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ABSTRACT. We analyze set-valued stochastic integral equations whose solutions are mappings

with values in the hyperspace of subsets of square integrable random vectors space. In this paper

we give a new formulation of these equations resulting in a new property of solutions. Namely,

the diameter of the solution values will be a nonincreasing function. Hence we call these equations

“narrowing”. We prove a result on existence and uniqueness of the solution to the narrowing set-

valued stochastic integral equations. We establish a boundedness type result for the solution and

an error of an approximate solution. Also the continuous dependence of the solution with respect

to data of the equation is shown.
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1. INTRODUCTION

Set-valued mappings appear naturally in many branches of science, such as eco-

nomics, biomathematics, physics, game theory, artificial intelligence (see e.g. [7, 13]

and references therein). There is a huge interest in this area due to many applica-

tions in control theory and optimization (see e.g. [4]–[6] and references therein). Also,

thinking about mathematical models of dynamical systems with incomplete informa-

tion or systems with velocities that are not uniquely determined, one often focuses

on set-valued differential equations [25].

Set-valued differential equations with solutions taking on values in compact and

convex subsets of the Euclidean space were introduced in [9, 10, 12] and studied since

then by many authors. Their range includes, for instance, existence of solutions [1],

stability [2, 3, 8, 16, 17, 19, 41, 43], equations involving causal operators [14, 16, 23],

monotone iterative technique [15], variation of constants formula [18], equations on

time scales [20, 28, 43], periodic solutions [21], monotone flows [27], equations with

second type Hukuhara derivative [29]–[32], quasilinearization [42].
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On the other hand a new mathematical apparatus in a form of set-valued sto-

chastic integral equations [33]–[40] generalizes the deterministic set-valued differential

equations to a stochastic extent. The papers we have been doing so far use a for-

mulation of the set-valued stochastic integral equations in such a form, nevertheless

- very natural, which causes that the diameter of the solution values is a nondecreas-

ing function. We show this in Theorem 3.1 of the current paper, where we consider

the set-valued stochastic integral equations with solutions being set-valued mappings

taking on values in the hyperspace of nonempty closed bounded and convex subsets

of square integrable random vectors space. This paper presents a study of set-valued

stochastic equations with solutions having a nonincreasing diameter of their values.

This is shown in Theorem 3.2 later on. Accordingly to the new property of solutions

we call these equations “narrowing”. Consequently the equations studied earlier are

called the “widening” set-valued stochastic integral equations. We show that the the-

ory of the narrowing set-valued stochastic integral equations is well-posed. Existence

of unique solution is shown together with the stabilities of the solution under small

changes of the equation parameters. As distict from the usual analysis, to obtain

existence of solutions we impose existence of some Hukuhara differences, see condi-

tion (H4). This condition is necessary and cannot be omitted. It is not used in the

previously studied widening equations, because in their analysis there is no need to

use the Hukuhara differences. The existence of solutions is obtained under Lipschitz

condition with an integrable stochastic process instead of the Lipschitz constant and

a condition of boundedness by an integrable stochastic process.

The paper is organized as follows. In Section 2 we summarize some preliminary

facts and properties on the Hukuhara difference, set-valued stochastic processes and

set-valued stochastic trajectory integrals. The main results are presented in Section 3.

We introduce the notion of the narrowing set-valued stochastic integral equation.

Then, the existence and uniqueness of solutions is proven. Also, the continuous

dependence of solutions with respect to data of the equation is shown. We indicate

that under conditions (H1)–(H3), considered in Section 3, the similar results can be

obtained for the widening set-valued stochastic integral equations.

2. PRELIMINARIES

Let X be a separable Banach space, and let Kb
c(X ) be the hyperspace of all

nonempty closed bounded and convex subsets of X . The Hausdorff metric HX in

Kb
c(X ) is defined by

HX (A, B) := max

{

sup
a∈A

distX (a, B), sup
b∈B

distX (b, A)

}

,

where distX (a, B) := inf
b∈B

‖a−b‖X and ‖·‖X denotes a norm in X . It is known (see [22])

that (Kb
c(X ), HX ) is a complete metric space. The addition and the multiplication by
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reals are defined as usual, i.e. for A, B ∈ Kb
c(X ) and µ ∈ R we have A + B := {a + b :

a ∈ A, b ∈ B}, µA := {µa : a ∈ A}. The Hukuhara difference of A, B ∈ Kb
c(X ) is

defined as the set A ⊖ B ∈ Kb
c(X ) such that (A ⊖ B) + B = A. If A ⊖ B exists, it is

unique.

For the metric HX and A, B, C, D ∈ Kb
c(X ) and µ ∈ R one has

(P1) HX (A + B, C + D) 6 HX (A, C) + HX (B, D),

(P2) HX (µA, µB) = |µ|HX (A, B),

(P3) HX (A + C, B + C) = HX (A, B),

(P4) if A ⊖ B exists then HX (A ⊖ B, {0}) = HX (A, B),

(P5) if A ⊖ B and A ⊖ C exist then HX (A ⊖ B, A ⊖ C) = HX (B, C),

(P6) if A ⊖ B and C ⊖ D exist then HX (A ⊖ B, C ⊖ D) 6 HX (A, C) + HX (B, D).

Also, it is known [22] that the family of nonempty, closed and convex subsets of a

separable and reflexive Banach space X supplied with the Mosco topology τMX
is

a Polish topological space. The Mosco topology is metrizable and weaker than the

topology τHX
generated by the Hausdorff metric HX .

Let (U,U , µ) be a measure space. Recall that a set-valued mapping F : U →

Kb
c(X ) is said to be U-measurable (or set-valued random variable) if it satisfies:

{u ∈ U : F (u) ∩ O 6= ∅} ∈ U for every open set O ⊂ X .

A set-valued random variable F is said to be Lp-integrally bounded (p > 1), if u 7→

HX (F (u), {0}) belongs to Lp(U,U , µ; R).

Define I := [0, T ], where T < ∞. Let (Ω,A, {At}t∈I , P ) be a complete fil-

tered probability space satisfying usual hypotheses, i.e. {At}t∈I is an increasing and

right continuous family of sub-σ-algebras of A and A0 contains all P -null sets. Let

{B(t)}t∈I be an {At}-Brownian motion. Let N denote the σ-algebra of the nonan-

ticipating elements in I × Ω, i.e.

N = {A ∈ βI ⊗A : At ∈ At for every t ∈ I},

where βI is the Borel σ-algebra of subsets of I and At = {ω : (t, ω) ∈ A}. A d-

dimensional stochastic process f : I × Ω → R
d is called nonanticipating if f(·, ·) is

N -measurable.

By λ we denote the Lebesgue measure on (I, βI). Consider the space

L2
N (λ × P ) := L2(I × Ω,N , λ × P ; Rd).

Then for every f ∈ L2
N (λ × P ) and τ, t ∈ I, τ < t the Itô stochastic integral

∫ t

τ
f(s)dB(s) exists and one has

∫ t

τ
f(s)dB(s) ∈ L2(Ω,At, P ; Rd) ⊂ L2(Ω,A, P ; Rd).
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Let F : I × Ω → Kb
c(R

d) be a set-valued stochastic process, i.e. a family of A-

measurable set-valued mappings F (t, ·) : Ω → Kb
c(R

d), t ∈ I. We call F nonanticipat-

ing if F (·, ·) is an N -measurable set-valued mapping. Let us define the set

S2
N (F, λ × P ) := {f ∈ L2

N (λ × P ) : f ∈ F, λ × P -a.e.}.

If F is L2
N (λ×P )-integrally bounded, then by the Kuratowski and Ryll-Nardzewski

Selection Theorem (see [24]) it follows that S2
N (F, λ × P ) 6= ∅. Hence for every

τ, t ∈ I, τ < t we can define the set-valued stochastic Aumann trajectory integral

(S)
∫ t

τ
F (s)ds as a subset of L2(Ω,At, P ; Rd) in the following way:

(S)

∫ t

τ

F (s)ds :=

{
∫ t

τ

f(s)ds : f ∈ S2
N (F, λ × P )

}

.

Now we consider the set-valued stochastic Itô trajectory integral. Like in the

preceding considerations, let F : I×Ω → Kb
c(R

d) be a nonanticipating and L2
N (λ×P )-

integrally bounded set-valued stochastic process. Then for τ, t ∈ I, τ < t we can

define the set-valued trajectory Itô stochastic integral

(S)

∫ t

τ

F (s)dB(s) :=

{
∫ t

τ

f(s)dB(s) : f ∈ S2
N (F, λ × P )

}

.

By this definition we have
∫ t

τ
F (s)dB(s) ⊂ L2(Ω,At, P ; Rd).

Lemma 2.1. Let r ∈ R and let F : I × Ω → Kb
c(R

d) be a nonanticipating and

L2
N (λ × P )-integrally bounded set-valued stochastic process. Then for τ < t (τ, t ∈ I)

(S)

∫ t

τ

rF (s)ds = r(S)

∫ t

τ

F (s)ds and (S)

∫ t

τ

rF (s)dB(s) = r(S)

∫ t

τ

F (s)dB(s).

In the rest of the paper, for the sake of convenience, we will write L2 instead

of L2(Ω,A, P ; Rd) and L2
t instead of L2(Ω,At, P ; Rd) where t ∈ I. From now on we

assume that the σ-algebra A is separable with respect to the probability measure P .

We have the following properties for the stochastic trajectory integrals (see e.g.

[37, 38]).

Lemma 2.2. For a nonanticipating and L2
N (λ × P )-integrally bounded set-valued

stochastic process F : I × Ω → Kb
c(R

d) and for every τ, a, t ∈ I, τ 6 a 6 t it holds

that

(S)

∫ t

τ

F (s)ds = (S)

∫ a

τ

F (s)ds + (S)

∫ t

a

F (s)ds, and

(S)

∫ t

τ

F (s)dB(s) = (S)

∫ a

τ

F (s)dB(s) + (S)

∫ t

a

F (s)dB(s).
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Lemma 2.3. Let F, G : I ×Ω → Kb
c(R

d) be nonanticipating and L2
N (λ×P )-integrally

bounded set-valued stochastic processes. Then for every τ, t ∈ I, τ < t

H2
L2

(

(S)

∫ t

τ

F (s)ds, (S)

∫ t

τ

G(s)ds

)

6 (t − τ)

∫

[τ,t]×Ω

H2
Rd(F, G)ds × dP, and

H2
L2

(

(S)

∫ t

τ

F (s)dB(s), (S)

∫ t

τ

G(s)dB(s)

)

6

∫

[τ,t]×Ω

H2
Rd(F, G)ds × dP.

Lemma 2.4. Let F : I ×Ω → Kb
c(R

d) be a nonanticipating and L2
N (λ×P )-integrally

bounded set-valued stochastic process. Then the mappings

[τ, T ] ∋ t 7→ (S)

∫ t

τ

F (s)ds ∈ Kb
c(L

2), [τ, T ] ∋ t 7→ (S)

∫ t

τ

F (s)dB(s) ∈ Kb
c(L

2)

are HL2-continuous.

3. SET-VALUED STOCHASTIC INTEGRAL EQUATIONS

Let F, G : I × Ω × Kb
c(L

2) → Kb
c(R

d) and X0 ∈ Kb
c(L

2
0) be given. By a set-

valued stochastic integral equation we mean the following relation in the metric space

(Kb
c(L

2), HL2):

(3.1) X(t) = X0 + (S)

∫ t

0

F (s, X(s))ds + (S)

∫ t

0

G(s, X(s))dB(s) for t ∈ I.

By a global solution to (3.1) we mean an HL2-continuous set-valued mapping

X : I → Kb
c(L

2) that satisfies (3.1). A global solution X : I → Kb
c(L

2) to (3.1) is

unique if X(t) = Y (t) for every t ∈ I, where Y : I → Kb
c(L

2) is any solution of (3.1).

Let J := [0, T̃ ] ⊂ I = [0, T ], where T̃ < T . A set-valued mapping X : J → Kb
c(L

2) is

said to be a local solution to (3.1) if it is HL2-continuous and satisfies (3.1) for t ∈ J .

The uniqueness of the local solution is defined in an obvious way.

Theorem 3.1. Suppose that X : I → Kb
c(L

2) is a global solution to (3.1). Then the

function t 7→ diamX(t) is nondecreasing.

Proof. Since X is a solution to (3.1) and Lemma 2.2 holds, we can write for τ < t

(τ, t ∈ I) that

X(t) = X(τ) + (S)

∫ t

τ

F (s, X(s))ds + (S)

∫ t

τ

G(s, X(s))dB(s).

Let x be a fixed point from the set (S)
∫ t

τ
F (s, X(s))ds + (S)

∫ t

τ
G(s, X(s))dB(s).

Then we have X(t) ⊃ X(τ) + {x} which implies that diamX(t) > diamX(τ).

The same property is true for local solutions to (3.1) and it convinces that we can

call equations of type (3.1) as the widening set-valued stochastic integral equations.
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In order to consider the mappings X : I → Kb
c(L

2) with the nonincreasing diam-

eter function diamX(·) as some solutions to the set-valued stochastic integral equa-

tions, it is necessary to change the form of the equation. Below we present such a

variation of formulation of the set-valued stochastic integral equations. Namely, we

will consider the equations of the following form:

(3.2) X(t)+(S)

∫ t

0

(−1)F (s, X(s))ds+(S)

∫ t

0

(−1)G(s, X(s))dB(s) = X0 for t ∈ I.

It is easy to see that in the case of singleton-valued X0, F and G the equations (3.1)

and (3.2) coincide. Both of them generalize the classical single-valued stochastic

differential equations.

Note that the equation (3.2) can be rewritten as

(3.3) X(t) = X0 ⊖

[

(S)

∫ t

0

(−1)F (s, X(s))ds + (S)

∫ t

0

(−1)G(s, X(s))dB(s)

]

for t ∈ I. We will call the equations (3.2) as the narrowing set-valued stochastic

integral equations because, as we prove below, their solutions X possess property

that diamX(·) is nonincreasing. The global and local solutions to (3.2) and their

uniqueness are defined like for the global and local solutions to (3.1).

Theorem 3.2. Let X : I → Kb
c(L

2) be a global solution to (3.2). Then the function

t 7→ diamX(t) is nonincreasing.

Proof. Note that due to Lemma 2.2 we have

X(t) + (S)

∫ t

τ

(−1)F (s, X(s))ds + (S)

∫ t

τ

(−1)G(s, X(s))dB(s)

= X0 ⊖

[

(S)

∫ τ

0

(−1)F (s, X(s))ds + (S)

∫ τ

0

(−1)G(s, X(s))dB(s)

]

for τ < t. The Hukuhara difference above exists because X is a solution to (3.2) and it

equals X(τ). Choosing any point x that belongs to the set (S)
∫ t

τ
(−1)F (s, X(s))ds+

(S)
∫ t

τ
(−1)G(s, X(s))dB(s) we get

X(t) + {x} ⊂ X(τ).

As a consequence, the inequality diamX(t) 6 diamX(τ) follows easily.

A similar assertion holds true for the local solutions to (3.2).

Below we present an existence and uniqueness theorem. It will be achieved with

the following conditions imposed on the data of the equation.

Assume that X0 ∈ Kb
c(L

2
0) and F, G : I × Ω ×Kb

c(L
2) → Kb

c(R
d) satisfy

(H1) the set-valued mappings F (·, ·, ·), G(·, ·, ·) : I × Ω × Kb
c(L

2) → Kb
c(R

d) are N ×

β(τM
L2

)-measurable, where β(τM
L2

) is the Borel σ-algebra induced by the Mosco

topology τM
L2

,
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(H2) there exists KF ∈ L2(I × Ω, βI ⊗ A, λ × P ; R) such that λ × P -a.e. for every

A, B ∈ Kb
c(L

2)

H2
Rd

(

F (t, ω, A), F (t, ω, B)
)

6 KF (t, ω)H2
L2(A, B),

and there exists KG ∈ L2(I ×Ω, βI ⊗A, λ×P ; R) such that λ×P -a.e. for every

A, B ∈ Kb
c(L

2)

H2
Rd

(

G(t, ω, A), G(t, ω, B)
)

6 KG(t, ω)H2
L2(A, B),

(H3) there exists CF ∈ L1(I × Ω, βI ⊗A, λ × P ; R) such that λ × P -a.e.

H2
Rd

(

F (t, ω, {Θ}), {θ}
)

6 CF (t, ω),

and there exists CG ∈ L1(I × Ω, βI ⊗A, λ × P ; R) such that λ × P -a.e.

H2
Rd

(

G(t, ω, {Θ}), {θ}
)

6 CG(t, ω),

where Θ, θ denote the zero elements in L2 and R
d, respectively,

(H4) there exists T̃ ∈ (0, T ] such that the sequence {Xn}∞n=0 described by

X0(t) = X0, t ∈ J = [0, T̃ ],

and for n = 1, 2, . . . and for t ∈ J

Xn(t) = X0 ⊖

[

(S)

∫ t

0

(−1)F (s, Xn−1(s))ds + (S)

∫ t

0

(−1)G(s, Xn−1(s))dB(s)

]

can be defined, i.e. the Hukuhara differences do exist.

Notice that the conditions (H2) and (H3) formulated with integrable stochastic pro-

cesses KF , KG, CF , CG are weaker than the Lipschitz assumptions with constants and

boundedness conditions with constants. The condition (H4) cannot be omitted in the

studies of equation (3.2). It is motivated by the representation (3.3).

In what follows we present a result on existence of unique solution to (3.2). Due

to (H4) this solution can be local or global depending on whether T̃ < T or T̃ = T .

In its proof, the sequence {Xn}∞n=0 will be exploited. Below we make a discussion

that under conditions (H1)–(H4) each Xn is a well-defined HL2-continuous set-valued

mapping.

Indeed, starting with X0(·) we see easily that X0(·) is well-defined. Now, using

(H1), we observe that the set-valued mappings F (·, ·, X0), G(·, ·, X0) : I×Ω → Kb
c(R

d)

are nonanticipating. Due to (H2) and (H3) the following inequalities hold λ× P -a.e.

H2
Rd(F (t, ω, X0), {θ}) 6 2KF (t, ω)H2

L2(X0, {Θ}) + 2CF (t, ω),

H2
Rd(G(t, ω, X0), {θ}) 6 2KG(t, ω)H2

L2(X0, {Θ}) + 2CG(t, ω).

Hence we can infer that F (·, ·, X0) and G(·, ·, X0) are L2
N (λ×P )-integrally bounded.

This allows us to claim that the set-valued stochastic trajectory integrals in formu-

lation of X1(t) are well-defined and belong to Kb
c(L

2
t ). Since X0 ∈ Kb

c(L
2
0) ⊂ Kb

c(L
2
t )
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and it is assumed that the Hukuhara differences in (H4) exist, we obtain that X1(t) ∈

Kb
c(L

2
t ) for every t ∈ J . Lemma 2.4 allows us to infer that the mapping t 7→ X1(t) is

HL2-continuous. Since the Mosco topology τM
L2

is is weaker than the topology gener-

ated by the Hausdorff metric HL2 , the mapping t 7→ X1(t) is continuous with respect

to topology τM
L2

as well. Hence the set-valued mappings (t, ω) 7→ F (t, ω, X1(t)) and

(t, ω) 7→ G(t, ω, X1(t)) are nonanticipating. Since

H2
Rd(F (t, ω, X1(t)), {θ}) 6 2KF (t, ω) sup

t∈J
H2

L2(X1(t), {Θ}) + 2CF (t, ω),

H2
Rd(G(t, ω, X1(t)), {θ}) 6 2KG(t, ω) sup

t∈J
H2

L2(X1(t), {Θ}) + 2CG(t, ω)

and supt∈J H2
L2

(

X1(t), {Θ}
)

< ∞, we get that (t, ω) 7→ F (t, ω, X1(t)) and (t, ω) 7→

G(t, ω, X1(t)) are L2
N (λ×P )-integrally bounded. Now we are able to state that X2 is

well-defined and HL2-continuous. Proceeding recursively one can see that every Xn

is well-defined and HL2-continuous.

Theorem 3.3. Let X0 ∈ Kb
c(L

2
0) and F, G : I × Ω ×Kb

c(L
2) → Kb

c(R
d) satisfy condi-

tions (H1)–(H4). Then equation (3.2) has a unique local (or global) solution.

Proof. It is clear that using Lemma 2.4 we obtain that each Xn is continuous with

respect to the metric HL2. We shall show that {Xn}∞n=0 is a Cauchy sequence in the

space C(J,Kb
c(L

2)) endowed with a supremum metric.

Due to property (P6), Lemma 2.1, (P3) and (P1) we have for t ∈ J

H2
L2(X1(t), X0(t))

= H2
L2

(

(S)

∫ t

0

F (s, X0)ds + (S)

∫ t

0

G(s, X0)dB(s), {Θ}

)

6 2H2
L2

(

(S)

∫ t

0

F (s, X0)ds, {Θ}

)

+ 2H2
L2

(

(S)

∫ t

0

G(s, X0)dB(s), {Θ}

)

.

Now by Lemma 2.3

H2
L2(X1(t), X0(t))

6 2t

∫

[0,t]×Ω

H2
Rd(F (s, X0), {θ})ds × dP + 2

∫

[0,t]×Ω

H2
Rd(G(s, X0), {θ})ds × dP

6 4t

∫

[0,t]×Ω

H2
Rd(F (s, X0), F (s, {Θ}))ds× dP

+ 4t

∫

[0,t]×Ω

H2
Rd(F (s, {Θ}), {θ})ds× dP

+ 4

∫

[0,t]×Ω

H2
Rd(G(s, X0), G(s, {Θ}))ds× dP

+ 4

∫

[0,t]×Ω

H2
Rd(G(s, {Θ}), {θ})ds× dP
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and by the assumptions (H2) and (H3)

H2
L2(X1(t), X0(t)) 6 (4t + 4)H2

L2(X0, {Θ})

∫

[0,t]×Ω

(KF (s) + KG(s))ds × dP

+ (4t + 4)

∫

[0,t]×Ω

(CF (s) + CG(s))ds × dP

6 M1,

where

M1 = (4T̃ + 4)
[

H2
L2(X0, {Θ})

∫

J×Ω

(KF (s) + KG(s))ds × dP

+

∫

J×Ω

(CF (s) + CG(s))ds × dP
]

< ∞.(3.4)

For n > 2 we have

H2
L2(Xn(t), Xn−1(t))

6 2t

∫

[0,t]×Ω

KF (s)H2
L2(Xn−1(s), Xn−2(s))ds × dP

+ 2

∫

[0,t]×Ω

KG(s)H2
L2(Xn−1(s), Xn−2(s))ds × dP

6

[

2t

(
∫

[0,t]×Ω

K2
F (s)ds × dP

)1/2

+ 2

(
∫

[0,t]×Ω

K2
G(s)ds × dP

)1/2
]

×

(
∫

[0,t]×Ω

H4
L2(Xn−1(s), Xn−2(s))ds × dP

)1/2

.

Hence

H4
L2(Xn(t), Xn−1(t)) 6 M2

∫ t

0

H4
L2(Xn−1(s), Xn−2(s))ds,

where

(3.5) M2 = 8T̃ 2

∫

J×Ω

K2
F (s)ds × dP + 8

∫

J×Ω

K2
G(s)ds × dP.

This allows us to infer that

(3.6) HL2(Xn(t), Xn−1(t)) 6

(

M1
(M2t)

n−1

(n − 1)!

)1/4

and

sup
t∈J

HL2(Xn(t), Xn−1(t)) 6

(

M1
(M2T̃ )n−1

(n − 1)!

)1/4

.

Consequently for m < n

sup
t∈J

HL2(Xn(t), Xm(t)) 6

n−1
∑

k=m

(

M1
(M2T̃ )k

k!

)1/4

.
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Now it is clear that {Xn} is a Cauchy sequence in C(J,Kb
c(L

2)). Thus there exists

X ∈ C(J,Kb
c(L

2)) such that

sup
t∈J

HL2(Xn(t), X(t)) → 0 as n → ∞.

In the sequel we shall show that X is a solution to (3.2). Observe that for every

fixed t ∈ J we have

H2
L2

(

X(t), X0 ⊖

[

(S)

∫ t

0

(−1)F (s, X(s))ds + (S)

∫ t

0

(−1)G(s, X(s))dB(s)

])

6 2H2
L2(X(t), Xn(t)) + 2Rn(t),

where

Rn(t) = H2
L2

(

X0 ⊖
[

(S)

∫ t

0

(−1)F (s, Xn−1(s))ds + (S)

∫ t

0

(−1)G(s, Xn−1(s))dB(s)
]

,

X0 ⊖
[

(S)

∫ t

0

(−1)F (s, X(s))ds + (S)

∫ t

0

(−1)G(s, X(s))dB(s)
])

.

Note that

Rn(t) 6 2H2
L2

(

(S)

∫ t

0

F (s, Xn−1(s))ds, (S)

∫ t

0

F (s, X(s))ds

)

+ 2H2
L2

(

(S)

∫ t

0

G(s, Xn−1(s))dB(s), (S)

∫ t

0

G(s, X(s))dB(s)

)

6

[

2t

(
∫

[0,t]×Ω

K2
F (s)ds × dP

)1/2

+ 2

(
∫

[0,t]×Ω

K2
G(s)ds × dP

)1/2
]

×

(
∫

[0,t]×Ω

H4
L2(Xn−1(s), X(s))ds × dP

)1/2

.

Hence

R2
n(t) 6 M2

∫ t

0

H4
L2(Xn−1(s), X(s))ds

6 M2T̃

(

sup
t∈J

HL2(Xn−1(t), X(t))

)4

.

Since supt∈J HL2(Xn−1(t), X(t))
n→∞
−→ 0, we have Rn(t)

n→∞
−→ 0 for every t ∈ J . Now it

is easy to see that

HL2

(

X(t), X0 ⊖

[

(S)

∫ t

0

(−1)F (s, X(s))ds + (S)

∫ t

0

(−1)G(s, X(s))dB(s)

])

= 0

for every t ∈ J . This means that X is a solution to (3.2).

Suppose that X : J → Kb
c(L

2) and Y : J → Kb
c(L

2) are two solutions to (3.2).

Then it can be verified that for t ∈ J

H4
L2(X(t), Y (t)) 6 M2

∫ t

0

H4
L2(X(s), Y (s))ds.
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Thus, after application of the Gronwall inequality, we can infer that

H4
L2(X(t), Y (t)) = 0 for every t ∈ J

which implies that X(t) = Y (t) for every t ∈ J . Hence the uniqueness of X is

proven.

The sequence {Xn} defined in (H4) converges to the solution X : J → Kb
c(L

2) to

(3.2). Hence it can derive some approximate solutions to (3.2). An estimation of an

error between the nth approximation Xn and the exact solution X is a subject of the

next result.

Proposition 3.4. Let for X0 ∈ Kb
c(L

2
0) and F, G : I × Ω × Kb

c(L
2) → Kb

c(R
d) the

conditions (H1)–(H4) be satisfied. Then for every n ∈ N it holds that

sup
t∈J

HL2(Xn(t), X(t)) 6 23/4

(

M1
(M2T̃ )n

n!

)1/4

exp{2M2T̃},

where the constants M1 and M2 are defined as in (3.4) and (3.5), respectively.

Proof. Proceeding similarly like in the proof of Theorem 3.3 we get for t ∈ J

H2
L2(Xn(t), X(t))

6 2t

(
∫

[0,t]×Ω

K2
F (s)ds × dP

∫

[0,t]×Ω

H4
L2(Xn−1(s), X(s))ds × dP

)1/2

+ 2

(
∫

[0,t]×Ω

K2
G(s)ds × dP

∫

[0,t]×Ω

H4
L2(Xn−1(s), X(s))ds × dP

)1/2

.

Hence

H4
L2(Xn(t), X(t))

6 M2

∫ t

0

H4
L2(Xn−1(s), X(s))ds

6 8M2

∫ t

0

H4
L2(Xn−1(s), Xn(s))ds + 8M2

∫ t

0

H4
L2(Xn(s), X(s))ds

and by (3.6) we can write

H4
L2(Xn(t), X(t)) 6 8M1

(M2T̃ )n

n!
+ 8M2

∫ t

0

H4
L2(Xn(s), X(s))ds.

Thus by the Gronwall inequality

H4
L2(Xn(t), X(t)) 6 8M1

(M2T̃ )n

n!
exp{8M2t} for every t ∈ J

and the assertion follows easily.
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Proposition 3.5. Under assumptions of Theorem 3.3 for the solution X : J →

Kb
c(L

2) to (3.2) it holds that

sup
t∈J

HL2(X(t), {Θ}) 6 M3 exp{8M2T̃},

where

M3 =
[

8H4
L2(X0, {Θ}) + 28T̃ 2

(

∫

J×Ω

CF (s)ds × dP
)2

+ 28
(

∫

J×Ω

CG(s)ds × dP
)2]1/4

and M2 is defined like in (3.5).

Proof. By (P4), the triangle inequality, Lemma 2.1 and (P1) we have for t ∈ J

H4
L2(X(t), {Θ})

6

[

HL2(X0, {Θ})

+ HL2

(

(S)

∫ t

0

F (s, X(s))ds + (S)

∫ t

0

G(s, X(s))dB(s), {Θ}

)

]4

.

Hence

H4
L2(X(t), {Θ})

6 8H4
L2(X0, {Θ})

+ 8H4
L2

(

(S)

∫ t

0

F (s, X(s))ds + (S)

∫ t

0

G(s, X(s))dB(s), {Θ}

)

.

Thus

H4
L2(X(t), {Θ})

6 8H4
L2(X0, {Θ}) + 26H4

L2

(

(S)

∫ t

0

F (s, X(s))ds, {Θ}

)

+ 26H4
L2

(

(S)

∫ t

0

G(s, X(s))dB(s), {Θ}

)

.

Due to Lemma 2.3

H4
L2(X(t), {Θ})

6 8H4
L2(X0, {Θ}) + 26

[

2t

∫

[0,t]×Ω

H2
Rd(F (s, X(s)), F (s, {Θ}))ds× dP

+ 2t

∫

[0,t]×Ω

H2
Rd(F (s, {Θ}), {θ})ds× dP

]2

+ 26
[

2

∫

[0,t]×Ω

H2
Rd(G(s, X(s)), G(s, {Θ}))ds× dP

+ 2

∫

[0,t]×Ω

H2
Rd(G(s, {Θ}), {θ})ds× dP

]2
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and due to assumptions (H2) and (H3)

H4
L2(X(t), {Θ})

6 8H4
L2(X0, {Θ})

+ 26
[

2t

∫

[0,t]×Ω

KF (s)H2
L2(X(s), {Θ})ds × dP + 2t

∫

[0,t]×Ω

CF (s)ds × dP
]2

+ 26
[

2

∫

[0,t]×Ω

KG(s)H2
L2(X(s), {Θ})ds× dP + 2

∫

[0,t]×Ω

CG(s)ds × dP
]2

.

Further

H4
L2(X(t), {Θ})

6 8H4
L2(X0, {Θ})

+ 26
[

2t

(
∫

[0,t]×Ω

K2
F (s)ds × dP

∫

[0,t]×Ω

H4
L2(X(s), {Θ})ds × dP

)1/2

+ 2t

∫

[0,t]×Ω

CF (s)ds × dP
]2

+ 26
[

2

(
∫

[0,t]×Ω

K2
G(s)ds × dP

∫

[0,t]×Ω

H4
L2(X(s), {Θ})ds × dP

)1/2

+ 2

∫

[0,t]×Ω

CG(s)ds × dP
]2

.

Hence

H4
L2(X(t), {Θ})

6 8H4
L2(X0, {Θ})

+ 26
[

4t2
∫

[0,t]×Ω

K2
F (s)ds × dP

∫

[0,t]×Ω

H4
L2(X(s), {Θ})ds × dP

+ 4t2
(

∫

[0,t]×Ω

CF (s)ds × dP
)2]

+ 26
[

4

∫

[0,t]×Ω

K2
G(s)ds × dP

∫

[0,t]×Ω

H4
L2(X(s), {Θ})ds× dP

+ 4
(

∫

[0,t]×Ω

CG(s)ds × dP
)2]

6 M4
3 + 32M2

∫ t

0

H4
L2(X(s), {Θ})ds.

Applying the Gronwall inequality we infer that

H4
L2(X(t), {Θ}) 6 M4

3 exp{32M2t} for every t ∈ J,

which yields the assertion.

It is worth mentioning that the theory of narrowing set-valued stochastic integral

equations will be well-posed, if we show that the solutions to (3.2) do not change
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much if the data of the equation have some small changes. Below we present some

studies in this direction.

Consider equation (3.2) and the same equation with another initial value X̃0, i.e.

(3.7) X(t)+(S)

∫ t

0

(−1)F (s, X(s))ds+(S)

∫ t

0

(−1)G(s, X(s))dB(s) = X̃0 for t ∈ I.

Let X : J1 → Kb
c(L

2) and Y : J2 → Kb
c(L

2) denote the unique solutions (if they exist)

to these equations, respectively, J1 = [0, T̃1], J2 = [0, T̃2] for some T̃1, T̃2 ∈ (0, T ]. Let

J = J1 ∩ J2.

Theorem 3.6. Let X0, F, G satisfy the conditions (H1)–(H4). Assume also that

X̃0, F, G satisfy (H1)–(H4). Then

sup
t∈J

HL2(X(t), Y (t)) 6 23/4HL2(X0, X̃0) exp{2M̃2 min{T̃1, T̃2}},

where M̃2 = 8(min{T̃1, T̃2})2
∫

J×Ω
K2

F (s)ds × dP + 8
∫

J×Ω
K2

G(s)ds × dP .

Proof. Observe that for t ∈ J we have, accordingly to (P6), Lemma 2.1 and (P2),

H4
L2(X(t), Y (t)) 6 8H4

L2(X0, X̃0)

+ 8
[

HL2

(
∫ t

0

F (s, X(s))ds,

∫ t

0

F (s, Y (s))ds

)

+ HL2

(
∫ t

0

G(s, X(s))dB(s),

∫ t

0

G(s, Y (s))dB(s)

)

]4

6 8H4
L2(X0, X̃0)

+ 64H4
L2

(
∫ t

0

F (s, X(s))ds,

∫ t

0

F (s, Y (s))ds

)

+ 64H4
L2

(
∫ t

0

G(s, X(s))dB(s),

∫ t

0

G(s, Y (s))dB(s)

)

.

Hence by Lemma 2.3 and the assumptions (H2) and (H3) we get

H4
L2(X(t), Y (t)) 6 8H4

L2(X0, X̃0)

+ 64t2
(
∫

[0,t]×Ω

KF (s)H2
L2(X(s), Y (s))ds × dP

)2

+ 64

(
∫

[0,t]×Ω

KG(s)H2
L2(X(s), Y (s))ds × dP

)2

.

Thus

H4
L2(X(t), Y (t)) 6 8H4

L2(X0, X̃0) + 8M̃2

∫ t

0

H4
L2(X(s), Y (s))ds

and by the Gronwall inequality

H4
L2(X(t), Y (t)) 6 8H4

L2(X0, X̃0) exp{8M̃2t} for every t ∈ J.
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This leads to

sup
t∈J

HL2(X(t), Y (t)) 6 23/4HL2(X0, X̃0) exp{2M̃2 min{T̃1, T̃2}}.

By this assertion the stability of solution to (3.2) with respect to small changes of

initial value follows.

Now, let us consider equation (3.2) and equations (for n ∈ N)

(3.8) X(t) + (S)

∫ t

0

(−1)Fn(s, X(s))ds + (S)

∫ t

0

(−1)Gn(s, X(s))dB(s) = X0

for t ∈ I, with another coefficients Fn and Gn. Let X, Xn denote the unique solutions

(if they exist) to these equations, respectively. Assume that they all are defined on a

common interval J = [0, T̃ ] with T̃ ∈ (0, T ].

Theorem 3.7. Let X0, F, G satisfy the conditions (H1)–(H4). Assume also that

X̃0, Fn, Gn satisfy (H1)–(H4), in particular the conditions (H2) and (H3) are satis-

fied with the processes KFn
, KGn

and CFn
, CGn

, respectively. Assume that there exist

constants SF , SG > 0 such that for every n ∈ N

∫

J×Ω

K2
Fn

(s)ds × dP 6 SF and

∫

J×Ω

K2
Gn

(s)ds × dP 6 SG.

Suppose that for every A ∈ Kb
c(L

2)
∫

J×Ω

H2
Rd(Fn(s, A), F (s, A))ds × dP → 0 as n → ∞ and

∫

J×Ω

H2
Rd(Gn(s, A), G(s, A))ds × dP → 0 as n → ∞.

Then for the solution X : J → Kb
c(L

2) to (3.2) and the solutions Xn : J → Kb
c(L

2) to

(3.8) it holds that

sup
t∈J

HL2(Xn(t), X(t)) → 0 as n → ∞.

Proof. Proceeding similarly as in the previous proofs we obtain for t ∈ J

H4
L2(Xn(t), X(t)) 6 8H4

L2

(
∫ t

0

Fn(s, Xn(s))ds,

∫ t

0

F (s, X(s))ds

)

+ 8H4
L2

(
∫ t

0

Gn(s, Xn(s))dB(s),

∫ t

0

G(s, X(s))dB(s)

)

.

Hence

H4
L2(Xn(t), X(t)) 6 32

[

t

∫

[0,t]×Ω

H2
Rd(Fn(s, Xn(s)), Fn(s, X(s)))ds × dP

]2

+ 32

[

t

∫

[0,t]×Ω

H2
Rd(Fn(s, X(s)), F (s, X(s)))ds× dP

]2
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+ 32

[
∫

[0,t]×Ω

H2
Rd(Gn(s, Xn(s)), Gn(s, X(s)))ds × dP

]2

+ 32

[
∫

[0,t]×Ω

H2
Rd(Gn(s, X(s)), G(s, X(s)))ds× dP

]2

.

Since Fn, Gn satisfy (H2) with the processes KFn
and KGn

, respectively, we can write

H4
L2(Xn(t), X(t)) 6 32T̃ 2

[
∫

[0,t]×Ω

KFn
(s)H2

L2(Xn(s), X(s))ds × dP

]2

+ 32T̃ 2

[
∫

J×Ω

H2
Rd(Fn(s, X(s)), F (s, X(s)))ds× dP

]2

+ 32

[
∫

[0,t]×Ω

KGn
(s)H2

L2(Xn(s), X(s))ds × dP

]2

+ 32

[
∫

J×Ω

H2
Rd(Gn(s, X(s)), G(s, X(s)))ds× dP

]2

.

Thus

H4
L2(Xn(t), X(t)) 6 32T̃ 2

[
∫

J×Ω

H2
Rd(Fn(s, X(s)), F (s, X(s)))ds× dP

]2

+ 32

[
∫

J×Ω

H2
Rd(Gn(s, X(s)), G(s, X(s)))ds× dP

]2

+

(

32T̃ 2

∫

[0,t]×Ω

K2
Fn

(s)ds × dP + 32

∫

[0,t]×Ω

K2
Gn

(s)ds × dP

)

×

∫ t

0

H4
L2(Xn(s), X(s))ds

and

H4
L2(Xn(t), X(t)) 6 32T̃ 2

[
∫

J×Ω

H2
Rd(Fn(s, X(s)), F (s, X(s)))ds× dP

]2

+ 32

[
∫

J×Ω

H2
Rd(Gn(s, X(s)), G(s, X(s)))ds× dP

]2

+
(

32T̃ 2SF + 32SG

)

∫ t

0

H4
L2(Xn(s), X(s))ds.

Thus by the Gronwall inequality for every t ∈ J

H4
L2(Xn(t), X(t)) 6

(

32T̃ 2

[
∫

J×Ω

H2
Rd(Fn(s, X(s)), F (s, X(s)))ds× dP

]2

+ 32

[
∫

J×Ω

H2
Rd(Gn(s, X(s)), G(s, X(s)))ds× dP

]2
)

× exp
{

32t(T̃ 2SF + SG)
}

.
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Consequently

sup
t∈J

HL2(Xn(t), X(t)) 6

(

32T̃ 2

[
∫

J×Ω

H2
Rd(Fn(s, X(s)), F (s, X(s)))ds× dP

]2

+ 32

[
∫

J×Ω

H2
Rd(Gn(s, X(s)), G(s, X(s)))ds× dP

]2
)1/4

× exp
{

8T̃ (T̃ 2SF + SG)
}

.

Since the both the sequences of numbers
∫

J×Ω
H2

Rd(Fn(s, X(s)), F (s, X(s)))ds × dP

and
∫

J×Ω
H2

Rd(Gn(s, X(s)), G(s, X(s)))ds × dP converge to zero by assumptions, we

infer that supt∈J HL2(Xn(t), X(t)) converges to zero as well.

Although the condition (H4) can be thought as a constricting one, it is crucial and

indispensable in the studies of narrowing set-valued stochastic integral equations. The

difficulties are caused by a requirement of existence of the Hukuhara differences. This

condition is satisfied immediately in the case of single-valued and singleton defined

data of equation (3.2). In this special case, the Hukuhara differences in (3.3) and

(H4) reduce to the usual differences in the space L2. But this is not the only case

when (H4) is seen to be fulfilled. Notice that R can be embedded into L2(Ω,A, P ; R).

Hence the following deterministic, narrowing set-valued integral equation

(3.9) X(t) +

∫ t

0

(−1)Ψ(s, X(s))ds = X0 for t ∈ I,

where Ψ: I×Kb
c(R) → Kb

c(R), X0 ∈ Kb
c(R) and the integral is the set-valued Aumann

integral, is a particular case of equation (3.2). The theory of deterministic, widening

set-valued equations is examined widely in [25]. We shall show that for equation (3.9)

the condition of type (H4) is satisfied. Assume that there exists a positive constant M

such that for any (t, A) ∈ I×Kb
c(R) it holds HR(Ψ(t, A), {0}) 6 M . We claim that the

sequence {Xn} described by X0(t) = X0 and Xn(t) = X0 ⊖
∫ t

0
(−1)Ψ(s, Xn−1(s))ds

(for n ∈ N) is well defined on the interval J = [0, T̃ ], where T̃ = diamX0/(2M).

Indeed, for t ∈ J we have

diam

(

(−1)

∫ t

0

Ψ(s, Xn−1(s))ds

)

= diam

(
∫ t

0

Ψ(s, Xn−1(s))ds

)

6 2

∫ t

0

HR(Ψ(s, Xn−1(s)), {0})ds

6 2Mt 6 diamX0.

In the hyperspace Kb
c(R) we have: if diamA > diamB then A ⊖ B exists, where

A, B ∈ Kb
c(R). Hence the Hukuhara difference X0 ⊖

∫ t

0
(−1)Ψ(s, Xn−1(s))ds exists for

each t ∈ J and condition of the type (H4) is fulfilled. The equations of the type (3.9)

are well suited (see [30]) in modeling a problem of number of radioactive nuclei in

radioactive substances.
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The studies presented in this paper treat of the narrowing set-valued stochas-

tic integral equations (3.2) mainly. It is worth mentioning that under conditions

(H1)–(H3) (without (H4)), all the above presented assertions can be repeated for the

widening set-valued stochastic integral equations (3.1). Moreover, since (3.1) does

not involve any condition on existence of Hukuhara differences, each result estab-

lished for the (local or global) solutions of the narrowing equations can be repeated

for global solutions of the widening equations. At this place we rewrite only one and

the most important result on the existence and uniqueness of solution to (3.1). All

the remaining counterparts of the results can also be proved.

Proposition 3.8. Let X0 ∈ Kb
c(L

2
0), and F, G : I × Ω × Kb

c(L
2) → Kb

c(R
d) satisfy

conditions (H1)–(H3). Then equation (3.1) possesses a unique global solution X : I →

Kb
c(L

2).

This assertion can be proved using the sequence of the approximate solutions

{Xn} defined as

X0(t) = X0, t ∈ I,

and for n = 1, 2, . . .

Xn(t) = X0 + (S)

∫ t

0

F (s, Xn−1(s))ds + (S)

∫ t

0

G(s, Xn−1(s))dB(s), t ∈ I.

The condition (H4) is not needed in Proposition 3.8 and does not apply to the re-

maining results which can be repeated for the widening set-valued stochastic integral

equations with global solutions.
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