) _ _ _ § 2
p(ty) =75(h) = <I(t)€kp(t’ tO))

= 2% (t)ex, (0(t), to) + 2 (t) Ap(t)ex, (t, To)

(— a(ta)e(t) + bit) /0 T K(alt - Aste(t)  swp  a(s))

Se[tl—‘r(tl),tl]

t=t1

IN

<1+>\u(t1) (t ))% t, to) + (b)) Ap(t)ex, (1, to)
- <_ alty) / K(s)z(t, — s)ex, (t,t — s)As

+ c(ty) sup E(s)exp(tl, s)

s€[ti—7(t1),t1]
(218) - (1 + Xu(tl)p(tl)) ().

By (2.18), (2.17), (2.12), (1.12) and 1 — a(t)u(t) > 0, t € T, we have

N—

(2.19)
5M <F(o(h)) < (1 = at)p(t)) (1 4+ Naltp(t) ) 7() + lt) (1 + Rult)p(t)
b(ty) / K(s — s)ex,(t, 1 — 8)As + c(t1) se[tlsligl) tl]f(s)exp(tl, s)}
<l—at1 )( ))6M+u(t1)<1+>\,u t)p t1>
b(t) / K((t = s)egy 1,11~ 5)As+elt) sup_ Fls)e (1.1 - )]

< (1= N2(0)p* () )M = pu(tr) (14 Xa(t)p(ta) ) 9IS < M.

This gives a contradiction.

Hence the claim (2.14) holds. Since > 1 is arbitrary, by letting 6 — 17, we
have Z(t) < M for t € (tp,00)r. It then follows from (2.13) and (iii) of Lemma 4
that z(t) < Me_y,(t, to) for t € (to,00)r, and hence the assertion (2.5) is satisfied.
This completes the proof. O

Remark 2. If in (2.18), we use the formula for the delta-derivative, we get

(2.20)

E(U(tl)) — f(tl _A
,u(tl) 6)\p t t(] )

= 22 (t)ex, (ti, to) + (o (t1)) Ap(tr)es, (t1, to)

g(—a(tl)x(tl)—l—b(tl) /t K(s)z(t, — s)As +c(t;)  sup x(s))%(tl,to)

se [tl —T(tl ),tl]

t=t1

+ z(0(t1))Ap(t1)ex, (t1, to)
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(b)) +bt1/ K(s)T(ty — 8)ex, (1.t — 5)As

+ c(t1) . EUB y }93( Jes,(t1,8) + Ap(t)es, (tr, o (t)T(o(th))

< —a(t)F(h) + b(t1) /t T K ()t — s)ex, (1t — 5)As

+ C(tl) sup E(S)EXp(tl, tl — ’7'*) + Xp(t1)6xp(t1, a(tl))f(a(tl)).

t1—7*<s<ty

By (2.20), (2.12), (1.12) and 1 — a(t)u(t) > 0,t € T, we have
(1= Rut)p(t) )ans < (1= Ru(ta)p(t)ex, (1, U(tl)))f(a(tl))
S (1 — a(tl),u(tl)>f(t1 tl tl / K tl — 8)6>\p(t1, tl )AS

+e(t)u(t)  sup  T(s)ex,(t, 61— 77)

t1—7*<s<t;

(221) < (1 - Xu(tl)p(tl))aM . %u(tl)éM,

as long as 1 — Au(t)p(t) > 0, and so (2.21) leads to a contradiction. So when ju(t) =
o(t) — t is bounded for ¢t € T, we can choose a sufficiently small positive number X
satisfying 1 — Au(t)p(t) > 0. This situation is similar to Case (2).

When either b(t) = 0, p(t) = 1 or ¢(t) = 0, p(t) = 1 we can obtain the following
corollaries, which can be regarded as the extensions of Theorem 2.1, Theorem 2.2 of

[1]; respectively.

Corollary 1. Let x(-) be a nonnegative function satisfying

(2.22) 22 (t) < —a(t)z(t) + c(t) e[ts_u}f()t) , x(s), t>to,
(2.23) z(s) = |e(s)|  fors € [to— 1", to]r,

where @(s) defined for s € (—oo, to|r is rd-continuous and 7(-), a(-), ¢(-) are defined

on T and denote nonnegative, rd-continuous bounded functions and

sup 7(t) = 7, sup  z(s) =M > 0.
teT s€(—oo,tolT
Suppose
(2.24) alt) = cft) > e = inf (a(t) - c(t)) >0, teT.
S

Then there ezists a positive number X such that

(2.25) x(t)§< sup x(s))egx(t,to), t € (tg, 00)r.

SE[to—T*,toh
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Corollary 2. Let z(-) be a nonnegative function satisfying

(2.26) 2 () < —a(t)z(t) + b(t) /OO K(s)x(t —s)As, t>to,

(2.27) x(s) = |p(s)| fors € (—oo,ty]r,

where p(s) defined for s € (—oo,ty]r is rd-continuous and 7(-), a(-), b(-) are defined

on T and denote nonnegative, rd-continuous bounded functions and

sup 7(t) = 7, sup  x(s) =M > 0.

teT s€(—o0o,to]T

The delay kernel K(-) is assumed to satisfy the following properties,

(228) K :[0,00)r 1 [0,00)r and V¢ € T, / K(s)ex (.1 — $)As < o0,
0

for some positive number \g. Suppose further that

(2.29) a(t) —b(t /K As>e—1nf ) —b(t /K As >0, teT.

tE']T

Then there exists a positive number X such that

(2.30) () < ( sup x(s))eex(t,to),quadt € (ty, 00)r.

s€(—o0,to]T
3. Examples

Consider the delay dynamic equation
(3.1) z°(t) = t)+b(t / K(s)x(t—s)As+c(t)x(t—7), t € [to, +00)r

where x(t) = ¢(t), for s € (—o0,ty]r, ¢ is rd-continuous and bounded. a(t) > 0,
b(t) >0, c(t) > 0, for t > ty. Suppose that there exists a nonnegative rd-continuous
bounded function p(t) such that ftoo e,\op(t t—s)As < oo, for all ¢t € T and some
positive number \y and a(t ft As —c(t) > e> 0 for all t € T and some
positive number e. From (3.1), we have

(3.2)

x(t) = x(to)e_q(t, to) + /tt / K)x(s —v)Av + c(s)x(s — 7')} As.

Let the functions y(t) be defined as follows: y(t) = |x(t)|, for t € (—o0, to]r and
(3.3)

y(t) = |2(to)]e_alt, o)+ / e_a(t,a(s))[b(s) / T K()|2(s—0)|Avte(s) sup p:(@)@As

to 0 s—17<0<s
for t > tg. Then we have |x(t)| < y(t), for all t € (—o0, +00)r.
By [16, Theorem 5.37], we get that
t o]
20 = ~alt) Jalto)le-altsto) + [ calteo(o)[b6s) [ Klo)ats -~ o)l
0

to



GENERALIZED HALANAY-TYPE INEQUALITY ON TIME SCALES 397

+e(s) sup \x(e>|}As}+b(t) /0 T K@)zt — v)|Av+ ot) sup [2(6)

s—7<0<s t—7<0<t

(3.4) < —a(t)y(t) + b(t) /Ooo K()ly(t —v)|Av+c(t) sup [y(6)|

t—7<0<t

for all t € [ty,00). Therefore, it follows from main theorem that there exists a positive

number \ such that

(3.5) x(t)S( sup x(s))eexp(t,to), t € (to, 00)r.

s€(—o0,to]T

In the following, we let T = Z and choose some explicit functions for a(t), b(t),
c(t), K(t) and p(t). Let

n+2 b n 1 _ 1

We have
- n+2 =1 1
K — = _— = - = .
n); (n) — c(n) i ”+3nzzo2" 5 "3 €>0
Let p(n) = 14 nsin —=, we have
1+ 20N
ZK Jexp(n,n—j) <ZK (142X exp(n — j,n — j) Z( )
7=0

where ey,(n — j,n — j) = 1. Clearly, as long as

142\ - 1
<l=Xel0,=-]).
; (03)

So

z(j) = le()],  for j < no.
Therefore the conditions (2.1), (2.2), (2.3), (2.4) are satisfied. Then there exists a

positive number X such that

z(n) < <sup |g0(j)|>eexp(n, ng), N> ng, A E (O, %) :

Jj<ng

It is easy to get that 1 + S \p = —L— < . Therefore

24-nsin ——

)n—ng
+1

So e.x,(n,ng) < (%

1
5.
we get that

o) < (s 2G)) (5) 7 n>m e 0.5)
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