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ABSTRACT. In this paper, we obtain a Halanay-type inequality on time scales. By means of the

obtained inequality, we get a new exponential stability condition for linear delay dynamic equations

on time scales. An example is given to illustrate the results.
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1. Introduction and preliminaries

The stability analysis of dynamical systems using differential and difference in-

equalities has attracted a great deal of attention in the existing literature (see [1–12]

and the references therein). For stability analysis of the delay differential equation

x′(t) = −px(t) + qx(t − τ), τ > 0,

in [3], Halanay proved the following result.

Lemma 1 (see [4]).

f ′(t) ≤ −αf(t) + β sup
s∈[t−τ,t]

f(s), for t ≥ t0,

and α > β > 0, then there exist γ > 0 and K > 0 such that

f(t) ≤ Ke−γ(t−t0), for t ≥ t0.

In 2000, Mohamad and Gopalsamy gave the next lemmas.

Lemma 2 (see Theorem 2.1 of [1]). Let x(·) be a nonnegative function satisfying

(1.1)
dx(t)

dt
≤ −a(t)x(t) + b(t)

(
sup

s∈[t−τ(t),t]

x(s)

)
, t > t0,
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(1.2) x(s) = |ϕ(s)| for s ∈ [t0 − τ ∗, t0];

where τ(t) denotes a nonnegative, continuous and bounded function defined for t ∈ R

and τ∗ = supt∈R
τ(t); ϕ(s) is continuous and defined for s ∈ [t0 − τ ∗, t0]; a(t) and

b(t), t ∈ R, denote nonnegative, continuous bounded functions. Suppose

(1.3) a(t) − b(t) ≥ σ, t ∈ R,

where σ = inf t∈R(a(t) − b(t)) > 0. Then there exists a positive number µ̃ such that

(1.4) x(t) ≤

(
sup

t∈[t0−τ∗,t0]

x(s)

)
e−eµ(t−t0), t > t0.

Lemma 3 (see Theorem 2.2 of [1]). Let x(·) be a nonnegative function satisfying

(1.5)
dx(t)

dt
≤ −a(t)x(t) + b(t)

∫ ∞

0

K(s)x(t − s)ds, t > t0,

(1.6) x(s) = |ϕ(s)| for s ∈ (−∞, t0],

where ϕ(s) defined for s ∈ (−∞, t0] is continuous and sups∈(−∞,t0] x(s) = M > 0, a(t)

and b(t) are defined for t ∈ R and denote nonnegative, continuous bounded functions;

the delay kernel K(·) is assumed to satisfy the following properties

(1.7) K : [0,∞) 7→ [0,∞) and

∫ ∞

0

K(s)eµsds < ∞,

for some positive number µ. Suppose further that

(1.8) a(t) − b(t)

∫ ∞

0

K(s)ds ≥ σ, t ∈ R,

where σ = inf t∈R(a(t) − b(t)
∫∞

0
K(s)ds) > 0. Then there exists a positive number µ̃

such that

(1.9) x(t) ≤

(
sup

s∈(−∞,t0]

x(s)

)
e−eµ(t−t0), t > t0.

In this paper, we extend Lemma 2 and Lemma 3 to time scales. As an application,

we obtain a new exponential stability condition for linear delay dynamic equations

on time scales. We remark also that in the paper [18], the authors extended the

Halanay-type inequality to higher dimensional systems on time scales.

For completeness, (see [15] for elementary results for the time scale calculus), we

recall some basic results for dynamic equations and the calculus on time scales.

Definition 1. A function h : T → R is said to be regressive provided 1+µ(t)h(t) 6= 0

for all t ∈ T
k, where µ(t) = σ(t)− t. The set of all regressive rd-continuous functions

ϕ : T → R is denoted by R while the set R
+ is given by R

+ = {ϕ ∈R : 1+µ(t)ϕ(t) > 0
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for all t ∈ T}. Let ϕ ∈ R. The exponential function on T is defined by eϕ(t, s) =

exp
(∫ t

s
ξµ(r)(ϕ(r))∆r

)
. Here ξµ(s) is the cylinder transformation given by

ξµ(r)(ϕ(r)) : =

{
1

µ(r)
Log (1 + µ(r)ϕ(r)) , µ(r) > 0,

ϕ(r), µ(r) = 0.

It is well known that (see [15, Theorem 2.48]) if p ∈ R
+, then ep(t, s) > 0 for all t ∈ T.

Also, the exponential function y(t) = ep(t, s) is the unique solution to the initial value

problem y∆ = p(t)y, y(s) = 1. Other properties of the exponential function are given

in the following lemma.

Lemma 4 (see [2]). Let p, q ∈ R. Then

(i) e0(s, t) ≡ 1 and ep(t, t) ≡ 1,

(ii) ep(σ(t), s) = (1 + µ(t)p(t)) ep(t, s),

(iii) 1
ep(t,s)

= e⊖p(t, s) where ⊖p(t) = − p(t)
1+µ(t)p(t)

,

(iv) ep(t, s) = 1
ep(s,t)

= e⊖p(s, t),

(v) ep(t, s)ep(s, r) = ep(t, r),

(vi)
(

1
ep(·,s)

)∆

= − p(t)
eσ
p
(·,s)

.

Lemma 5 (see [2]). For a nonnegative ϕ with −ϕ ∈ R
+, we have the inequalities

(1.10) 1 −

∫ t

s

ϕ(u) ≤ e−ϕ(t, s) ≤ exp{−

∫ t

s

ϕ(u)} for all t ≥ s.

If ϕ is rd-continuous and nonnegative, then

(1.11) 1 +

∫ t

s

ϕ(u) ≤ eϕ(t, s) ≤ exp{

∫ t

s

ϕ(u)} for all t ≥ s.

Remark 1. If p ∈ R
+ and p(r) > 0 for all r ∈ [s, t]T, then

(1.12) ep(t, r) ≤ ep(t, s) and ep(a, b) < 1 for s ≤ a < b ≤ t.

2. Main Theorem

Theorem 1. Let x(·) be a nonnegative function satisfying

(2.1) x△(t) ≤ −a(t)x(t) + b(t)

∫ ∞

0

K(s)x(t − s)∆s + c(t) sup
s∈[t−τ(t),t]

x(s), t > t0,

(2.2) x(s) = |ϕ(s)| for s ∈ (−∞, t0]T,

where ϕ(s) defined for s ∈ (−∞, t0]T is rd-continuous, bounded and τ(·), a(·), b(·),

c(·) are defined in T and are nonnegative, rd-continuous bounded functions. Denote

sup
t∈T

τ(t) = τ∗, sup
s∈(−∞,t0]T

x(s) = M > 0.
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The delay kernel K(·) is assumed to satisfy the following properties.

(2.3) K : [0,∞)T 7→ [0,∞)T and ∀t ∈ T,

∫ ∞

0

K(s)eλ0p(t, t − s)∆s < ∞,

for some positive number λ0, where p(t) is a nonnegative bounded function. Suppose

further that

(2.4)

∀t ∈ T, a(t)−b(t)

∫ ∞

0

K(s)∆s−c(t) ≥ ǫ = inf
t∈T

(
a(t) − b(t)

∫ ∞

0

K(s)∆s − c(t)

)
> 0.

Then there exists a positive number λ such that

(2.5) x(t) ≤

(
sup

s∈(−∞,t0]T

x(s)

)
e⊖λp(t, t0), t ∈ (t0,∞)T.

Proof. By (2.3), we define the binary function G(t, λ) by

G(t, λ) := −a(t) + λp(t)

(2.6)

+ b(t)

∫ ∞

0

K(s)eλp(t, t − s)∆s + c(t)eλp(t, t − τ ∗), t ∈ T, λ ∈ [0, λ0].

Since a(·), b(·), c(·), p(·) are nonnegative, rd-continuous, and bounded in T, for fixed

t ∈ T the binary function G(t, λ) is continuous for λ ∈ [0, λ0].

By (2.3), ∃A(λ) > 0, such that sup
t∈T

∫ ∞

0

K(s)eλp(t, t − s)∆s = A(λ), for λ ∈ [0, λ0].

(2.7)

By (1.10), ∃B(λ) > 0, ∀t ∈ T, eλp(t, t − τ ∗) ≤ eλp∗τ∗

⇒ sup
t∈T

eλp(t, t − τ ∗) = B(λ),

(2.8)

where p∗ = supt∈T
p(t).

From (2.6), (2.7), (2.8) and the boundedness of a(t), b(t), c(t), we can define

(2.9) F (λ) = sup
t∈T

G(t, λ) for λ ∈ [0, λ0].

Clearly, F (λ) is continuous for λ ∈ [0, λ0]. Using (2.4), we have

F (0) = sup
t∈T

G(t, 0) = sup
t∈T

(
−a(t) + b(t)

∫ ∞

0

K(s)∆s + c(t)

)

= − inf
t∈T

(
a(t) − b(t)

∫ ∞

0

K(s)∆s − c(t)

)
≤ −ǫ < 0.(2.10)

From (2.10) and continuity, there exists δ1 > 0, such that for 0 ≤ λ < δ1, we have

F (λ) < − ǫ
2
. In particular, we have

F

(
δ1

2

)
< −

ǫ

2
< 0.(2.11)
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Set λ = δ1
2
. From (2.9) and (2.11), it follows that

(2.12)

∀t ∈ T, −a(t) + λp(t) + b(t)

∫ ∞

0

K(s)eλp(t, t − s)∆s + c(t)eλp(t, t − τ ∗) ≤ −
ǫ

2
< 0.

Now we define

(2.13) x(t) =

{
x(t)eλp(t, t0), t > t0,

x(t), t ≤ t0.

Let δ > 1 be arbitrary. We have from (2.2) and (2.13) that x(t) < δM for t ∈

(−∞, t0]T. We claim

(2.14) x(t) < δM for t > t0.

Let t1 = sup{t|x(t) < δM} > t0. We will show t1 = ∞.

Suppose t1 < ∞. Clearly we have x(t1) ≤ δM . Then we have two cases:

Case (1). Suppose x(t1) = δM for t1 > t0

(2.15) x(t) < δM for all t < t1 and x∆(t1) ≥ 0.

We have from (2.13), (2.15), (2.1), (2.12), (1.12) and Lemma 4

x∆(t1) =
(
x(t)eλp(t, t0)

)∆ ∣∣∣
t=t1

= x∆(t1)eλp(σ(t1), t0) + x(t1)λp(t1)eλp(t1, t0)

≤

(
−a(t1)x(t1) + b(t1)

∫ ∞

0

K(s)x(t1 − s)∆s + c(t1) sup
s∈[t1−τ(t1),t1]

x(s)

)

·
(
1 + λµ(t1)p(t1)

)
eλp(t1, t0) + x(t1)λp(t1)eλp(t1, t0)

=
(
1 + λµ(t1)p(t1)

) (
−a(t1) + λp(t1)

)
δM

+
(
1 + λµ(t1)p(t1)

) (
b(t1)

∫ ∞

0

K(s)x(t1 − s)eλp(t1, t1 − s)∆s

+ c(t1) sup
s∈[t1−τ(t1),t1]

x(s)eλp(t1, s)
)
− λ

2
µ(t1)p

2(t1)δM

≤
(
1 + λµ(t1)p(t1)

)(
− a(t1) + λp(t1) + b(t1)

∫ ∞

0

K(s)eλp(t1, t1 − s)∆s

+ c(t1)eλp(t1, t1 − τ ∗)
)
δM − λ

2
µ(t1)p

2(t1)δM

≤ −
ǫ

2

(
1 + λµ(t1)p(t1)

)
δM − λ

2
µ(t1)p

2(t1)δM < 0,(2.16)

which contradicts (2.15).

Case (2). Suppose x(t1) < δM . In this case, t1 must be right-scattered, for otherwise

if t1 is right-dense, then we have x(t) < δM , for t ∈ (−∞, t1]T. Therefore, there exists

ε(> 0) sufficiently small so that x(t) < δM , for t ∈ (∞, t1 + ε]T. This contradicts the

definition of t1. Hence, since t1 is right-scattered, we have

(2.17) x(σ(t1)) > δM and x(t) < δM for all t ≤ t1 < σ(t1).
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We have from (2.13) and (2.1),

x(σ(t1)) − x(t1)

µ(t1)
= x△(t1) =

(
x(t)eλp(t, t0)

)∆∣∣∣
t=t1

= x∆(t1)eλp(σ(t1), t0) + x(t1)λp(t1)eλp(t1, t0)

≤
(
− a(t1)x(t1) + b(t1)

∫ ∞

0

K(s)x(t1 − s)∆s + c(t1) sup
s∈[t1−τ(t1),t1]

x(s)
)

·
(
1 + λµ(t1)p(t1)

)
eλp(t1, t0) + x(t1)λp(t1)eλp(t1, t0)

=
(
− a(t1)x(t1) + b(t1)

∫ ∞

0

K(s)x(t1 − s)eλp(t1, t1 − s)∆s

+ c(t1) sup
s∈[t1−τ(t1),t1]

x(s)eλp(t1, s)
)

·
(
1 + λµ(t1)p(t1)

)
+ λp(t1)x(t1).(2.18)

By (2.18), (2.17), (2.12), (1.12) and 1 − a(t)µ(t) > 0, t ∈ T, we have

δM < x(σ(t1)) ≤
(
1 − a(t1)µ(t1)

)(
1 + λµ(t1)p(t1)

)
x(t1) + µ(t1)

(
1 + λµ(t1)p(t1)

)
(2.19)

·
[
b(t1)

∫ ∞

0

K(s)x(t1 − s)eλp(t1, t1 − s)∆s + c(t1) sup
s∈[t1−τ(t1),t1]

x(s)eλp(t1, s)
]

<
(
1 − a(t1)µ(t1)

)(
1 + λµ(t1)p(t1)

)
δM + µ(t1)

(
1 + λµ(t1)p(t1)

)

·
[
b(t1)

∫ ∞

0

K(s)x(t1 − s)eλp(t1, t1 − s)∆s + c(t1) sup
t1−τ∗≤s≤t1

x(s)eλp(t1, t1 − τ ∗)
]

≤
(
1 − λ

2
µ2(t1)p

2(t1)
)
δM − µ(t1)

(
1 + λµ(t1)p(t1)

)
δM

ǫ

2
< δM.

This gives a contradiction.

Hence the claim (2.14) holds. Since δ > 1 is arbitrary, by letting δ → 1+, we

have x(t) ≤ M for t ∈ (t0,∞)T. It then follows from (2.13) and (iii) of Lemma 4

that x(t) ≤ Me⊖λp(t, t0) for t ∈ (t0,∞)T, and hence the assertion (2.5) is satisfied.

This completes the proof.

Remark 2. If in (2.18), we use the formula for the delta-derivative, we get

x(σ(t1)) − x(t1)

µ(t1)
= x△(t1) =

(
x(t)eλp(t, t0)

)∆∣∣∣
t=t1

(2.20)

= x△(t1)eλp(t1, t0) + x(σ(t1))λp(t1)eλp(t1, t0)

≤
(
− a(t1)x(t1) + b(t1)

∫ ∞

t0

K(s)x(t1 − s)∆s + c(t1) sup
s∈[t1−τ(t1),t1]

x(s)
)
eλp(t1, t0)

+ x(σ(t1))λp(t1)eλp(t1, t0)
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= −a(t1)x(t1) + b(t1)

∫ ∞

t0

K(s)x(t1 − s)eλp(t1, t1 − s)∆s

+ c(t1) sup
s∈[t1−τ(t1),t1]

x(s)eλp(t1, s) + λp(t1)eλp(t1, σ(t1))x(σ(t1))

≤ −a(t1)x(t1) + b(t1)

∫ ∞

t0

K(s)x(t1 − s)eλp(t1, t1 − s)∆s

+ c(t1) sup
t1−τ∗≤s≤t1

x(s)eλp(t1, t1 − τ ∗) + λp(t1)eλp(t1, σ(t1))x(σ(t1)).

By (2.20), (2.12), (1.12) and 1 − a(t)µ(t) > 0, t ∈ T, we have
(
1 − λµ(t1)p(t1)

)
δM <

(
1 − λµ(t1)p(t1)eλp(t1, σ(t1))

)
x(σ(t1))

≤
(
1 − a(t1)µ(t1)

)
x(t1) + b(t1)µ(t1)

∫ ∞

t0

K(s)x(t1 − s)eλp(t1, t1 − s)∆s

+ c(t1)µ(t1) sup
t1−τ∗≤s≤t1

x(s)eλp(t1, t1 − τ ∗)

<
(
1 − λµ(t1)p(t1)

)
δM −

ǫ

2
µ(t1)δM,(2.21)

as long as 1 − λµ(t)p(t) > 0, and so (2.21) leads to a contradiction. So when µ(t) =

σ(t) − t is bounded for t ∈ T, we can choose a sufficiently small positive number λ

satisfying 1 − λµ(t)p(t) > 0. This situation is similar to Case (2).

When either b(t) = 0, p(t) = 1 or c(t) = 0, p(t) = 1 we can obtain the following

corollaries, which can be regarded as the extensions of Theorem 2.1, Theorem 2.2 of

[1]; respectively.

Corollary 1. Let x(·) be a nonnegative function satisfying

(2.22) x△(t) ≤ −a(t)x(t) + c(t) sup
s∈[t−τ(t),t]

x(s), t > t0,

(2.23) x(s) = |ϕ(s)| for s ∈ [t0 − τ ∗, t0]T,

where ϕ(s) defined for s ∈ (−∞, t0]T is rd-continuous and τ(·), a(·), c(·) are defined

on T and denote nonnegative, rd-continuous bounded functions and

sup
t∈T

τ(t) = τ∗, sup
s∈(−∞,t0]T

x(s) = M > 0.

Suppose

(2.24) a(t) − c(t) ≥ ǫ = inf
t∈T

(
a(t) − c(t)

)
> 0, t ∈ T.

Then there exists a positive number λ such that

(2.25) x(t) ≤
(

sup
s∈[t0−τ∗,t0]T

x(s)
)
e⊖λ(t, t0), t ∈ (t0,∞)T.
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Corollary 2. Let x(·) be a nonnegative function satisfying

(2.26) x△(t) ≤ −a(t)x(t) + b(t)

∫ ∞

t0

K(s)x(t − s)∆s, t > t0,

(2.27) x(s) = |ϕ(s)| for s ∈ (−∞, t0]T,

where ϕ(s) defined for s ∈ (−∞, t0]T is rd-continuous and τ(·), a(·), b(·) are defined

on T and denote nonnegative, rd-continuous bounded functions and

sup
t∈T

τ(t) = τ∗, sup
s∈(−∞,t0]T

x(s) = M > 0.

The delay kernel K(·) is assumed to satisfy the following properties,

(2.28) K : [0,∞)T 7→ [0,∞)T and ∀t ∈ T,

∫ ∞

0

K(s)eλ0
(t, t − s)∆s < ∞,

for some positive number λ0. Suppose further that

(2.29) a(t) − b(t)

∫ ∞

t0

K(s)∆s ≥ ǫ = inf
t∈T

(
a(t) − b(t)

∫ ∞

t0

K(s)∆s
)

> 0, t ∈ T.

Then there exists a positive number λ such that

(2.30) x(t) ≤
(

sup
s∈(−∞,t0]T

x(s)
)
e⊖λ(t, t0), quadt ∈ (t0,∞)T.

3. Examples

Consider the delay dynamic equation

(3.1) x∆(t) = −a(t)xσ(t)+b(t)

∫ ∞

0

K(s)x(t−s)∆s+c(t)x(t−τ), t ∈ [t0, +∞)T

where x(t) = ϕ(t), for s ∈ (−∞, t0]T, ϕ is rd-continuous and bounded. a(t) ≥ 0,

b(t) ≥ 0, c(t) ≥ 0, for t ≥ t0. Suppose that there exists a nonnegative rd-continuous

bounded function p(t) such that
∫∞

t0
K(s)eλ0p(t, t−s)∆s < ∞, for all t ∈ T and some

positive number λ0 and a(t) − b(t)
∫∞

t0
K(s)∆s − c(t) ≥ ǫ > 0 for all t ∈ T and some

positive number ǫ. From (3.1), we have

(3.2)

x(t) = x(t0)e−a(t, t0) +

∫ t

t0

e−a(t, σ(s))
[
b(s)

∫ ∞

0

K(v)x(s − v)∆v + c(s)x(s − τ)
]
∆s.

Let the functions y(t) be defined as follows: y(t) = |x(t)|, for t ∈ (−∞, t0]T and

(3.3)

y(t) = |x(t0)|e−a(t, t0)+

∫ t

t0

e−a(t, σ(s))
[
b(s)

∫ ∞

0

K(v)|x(s−v)|∆v+c(s) sup
s−τ≤θ≤s

|x(θ)|
]
∆s

for t > t0. Then we have |x(t)| ≤ y(t), for all t ∈ (−∞, +∞)T.

By [16, Theorem 5.37], we get that

y∆(t) = −a(t)
[
|x(t0)|e−a(t, t0) +

∫ t

t0

e−a(t, σ(s))
[
b(s)

∫ ∞

0

K(v)|x(s − v)|∆v
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+ c(s) sup
s−τ≤θ≤s

|x(θ)|
]
∆s
]

+ b(t)

∫ ∞

0

K(v)|x(t − v)|∆v + c(t) sup
t−τ≤θ≤t

|x(θ)|

≤ −a(t)y(t) + b(t)

∫ ∞

0

K(v)|y(t− v)|∆v + c(t) sup
t−τ≤θ≤t

|y(θ)|(3.4)

for all t ∈ [t0,∞). Therefore, it follows from main theorem that there exists a positive

number λ such that

(3.5) x(t) ≤
(

sup
s∈(−∞,t0]T

x(s)
)
e⊖λp(t, t0), t ∈ (t0,∞)T.

In the following, we let T = Z and choose some explicit functions for a(t), b(t),

c(t), K(t) and p(t). Let

a(n) =
n + 2

n + 3
, b(n) =

n

4(n + 3)
, c(n) =

1

2(n + 3)
, K(n) =

1

2n
, n ∈ N.

We have

a(n) − b(n)
∞∑

n=0

K(n) − c(n) =
n + 2

n + 3
−

n

4(n + 3)

∞∑

n=0

1

2n
−

1

2(n + 3)
=

1

2
= ǫ > 0.

Let p(n) = 1 + n sin 1
n+1

, we have

∞∑

j=0

K(j)eλp(n, n − j) ≤

∞∑

j=0

K(j)(1 + 2λ)jeλp(n − j, n − j) =

∞∑

j=0

(1 + 2λ

2

)j

,

where eλp(n − j, n − j) = 1. Clearly, as long as

1 + 2λ

2
< 1 ⇒ λ ∈

(
0,

1

2

)
.

So
∞∑

j=0

K(j)eλp(n, n − j) < ∞,

x(j) = |ϕ(j)|, for j ≤ n0.

Therefore the conditions (2.1), (2.2), (2.3), (2.4) are satisfied. Then there exists a

positive number λ such that

x(n) ≤
(

sup
j≤n0

|ϕ(j)|
)
e⊖λp(n, n0), n > n0, λ ∈

(
0,

1

2

)
.

It is easy to get that 1 + ⊖λp = 1
2+n sin 1

n+1

≤ 1
2
. So e⊖λp(n, n0) ≤

(
1
2

)n−n0
. Therefore

we get that

x(n) ≤
(

sup
j≤n0

|ϕ(j)|
)(1

2

)n−n0

, n > n0, λ ∈ (0,
1

2
).
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Birkhäuser Boston Inc., Boston, MA, 2003.

[17] K. L. Cooke and I. Gyori, Numerical approximation of the solutions of delay differential equa-

tions on an infinite interval using piecewise constant arguments, Comp. Math. Appl. 28 (1994),

81–92.

[18] B. G. Jia, L. Erbe and R. Mert, A Halanay-type inequality on time scales in higher dimensional

spaces, Math. Inequal. Appl. 17 (2014), 813–821.


	1. Introduction and preliminaries 
	2.  Main Theorem
	3. Examples
	REFERENCES

