A GENERALIZED HALANAY-TYPE INEQUALITY ON TIME SCALES

BOQUN OU¹, BAOGUO JIA², AND LYNN ERBE³

¹School of Mathematics and Computational Science, Lingnan Normal College Zhanjiang 524048, P. R. China
²School of Mathematics and Computational Science, Sun Yat-Sen University Guangzhou, China, 510275, P. R. China
³Department of Mathematics, University of Nebraska-Lincoln Lincoln, NE 68588-0130, USA

ABSTRACT. In this paper, we obtain a Halanay-type inequality on time scales. By means of the obtained inequality, we get a new exponential stability condition for linear delay dynamic equations on time scales. An example is given to illustrate the results.

Keywords: Time scale; Delay dynamic equation; Inequality; Exponential stability

1. Introduction and preliminaries

The stability analysis of dynamical systems using differential and difference inequalities has attracted a great deal of attention in the existing literature (see [1-12]and the references therein). For stability analysis of the delay differential equation

$$x'(t) = -px(t) + qx(t - \tau), \quad \tau > 0,$$

in [3], Halanay proved the following result.

Lemma 1 (see [4]).

$$f'(t) \le -\alpha f(t) + \beta \sup_{s \in [t-\tau,t]} f(s), \quad \text{for } t \ge t_0,$$

and $\alpha > \beta > 0$, then there exist $\gamma > 0$ and K > 0 such that

$$f(t) \le K e^{-\gamma(t-t_0)}, \quad for \ t \ge t_0.$$

In 2000, Mohamad and Gopalsamy gave the next lemmas.

Lemma 2 (see Theorem 2.1 of [1]). Let $x(\cdot)$ be a nonnegative function satisfying

(1.1)
$$\frac{dx(t)}{dt} \le -a(t)x(t) + b(t) \left(\sup_{s \in [t-\tau(t),t]} x(s) \right), \quad t > t_0,$$

Corresponding author: lerbe@unl.edu

Received January 17, 2015

This project was supported by the NNSF of China (No.11271380).

^{1056-2176 \$15.00 ©}Dynamic Publishers, Inc.

(1.2)
$$x(s) = |\varphi(s)| \quad \text{for } s \in [t_0 - \tau^*, t_0];$$

where $\tau(t)$ denotes a nonnegative, continuous and bounded function defined for $t \in \mathbb{R}$ and $\tau * = \sup_{t \in \mathbb{R}} \tau(t)$; $\varphi(s)$ is continuous and defined for $s \in [t_0 - \tau^*, t_0]$; a(t) and $b(t), t \in \mathbb{R}$, denote nonnegative, continuous bounded functions. Suppose

(1.3)
$$a(t) - b(t) \ge \sigma, \quad t \in \mathbb{R}$$

where $\sigma = \inf_{t \in \mathbb{R}} (a(t) - b(t)) > 0$. Then there exists a positive number $\widetilde{\mu}$ such that

(1.4)
$$x(t) \le \left(\sup_{t \in [t_0 - \tau^*, t_0]} x(s)\right) e^{-\tilde{\mu}(t - t_0)}, \quad t > t_0$$

Lemma 3 (see Theorem 2.2 of [1]). Let $x(\cdot)$ be a nonnegative function satisfying

(1.5)
$$\frac{dx(t)}{dt} \le -a(t)x(t) + b(t) \int_0^\infty K(s)x(t-s)ds, \quad t > t_0,$$

(1.6)
$$x(s) = |\varphi(s)| \quad \text{for } s \in (-\infty, t_0],$$

where $\varphi(s)$ defined for $s \in (-\infty, t_0]$ is continuous and $\sup_{s \in (-\infty, t_0]} x(s) = M > 0$, a(t)and b(t) are defined for $t \in \mathbb{R}$ and denote nonnegative, continuous bounded functions; the delay kernel $K(\cdot)$ is assumed to satisfy the following properties

(1.7)
$$K: [0,\infty) \mapsto [0,\infty) \quad and \quad \int_0^\infty K(s) e^{\mu s} ds < \infty,$$

for some positive number μ . Suppose further that

(1.8)
$$a(t) - b(t) \int_0^\infty K(s) ds \ge \sigma, \quad t \in \mathbb{R},$$

where $\sigma = \inf_{t \in \mathbb{R}} (a(t) - b(t) \int_0^\infty K(s) ds) > 0$. Then there exists a positive number $\tilde{\mu}$ such that

(1.9)
$$x(t) \le \left(\sup_{s \in (-\infty, t_0]} x(s)\right) e^{-\widetilde{\mu}(t-t_0)}, \quad t > t_0.$$

In this paper, we extend Lemma 2 and Lemma 3 to time scales. As an application, we obtain a new exponential stability condition for linear delay dynamic equations on time scales. We remark also that in the paper [18], the authors extended the Halanay-type inequality to higher dimensional systems on time scales.

For completeness, (see [15] for elementary results for the time scale calculus), we recall some basic results for dynamic equations and the calculus on time scales.

Definition 1. A function $h : \mathbb{T} \to \mathbb{R}$ is said to be regressive provided $1 + \mu(t)h(t) \neq 0$ for all $t \in \mathbb{T}^k$, where $\mu(t) = \sigma(t) - t$. The set of all regressive rd-continuous functions $\varphi : \mathbb{T} \to \mathbb{R}$ is denoted by \mathfrak{R} while the set \mathfrak{R}^+ is given by $\mathfrak{R}^+ = \{\varphi \in \mathfrak{R} : 1 + \mu(t)\varphi(t) > 0\}$ for all $t \in \mathbb{T}$ }. Let $\varphi \in \mathfrak{R}$. The exponential function on \mathbb{T} is defined by $e_{\varphi}(t,s) = \exp\left(\int_{s}^{t} \xi_{\mu(r)}(\varphi(r))\Delta r\right)$. Here $\xi_{\mu(s)}$ is the cylinder transformation given by

$$\xi_{\mu(r)}(\varphi(r)) := \begin{cases} \frac{1}{\mu(r)} \operatorname{Log}\left(1 + \mu(r)\varphi(r)\right), & \mu(r) > 0, \\ \varphi(r), & \mu(r) = 0. \end{cases}$$

It is well known that (see [15, Theorem 2.48]) if $p \in \mathfrak{R}^+$, then $e_p(t, s) > 0$ for all $t \in \mathbb{T}$. Also, the exponential function $y(t) = e_p(t, s)$ is the unique solution to the initial value problem $y^{\Delta} = p(t)y$, y(s) = 1. Other properties of the exponential function are given in the following lemma.

Lemma 4 (see [2]). Let $p, q \in \mathfrak{R}$. Then

(i)
$$e_0(s,t) \equiv 1$$
 and $e_p(t,t) \equiv 1$,
(ii) $e_p(\sigma(t),s) = (1 + \mu(t)p(t)) e_p(t,s)$,
(iii) $\frac{1}{e_p(t,s)} = e_{\ominus p}(t,s)$ where $\ominus p(t) = -\frac{p(t)}{1 + \mu(t)p(t)}$,
(iv) $e_p(t,s) = \frac{1}{e_p(s,t)} = e_{\ominus p}(s,t)$,
(v) $e_p(t,s)e_p(s,r) = e_p(t,r)$,
(vi) $\left(\frac{1}{e_p(\cdot,s)}\right)^{\Delta} = -\frac{p(t)}{e_p^{\sigma}(\cdot,s)}$.

Lemma 5 (see [2]). For a nonnegative φ with $-\varphi \in \mathfrak{R}^+$, we have the inequalities

(1.10)
$$1 - \int_{s}^{t} \varphi(u) \le e_{-\varphi}(t,s) \le \exp\{-\int_{s}^{t} \varphi(u)\} \quad \text{for all } t \ge s.$$

If φ is rd-continuous and nonnegative, then

(1.11)
$$1 + \int_{s}^{t} \varphi(u) \le e_{\varphi}(t,s) \le \exp\{\int_{s}^{t} \varphi(u)\} \quad \text{for all } t \ge s.$$

Remark 1. If $p \in \mathfrak{R}^+$ and p(r) > 0 for all $r \in [s, t]_{\mathbb{T}}$, then

(1.12)
$$e_p(t,r) \le e_p(t,s)$$
 and $e_p(a,b) < 1$ for $s \le a < b \le t$.

2. Main Theorem

Theorem 1. Let $x(\cdot)$ be a nonnegative function satisfying

(2.1)
$$x^{\Delta}(t) \leq -a(t)x(t) + b(t) \int_0^\infty K(s)x(t-s)\Delta s + c(t) \sup_{s \in [t-\tau(t),t]} x(s), \quad t > t_0,$$

(2.2)
$$x(s) = |\varphi(s)| \quad \text{for } s \in (-\infty, t_0]_{\mathbb{T}},$$

where $\varphi(s)$ defined for $s \in (-\infty, t_0]_{\mathbb{T}}$ is rd-continuous, bounded and $\tau(\cdot)$, $a(\cdot)$, $b(\cdot)$, $c(\cdot)$ are defined in \mathbb{T} and are nonnegative, rd-continuous bounded functions. Denote

$$\sup_{t\in\mathbb{T}}\tau(t)=\tau*,\quad \sup_{s\in(-\infty,t_0]_{\mathbb{T}}}x(s)=M>0.$$

The delay kernel $K(\cdot)$ is assumed to satisfy the following properties.

(2.3)
$$K: [0,\infty)_{\mathbb{T}} \mapsto [0,\infty)_{\mathbb{T}} \text{ and } \forall t \in \mathbb{T}, \quad \int_0^\infty K(s) e_{\lambda_0 p}(t,t-s) \Delta s < \infty,$$

for some positive number λ_0 , where p(t) is a nonnegative bounded function. Suppose further that

$$\forall t \in \mathbb{T}, \quad a(t) - b(t) \int_0^\infty K(s) \Delta s - c(t) \ge \epsilon = \inf_{t \in \mathbb{T}} \left(a(t) - b(t) \int_0^\infty K(s) \Delta s - c(t) \right) > 0.$$

Then there exists a positive number $\overline{\lambda}$ such that

(2.5)
$$x(t) \le \left(\sup_{s \in (-\infty, t_0]_{\mathbb{T}}} x(s)\right) e_{\ominus \overline{\lambda} p}(t, t_0), \quad t \in (t_0, \infty)_{\mathbb{T}}$$

Proof. By (2.3), we define the binary function $G(t, \lambda)$ by (2.6)

$$\begin{aligned} G(t,\lambda) &:= -a(t) + \lambda p(t) \\ &+ b(t) \int_0^\infty K(s) e_{\lambda p}(t,t-s) \Delta s + c(t) e_{\lambda p}(t,t-\tau^*), \quad t \in \mathbb{T}, \lambda \in [0,\lambda_0]. \end{aligned}$$

Since $a(\cdot), b(\cdot), c(\cdot), p(\cdot)$ are nonnegative, rd-continuous, and bounded in \mathbb{T} , for fixed $t \in \mathbb{T}$ the binary function $G(t, \lambda)$ is continuous for $\lambda \in [0, \lambda_0]$.

By (2.3),
$$\exists A(\lambda) > 0$$
, such that $\sup_{t \in \mathbb{T}} \int_0^\infty K(s) e_{\lambda p}(t, t-s) \Delta s = A(\lambda)$, for $\lambda \in [0, \lambda_0]$.
(2.8)

By (1.10),
$$\exists B(\lambda) > 0$$
, $\forall t \in \mathbb{T}$, $e_{\lambda p}(t, t - \tau^*) \le e^{\lambda p^* \tau^*} \Rightarrow \sup_{t \in \mathbb{T}} e_{\lambda p}(t, t - \tau^*) = B(\lambda)$,

where $p^* = \sup_{t \in \mathbb{T}} p(t)$.

From (2.6), (2.7), (2.8) and the boundedness of a(t), b(t), c(t), we can define

(2.9)
$$F(\lambda) = \sup_{t \in \mathbb{T}} G(t, \lambda) \quad \text{for } \lambda \in [0, \lambda_0].$$

Clearly, $F(\lambda)$ is continuous for $\lambda \in [0, \lambda_0]$. Using (2.4), we have

(2.10)
$$F(0) = \sup_{t \in \mathbb{T}} G(t,0) = \sup_{t \in \mathbb{T}} \left(-a(t) + b(t) \int_0^\infty K(s) \Delta s + c(t) \right)$$
$$= -\inf_{t \in \mathbb{T}} \left(a(t) - b(t) \int_0^\infty K(s) \Delta s - c(t) \right) \le -\epsilon < 0.$$

From (2.10) and continuity, there exists $\delta_1 > 0$, such that for $0 \leq \lambda < \delta_1$, we have $F(\lambda) < -\frac{\epsilon}{2}$. In particular, we have

(2.11)
$$F\left(\frac{\delta_1}{2}\right) < -\frac{\epsilon}{2} < 0.$$

Set $\overline{\lambda} = \frac{\delta_1}{2}$. From (2.9) and (2.11), it follows that (2.12)

$$\forall t \in \mathbb{T}, \quad -a(t) + \overline{\lambda}p(t) + b(t) \int_0^\infty K(s)e_{\overline{\lambda}p}(t, t-s)\Delta s + c(t)e_{\overline{\lambda}p}(t, t-\tau^*) \le -\frac{\epsilon}{2} < 0.$$

Now we define

(2.13)
$$\overline{x}(t) = \begin{cases} x(t)e_{\overline{\lambda}p}(t,t_0), & t > t_0 \\ x(t), & t \le t_0 \end{cases}$$

Let $\delta > 1$ be arbitrary. We have from (2.2) and (2.13) that $\overline{x}(t) < \delta M$ for $t \in (-\infty, t_0]_{\mathbb{T}}$. We claim

(2.14)
$$\overline{x}(t) < \delta M \quad \text{for } t > t_0.$$

Let $t_1 = \sup\{t | \overline{x}(t) < \delta M\} > t_0$. We will show $t_1 = \infty$.

Suppose $t_1 < \infty$. Clearly we have $\overline{x}(t_1) \leq \delta M$. Then we have two cases: Case (1). Suppose $\overline{x}(t_1) = \delta M$ for $t_1 > t_0$

(2.15)
$$\overline{x}(t) < \delta M$$
 for all $t < t_1$ and $\overline{x}^{\Delta}(t_1) \ge 0$.

We have from (2.13), (2.15), (2.1), (2.12), (1.12) and Lemma 4

$$\begin{aligned} \overline{x}^{\Delta}(t_1) &= \left(x(t)e_{\overline{\lambda}p}(t,t_0)\right)^{\Delta} \Big|_{t=t_1} = x^{\Delta}(t_1)e_{\overline{\lambda}p}(\sigma(t_1),t_0) + x(t_1)\overline{\lambda}p(t_1)e_{\overline{\lambda}p}(t_1,t_0) \\ &\leq \left(-a(t_1)x(t_1) + b(t_1)\int_0^{\infty} K(s)x(t_1 - s)\Delta s + c(t_1)\sup_{s\in[t_1-\tau(t_1),t_1]} x(s)\right) \\ &\cdot \left(1 + \overline{\lambda}\mu(t_1)p(t_1)\right)e_{\overline{\lambda}p}(t_1,t_0) + x(t_1)\overline{\lambda}p(t_1)e_{\overline{\lambda}p}(t_1,t_0) \\ &= \left(1 + \overline{\lambda}\mu(t_1)p(t_1)\right)\left(-a(t_1) + \overline{\lambda}p(t_1)\right)\delta M \\ &+ \left(1 + \overline{\lambda}\mu(t_1)p(t_1)\right)\left(b(t_1)\int_0^{\infty} K(s)\overline{x}(t_1 - s)e_{\overline{\lambda}p}(t_1,t_1 - s)\Delta s \\ &+ c(t_1)\sup_{s\in[t_1-\tau(t_1),t_1]}\overline{x}(s)e_{\overline{\lambda}p}(t_1,s)\right) - \overline{\lambda}^2\mu(t_1)p^2(t_1)\delta M \\ &\leq \left(1 + \overline{\lambda}\mu(t_1)p(t_1)\right)\left(-a(t_1) + \overline{\lambda}p(t_1) + b(t_1)\int_0^{\infty} K(s)e_{\overline{\lambda}p}(t_1,t_1 - s)\Delta s \\ &+ c(t_1)e_{\overline{\lambda}p}(t_1,t_1 - \tau^*)\right)\delta M - \overline{\lambda}^2\mu(t_1)p^2(t_1)\delta M \end{aligned}$$

$$(2.16) \qquad \leq -\frac{\epsilon}{2}\left(1 + \overline{\lambda}\mu(t_1)p(t_1)\right)\delta M - \overline{\lambda}^2\mu(t_1)p^2(t_1)\delta M < 0,$$

which contradicts (2.15).

Case (2). Suppose $\overline{x}(t_1) < \delta M$. In this case, t_1 must be right-scattered, for otherwise if t_1 is right-dense, then we have $\overline{x}(t) < \delta M$, for $t \in (-\infty, t_1]_{\mathbb{T}}$. Therefore, there exists $\varepsilon(> 0)$ sufficiently small so that $\overline{x}(t) < \delta M$, for $t \in (\infty, t_1 + \varepsilon]_{\mathbb{T}}$. This contradicts the definition of t_1 . Hence, since t_1 is right-scattered, we have

(2.17)
$$\overline{x}(\sigma(t_1)) > \delta M$$
 and $\overline{x}(t) < \delta M$ for all $t \le t_1 < \sigma(t_1)$.

We have from (2.13) and (2.1),

$$\begin{aligned} \frac{\overline{x}(\sigma(t_1)) - \overline{x}(t_1)}{\mu(t_1)} &= \overline{x}^{\Delta}(t_1) = \left(x(t)e_{\overline{\lambda}p}(t, t_0)\right)^{\Delta}\Big|_{t=t_1} \\ &= x^{\Delta}(t_1)e_{\overline{\lambda}p}(\sigma(t_1), t_0) + x(t_1)\overline{\lambda}p(t_1)e_{\overline{\lambda}p}(t_1, t_0) \\ &\leq \left(-a(t_1)x(t_1) + b(t_1)\int_0^{\infty} K(s)x(t_1 - s)\Delta s + c(t_1)\sup_{s\in[t_1 - \tau(t_1), t_1]} x(s)\right) \\ &\quad \cdot \left(1 + \overline{\lambda}\mu(t_1)p(t_1)\right)e_{\overline{\lambda}p}(t_1, t_0) + x(t_1)\overline{\lambda}p(t_1)e_{\overline{\lambda}p}(t_1, t_0) \\ &= \left(-a(t_1)\overline{x}(t_1) + b(t_1)\int_0^{\infty} K(s)\overline{x}(t_1 - s)e_{\overline{\lambda}p}(t_1, t_1 - s)\Delta s \right. \\ &\quad + c(t_1)\sup_{s\in[t_1 - \tau(t_1), t_1]} \overline{x}(s)e_{\overline{\lambda}p}(t_1, s)\right) \\ (2.18) \quad \cdot \left(1 + \overline{\lambda}\mu(t_1)p(t_1)\right) + \overline{\lambda}p(t_1)\overline{x}(t_1).\end{aligned}$$

By (2.18), (2.17), (2.12), (1.12) and $1 - a(t)\mu(t) > 0$, $t \in \mathbb{T}$, we have (2.19)

$$\begin{split} \delta M &< \overline{x}(\sigma(t_1)) \leq \left(1 - a(t_1)\mu(t_1)\right) \left(1 + \overline{\lambda}\mu(t_1)p(t_1)\right) \overline{x}(t_1) + \mu(t_1)\left(1 + \overline{\lambda}\mu(t_1)p(t_1)\right) \\ &\cdot \left[b(t_1)\int_0^\infty K(s)\overline{x}(t_1 - s)e_{\overline{\lambda}p}(t_1, t_1 - s)\Delta s + c(t_1)\sup_{s\in[t_1-\tau(t_1),t_1]}\overline{x}(s)e_{\overline{\lambda}p}(t_1, s)\right] \\ &< \left(1 - a(t_1)\mu(t_1)\right) \left(1 + \overline{\lambda}\mu(t_1)p(t_1)\right)\delta M + \mu(t_1)\left(1 + \overline{\lambda}\mu(t_1)p(t_1)\right) \\ &\cdot \left[b(t_1)\int_0^\infty K(s)\overline{x}(t_1 - s)e_{\overline{\lambda}p}(t_1, t_1 - s)\Delta s + c(t_1)\sup_{t_1-\tau^*\leq s\leq t_1}\overline{x}(s)e_{\overline{\lambda}p}(t_1, t_1 - \tau^*)\right] \\ &\leq \left(1 - \overline{\lambda}^2\mu^2(t_1)p^2(t_1)\right)\delta M - \mu(t_1)\left(1 + \overline{\lambda}\mu(t_1)p(t_1)\right)\delta M \frac{\epsilon}{2} < \delta M. \end{split}$$

This gives a contradiction.

Hence the claim (2.14) holds. Since $\delta > 1$ is arbitrary, by letting $\delta \to 1^+$, we have $\overline{x}(t) \leq M$ for $t \in (t_0, \infty)_{\mathbb{T}}$. It then follows from (2.13) and (iii) of Lemma 4 that $x(t) \leq Me_{\ominus \overline{\lambda} p}(t, t_0)$ for $t \in (t_0, \infty)_{\mathbb{T}}$, and hence the assertion (2.5) is satisfied. This completes the proof.

Remark 2. If in (2.18), we use the formula for the delta-derivative, we get

$$(2.20)$$

$$\frac{\overline{x}(\sigma(t_1)) - \overline{x}(t_1)}{\mu(t_1)} = \overline{x}^{\Delta}(t_1) = \left(x(t)e_{\overline{\lambda}p}(t, t_0)\right)^{\Delta}\Big|_{t=t_1}$$

$$= x^{\Delta}(t_1)e_{\overline{\lambda}p}(t_1, t_0) + x(\sigma(t_1))\overline{\lambda}p(t_1)e_{\overline{\lambda}p}(t_1, t_0)$$

$$\leq \left(-a(t_1)x(t_1) + b(t_1)\int_{t_0}^{\infty} K(s)x(t_1 - s)\Delta s + c(t_1)\sup_{s\in[t_1 - \tau(t_1), t_1]} x(s)\right)e_{\overline{\lambda}p}(t_1, t_0)$$

$$+ x(\sigma(t_1))\overline{\lambda}p(t_1)e_{\overline{\lambda}p}(t_1, t_0)$$

$$= -a(t_1)\overline{x}(t_1) + b(t_1)\int_{t_0}^{\infty} K(s)\overline{x}(t_1 - s)e_{\overline{\lambda}p}(t_1, t_1 - s)\Delta s$$
$$+ c(t_1)\sup_{s\in[t_1-\tau(t_1),t_1]}\overline{x}(s)e_{\overline{\lambda}p}(t_1, s) + \overline{\lambda}p(t_1)e_{\overline{\lambda}p}(t_1, \sigma(t_1))\overline{x}(\sigma(t_1))$$
$$\leq -a(t_1)\overline{x}(t_1) + b(t_1)\int_{t_0}^{\infty} K(s)\overline{x}(t_1 - s)e_{\overline{\lambda}p}(t_1, t_1 - s)\Delta s$$
$$+ c(t_1)\sup_{t_1-\tau^*\leq s\leq t_1}\overline{x}(s)e_{\overline{\lambda}p}(t_1, t_1 - \tau^*) + \overline{\lambda}p(t_1)e_{\overline{\lambda}p}(t_1, \sigma(t_1))\overline{x}(\sigma(t_1)).$$

By (2.20), (2.12), (1.12) and $1 - a(t)\mu(t) > 0, t \in \mathbb{T}$, we have

$$(1 - \overline{\lambda}\mu(t_1)p(t_1))\delta M < (1 - \overline{\lambda}\mu(t_1)p(t_1)e_{\overline{\lambda}p}(t_1,\sigma(t_1)))\overline{x}(\sigma(t_1))$$

$$\leq (1 - a(t_1)\mu(t_1))\overline{x}(t_1) + b(t_1)\mu(t_1)\int_{t_0}^{\infty} K(s)\overline{x}(t_1 - s)e_{\overline{\lambda}p}(t_1,t_1 - s)\Delta s$$

$$+ c(t_1)\mu(t_1)\sup_{t_1 - \tau^* \leq s \leq t_1}\overline{x}(s)e_{\overline{\lambda}p}(t_1,t_1 - \tau^*)$$

$$(2.21) < (1 - \overline{\lambda}\mu(t_1)p(t_1))\delta M - \frac{\epsilon}{2}\mu(t_1)\delta M,$$

as long as $1 - \overline{\lambda}\mu(t)p(t) > 0$, and so (2.21) leads to a contradiction. So when $\mu(t) = \sigma(t) - t$ is bounded for $t \in \mathbb{T}$, we can choose a sufficiently small positive number $\overline{\lambda}$ satisfying $1 - \overline{\lambda}\mu(t)p(t) > 0$. This situation is similar to Case (2).

When either b(t) = 0, p(t) = 1 or c(t) = 0, p(t) = 1 we can obtain the following corollaries, which can be regarded as the extensions of Theorem 2.1, Theorem 2.2 of [1]; respectively.

Corollary 1. Let $x(\cdot)$ be a nonnegative function satisfying

(2.22)
$$x^{\Delta}(t) \le -a(t)x(t) + c(t) \sup_{s \in [t-\tau(t),t]} x(s), \quad t > t_0,$$

(2.23)
$$x(s) = |\varphi(s)| \quad \text{for } s \in [t_0 - \tau^*, t_0]_{\mathbb{T}_2}$$

where $\varphi(s)$ defined for $s \in (-\infty, t_0]_{\mathbb{T}}$ is rd-continuous and $\tau(\cdot)$, $a(\cdot)$, $c(\cdot)$ are defined on \mathbb{T} and denote nonnegative, rd-continuous bounded functions and

$$\sup_{t \in \mathbb{T}} \tau(t) = \tau *, \quad \sup_{s \in (-\infty, t_0]_{\mathbb{T}}} x(s) = M > 0.$$

Suppose

(2.24)
$$a(t) - c(t) \ge \epsilon = \inf_{t \in \mathbb{T}} \left(a(t) - c(t) \right) > 0, \quad t \in \mathbb{T}.$$

Then there exists a positive number $\overline{\lambda}$ such that

(2.25)
$$x(t) \le \left(\sup_{s \in [t_0 - \tau^*, t_0]_{\mathbb{T}}} x(s)\right) e_{\ominus \overline{\lambda}}(t, t_0), \quad t \in (t_0, \infty)_{\mathbb{T}}.$$

Corollary 2. Let $x(\cdot)$ be a nonnegative function satisfying

(2.26)
$$x^{\Delta}(t) \leq -a(t)x(t) + b(t) \int_{t_0}^{\infty} K(s)x(t-s)\Delta s, \quad t > t_0,$$

(2.27)
$$x(s) = |\varphi(s)| \quad \text{for } s \in (-\infty, t_0]_{\mathbb{T}},$$

where $\varphi(s)$ defined for $s \in (-\infty, t_0]_{\mathbb{T}}$ is rd-continuous and $\tau(\cdot)$, $a(\cdot)$, $b(\cdot)$ are defined on \mathbb{T} and denote nonnegative, rd-continuous bounded functions and

$$\sup_{t\in\mathbb{T}}\tau(t)=\tau*,\quad \sup_{s\in(-\infty,t_0]_{\mathbb{T}}}x(s)=M>0.$$

The delay kernel $K(\cdot)$ is assumed to satisfy the following properties,

(2.28)
$$K: [0,\infty)_{\mathbb{T}} \mapsto [0,\infty)_{\mathbb{T}} \text{ and } \forall t \in \mathbb{T}, \quad \int_0^\infty K(s) e_{\lambda_0}(t,t-s) \Delta s < \infty,$$

for some positive number λ_0 . Suppose further that

$$(2.29) \quad a(t) - b(t) \int_{t_0}^{\infty} K(s) \Delta s \ge \epsilon = \inf_{t \in \mathbb{T}} \left(a(t) - b(t) \int_{t_0}^{\infty} K(s) \Delta s \right) > 0, \quad t \in \mathbb{T}.$$

Then there exists a positive number λ such that

(2.30)
$$x(t) \le \left(\sup_{s \in (-\infty, t_0]_{\mathbb{T}}} x(s)\right) e_{\ominus \overline{\lambda}}(t, t_0), quadt \in (t_0, \infty)_{\mathbb{T}}.$$

3. Examples

Consider the delay dynamic equation

(3.1)
$$x^{\Delta}(t) = -a(t)x^{\sigma}(t) + b(t) \int_0^\infty K(s)x(t-s)\Delta s + c(t)x(t-\tau), \qquad t \in [t_0, +\infty)_{\mathbb{T}}$$

where $x(t) = \varphi(t)$, for $s \in (-\infty, t_0]_{\mathbb{T}}$, φ is rd-continuous and bounded. $a(t) \ge 0$, $b(t) \ge 0$, $c(t) \ge 0$, for $t \ge t_0$. Suppose that there exists a nonnegative rd-continuous bounded function p(t) such that $\int_{t_0}^{\infty} K(s) e_{\lambda_0 p}(t, t-s) \Delta s < \infty$, for all $t \in \mathbb{T}$ and some positive number λ_0 and $a(t) - b(t) \int_{t_0}^{\infty} K(s) \Delta s - c(t) \ge \epsilon > 0$ for all $t \in \mathbb{T}$ and some positive number ϵ . From (3.1), we have

$$x(t) = x(t_0)e_{-a}(t, t_0) + \int_{t_0}^t e_{-a}(t, \sigma(s)) \Big[b(s) \int_0^\infty K(v)x(s-v)\Delta v + c(s)x(s-\tau) \Big] \Delta s.$$

Let the functions y(t) be defined as follows: y(t) = |x(t)|, for $t \in (-\infty, t_0]_{\mathbb{T}}$ and (3.3)

$$y(t) = |x(t_0)|e_{-a}(t, t_0) + \int_{t_0}^t e_{-a}(t, \sigma(s)) \Big[b(s) \int_0^\infty K(v) |x(s-v)| \Delta v + c(s) \sup_{s-\tau \le \theta \le s} |x(\theta)| \Big] \Delta s$$

for $t > t_0$. Then we have $|x(t)| \le y(t)$, for all $t \in (-\infty, +\infty)_{\mathbb{T}}$.

By [16, Theorem 5.37], we get that

$$y^{\Delta}(t) = -a(t) \Big[|x(t_0)| e_{-a}(t, t_0) + \int_{t_0}^t e_{-a}(t, \sigma(s)) \Big[b(s) \int_0^\infty K(v) |x(s-v)| \Delta v \Big] \Big]$$

$$+ c(s) \sup_{s-\tau \le \theta \le s} |x(\theta)| \Big] \Delta s \Big] + b(t) \int_0^\infty K(v) |x(t-v)| \Delta v + c(t) \sup_{t-\tau \le \theta \le t} |x(\theta)|$$

$$(3.4) \leq -a(t)y(t) + b(t) \int_0^\infty K(v) |y(t-v)| \Delta v + c(t) \sup_{t-\tau \le \theta \le t} |y(\theta)|$$

for all $t \in [t_0, \infty)$. Therefore, it follows from main theorem that there exists a positive number $\overline{\lambda}$ such that

(3.5)
$$x(t) \le \left(\sup_{s \in (-\infty, t_0]_{\mathbb{T}}} x(s)\right) e_{\ominus \overline{\lambda} p}(t, t_0), \quad t \in (t_0, \infty)_{\mathbb{T}}.$$

In the following, we let $\mathbb{T} = \mathbb{Z}$ and choose some explicit functions for a(t), b(t), c(t), K(t) and p(t). Let

$$a(n) = \frac{n+2}{n+3}, \quad b(n) = \frac{n}{4(n+3)}, \quad c(n) = \frac{1}{2(n+3)}, \quad K(n) = \frac{1}{2^n}, \quad n \in \mathbb{N}.$$

We have

$$a(n) - b(n) \sum_{n=0}^{\infty} K(n) - c(n) = \frac{n+2}{n+3} - \frac{n}{4(n+3)} \sum_{n=0}^{\infty} \frac{1}{2^n} - \frac{1}{2(n+3)} = \frac{1}{2} = \epsilon > 0.$$

Let $p(n) = 1 + n \sin \frac{1}{n+1}$, we have

$$\sum_{j=0}^{\infty} K(j) e_{\lambda p}(n, n-j) \le \sum_{j=0}^{\infty} K(j) (1+2\lambda)^{j} e_{\lambda p}(n-j, n-j) = \sum_{j=0}^{\infty} \left(\frac{1+2\lambda}{2}\right)^{j},$$

where $e_{\lambda p}(n-j, n-j) = 1$. Clearly, as long as

$$\frac{1+2\lambda}{2} < 1 \Rightarrow \overline{\lambda} \in \left(0, \frac{1}{2}\right).$$

 So

$$\sum_{j=0}^{\infty} K(j) e_{\lambda p}(n, n-j) < \infty,$$
$$x(j) = |\varphi(j)|, \quad \text{for } j \le n_0.$$

Therefore the conditions (2.1), (2.2), (2.3), (2.4) are satisfied. Then there exists a positive number $\overline{\lambda}$ such that

$$x(n) \le \left(\sup_{j \le n_0} |\varphi(j)|\right) e_{\ominus \overline{\lambda} p}(n, n_0), \quad n > n_0, \overline{\lambda} \in \left(0, \frac{1}{2}\right).$$

It is easy to get that $1 + \ominus \overline{\lambda} p = \frac{1}{2+n \sin \frac{1}{n+1}} \leq \frac{1}{2}$. So $e_{\ominus \overline{\lambda} p}(n, n_0) \leq \left(\frac{1}{2}\right)^{n-n_0}$. Therefore we get that

$$x(n) \le \left(\sup_{j \le n_0} |\varphi(j)|\right) \left(\frac{1}{2}\right)^{n-n_0}, \quad n > n_0, \overline{\lambda} \in (0, \frac{1}{2}).$$

REFERENCES

- S. Mohamad and K. Gopalsamy, Continuous and discrete Halanay-type inequalities, Bull. Aust. Math. Soc. 61 (2000), 371–385.
- [2] M. Adivar and E. A. Bohner, Halanay type inequalities on time scales with applications, Nonlinear Analysis 74 (2011), 7519–7531.
- [3] R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods and Applications, Marcel Dekker Inc., New York, 1992.
- [4] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York, NY USA, 1966.
- [5] A. Ivanov, E. Liz and S. Trofimchuk, Halanay inequality, Yorke 3/2 stability criterion, and differential equations with maxima, Tokohu Math. J. 54 (2002), 277–295.
- [6] W. Wang, A generalized Halanay inequality for stability of nonlinear neutral functional differential equations, J. Inequal. Appl. (2010), Article ID 475019.
- [7] R. P. Agarwal, Y. H. Kim and S. K. Sen, New discrete Halanay inequalities: stability of difference equations, Commun. Appl. Anal. 12 (2008), 83–90.
- [8] R. P. Agarwal, Y. H. Kim and S. K. Sen, Advanced discrete Halanay type inequalities: stability of difference equations, J. Inequal. Appl. (2009), Article ID 535849.
- [9] S. Udpin and P. Niamsup, New discrete type inequalities and global stability of nonlinear difference equations, Appl. Math. Lett. 22 (2009), 856–859.
- [10] E. Liz and J. B. Ferreiro, A note on the global stability of generalized difference equations, Appl. Math. Lett. 15 (2002), 655–659.
- [11] C. T. Baker, Development and application of Halanay-type theory: Evolutionary differential and difference equations with time lag, J. Comput. Appl. Math. 234 (2010), 2663–2682.
- [12] C. T. Baker and A. Tang, Generalized Halanay inequalities for Volterra functional differential equations and discretised versions, Numerical Analysis Report 229, Manchester Center for Computational Mathematics, University of Manchester, England, 1996.
- [13] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
- S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18–56.
- [15] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser Boston Inc., Boston, MA, 2001.
- [16] M. Bohner and A. Peterson, editors, Advances in Dynamic Equations on Time Scales, Birkhäuser Boston Inc., Boston, MA, 2003.
- [17] K. L. Cooke and I. Gyori, Numerical approximation of the solutions of delay differential equations on an infinite interval using piecewise constant arguments, Comp. Math. Appl. 28 (1994), 81–92.
- [18] B. G. Jia, L. Erbe and R. Mert, A Halanay-type inequality on time scales in higher dimensional spaces, Math. Inequal. Appl. 17 (2014), 813–821.