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ABSTRACT. The method of upper and lower solutions combined with monotone method is an

efficient tool to compute the minimal and maximal solutions of a variety of nonlinear problems. In

addition, the method of coupled lower and solutions combined with monotone iterative technique

known as generalized monotone method is a very useful tool to compute the coupled minimal and

maximal solutions of nonlinear dynamic systems. The advantage of generalized monotone method

for fractional differential equations is that, it avoids the Mittag-Leffler function altogether. However,

computing coupled lower and upper solution is nontrivial. This work is a survey on the known results

in this direction.
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1. INTRODUCTION

Mathematical models in various branches of science, engineering, finance, eco-

nomics, etc will lead to the study of nonlinear dynamic systems namely nonlinear dif-

ferential equations. From the modeling perspective dynamic systems with fractional

derivatives are more applicable and useful models. See [4, 12, 10] for details. Study of

fractional differential equations has gained importance in the past four decades due

to its applications. Qualitative properties like existence and uniqueness for fractional

differential equation uses some kind of fixed point theorem methods. However, these

methods in general are not usually computational methods and in addition, they

do not determine or guarantee the interval of existence. Monotone method combined

with upper and lower solutions is an effective tool to show existence which is both the-

oretical and computational. The method provides natural sequences if the nonlinear

function is increasing and alternate sequences if the nonlinear function is decreasing.

Generalized monotone method using coupled lower and upper solutions provide nat-

ural sequences which converge uniformly and monotonically to coupled minimal and

maximal solutions. The method is applicable when the nonlinear function is a sum of
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increasing and decreasing terms. Further, if uniqueness conditions are satisfied, the

coupled minimal and maximal solutions converges uniformly to the unique solution

of the nonlinear problem. The advantage of the generalized monotone method for

nonlinear fractional differential equations is that the iterates or the elements of the

sequences constructed does not require the Mittag-Leffler function, which removes the

computational complexity. However, the disadvantage of the generalized monotone

method is finding nonconstant coupled lower and upper solutions on the interval of

existence of the solution. The interval of existence can be determined by natural

lower and upper solutions. Natural lower and upper solutions are relatively easy to

compute since equilibrium solutions are in general natural lower and upper solutions.

In this paper we survey the work done recently on the methodology of computing

coupled lower and upper solutions to the desired interval of existence using natural

lower and upper solutions. We have achieved this for scalar and system of fractional

differential equations of order q, for 0 < q < 1. The rate of convergence of these

iterates are linear since the iterative scheme is just a modification of the generalized

monotone method scheme. If we seek faster convergence method, then it leads to

interesting open problems relative to the product rule of Mittag-Leffler functions.

So far, in literature, most models are differential equations with integer deriva-

tives. A vast literature for the qualitative study of dynamic systems with integer

order is available(see [5, 8]). However, the qualitative and quantitative study of

fractional differential and integral equations has gained importance recently due to

its applications. See [1, 3, 4, 6, 10, 12] for details of the study of fractional inte-

gral and differential equations of both Riemann Liouville and Caputo type. Many

practical applications of fractional differential and integral equations have also been

provided in the references of the monographs cited above. The qualitative study of

fractional differential and integral equations of various types has been established in

[2, 3, 4, 6, 11, 12, 15, 17]. Among the type of fractional dynamic systems, the study of

Riemann Liouville and Caputo type of fractional dynamic systems has gained more

importance.

2. PRELIMINARY AND AUXILLARY RESULTS

In this section, we recall known results, some definitions which are needed for

our main results. Here, and throughout this work, we will consider Caputo fractional

differential equations of order q, where 0 < q < 1. All our results are true for q = 1,

the integer derivative of order 1.

Definition 2.1. The Caputo fractional derivative of order q is given by:

cDqu(t) =
1

Γ(1 − q)

∫ t

0

(t − s)−qu′(s)ds,
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where 0 < q < 1 and Γ(q) is the Gamma function. Also, u′(t) above is the first

derivative of u with respect to t.

Although, in this work, we study Caputo fractional differential equations, our

comparison result follows from the comparison result relative to the Riemann-Liouville

derivative and the relation between Riemann-Liouville derivative and Caputo frac-

tional derivative. Hence the next definition is for the Riemann-Liouville derivative.

Definition 2.2. Riemann-Liouville fractional derivative of order q with respect to t

is defined by:

Dqu(t) =
1

Γ(1 − q)

d

dt

∫ t

0

(t − s)−qf(s)ds,

where 0 < q < 1.

Here, and throughout this work, we will consider fractional differential equations

of order q, where, 0 < q < 1.

Consider the nonlinear Caputo fractional differential equation with initial condi-

tion of the form:

(2.1) cDqu(t) = f(t, u(t)), u(0) = u0,

where f ∈ C[J × R, R] and J = [0, T ]. The integral representation of (2.1) is given

by:

(2.2) u(t) = u0 +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, u(s))ds.

The sequences we develop are always solutions of linear Caputo fractional differential

equation. In order to compute the solution of the linear fractional differential equation

with constant coefficients we need Mittag-Leffler function.

Definition 2.3. Mittag-Leffler function of two parameters q, r is given by

Eq,r(λ(t − t0)
q) =

∞
∑

k=0

(λ(t − t0)
q)k

Γ(qk + r)
,

where q, r > 0. Also, for t0 = 0 and r = 1, we get

Eq,1(λtq) =
∞

∑

k=0

(λtq)k

Γ(qk + 1)
,

where q > 0.

Also, consider the linear Caputo fractional differential equation,

(2.3) cDqu(t) = λu(t) + f(t), u(0) = u0, on J,
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where J = [0, T ], λ is a constant and f(t) ∈ C[J, R]. The solution of (2.3) exists and

is unique. The explicit solution of (2.3) is given by:

(2.4) u(t) = u0Eq,1(λtq) +

∫ t

0

(t − s)q−1Eq,q(λ(t − s)q)f(s)ds.

See [4] for details. In particular, if λ = 0, the solution u(t) is given by:

(2.5) u(t) = u0 +
1

Γ(q)

∫ t

0

(t − s)q−1f(s)ds,

which is relatively easy to compute since we can avoid the computation of the Mittag-

Leffler function.

Also we recall known results related to scalar Caputo nonlinear fractional differ-

ential equations of the following form.

(2.6) cDqu(t) = f(t, u) + g(t, u), u(0) = u0 on J = [0, T ],

where 0 < q < 1. Results when q = 1 is proved in [14] and the references therein. Here

f, g ∈ C(J ×R, R), f(t, u) is non-decreasing in u on J and g(t, u) is non-increasing in

u on J . Note that the population model namely the logistic equation will be of the

form (2.6).

In order to prove the comparison result relative to coupled lower and upper

solutions of (2.6) we recall a basic lemma relative to the Riemann-Liouville fractional

derivative. For that purpose, we need the following definition.

Definition 2.4. Let p = 1 − q, a function m(t) ∈ C((0, T ], R) is a Cp continuous

function if tpm(t) ∈ C[J, R). The set of Cp continuous functions is denoted by

Cp[J, R). Further, given a function m(t) ∈ Cp[J, R) we call the function tpm(t)

the continuous extension of m(t), on J .

Lemma 2.5. Let m(t) ∈ Cp[J, R] (where J = [0, T ]) be such that for some t1 ∈ (0, T ],

m(t1) = 0 and m(t) ≤ 0, on (0, T ]. Then Dqm(t1) ≥ 0.

Proof. See [2, 6] for details. Note that the above result has been proved in [2] with-

out using the Hölder continuity assumption of m(t). This improvement plays an

important role in all iterative methods, like monotone method, generalized monotone

methods etc.

The above lemma is true for Caputo derivative also, using the relation cDqm(t) =

Dq(m(t)−m(0)) between the Caputo derivative and the Riemann-Liouville derivative.

This is the version we will be using to prove our comparison results.

We recall the following known definitions which are needed for our main results.
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Definition 2.6. The functions v, w ∈ C1(J, R) are called natural lower and upper

solutions of (2.6) if :

{

cDqv(t) ≤ f(t, v) + g(t, v), v(0) ≤ u0,

cDqw(t) ≥ f(t, w) + g(t, w), w(0) ≥ u0.

Definition 2.7. The functions v, w ∈ C1(J, R) are called coupled lower and upper

solutions of (2.6) of type I if:

{

cDqv(t) ≤ f(t, v) + g(t, w), v(0) ≤ u0,

cDqw(t) ≥ f(t, w) + g(t, v), β0(0) ≥ u0.

See [11] for other types of coupled lower and upper solutions relative to (2.6).

Denoting F (t, u) = f(t, u) + g(t, u), we state the next comparison result.

Theorem 2.8. Let v, w be natural lower and upper solutions of (2.6), respectively.

Suppose that F (t, u1)−F (t, u2) ≤ L(u1−u1) whenever u1 ≥ u2, where L is a constant

such that L > 0, then v(0) ≤ w(0) implies that v(t) ≤ w(t), t ∈ J .

Proof. See [11, 18] for details.

Note that if v, w are coupled lower and upper solutions of type I for (2.6), then

result of Theorem 2.8 holds true if the one sided Lipschitz condition of F (t, u) is

replaced by f(t, u1) − f(t, u2) ≤ L1(u1 − u2) and g(t, u1) − g(t, u2) ≥ −L2(u1 − u2)

for u1 ≥ u2, where L1 and L2, are constants greater than zero.

Theorem 2.9. Suppose v, w ∈ C1[J, R] are natural lower and upper solutions of type

I of (2.6) such that v(t) ≤ w(t) on J and F ∈ C(Ω, R). Then there exists a solution

u(t) of (2.6) such that v(t) ≤ u(t) ≤ w(t) on J , provided v(0) ≤ u0 ≤ w(0).

Proof. See [6] for details.

Note that coupled lower and upper solutions of type I for (2.6), implies that they

are natural lower solutions for (2.6), if g(t, u) of (2.6) is non increasing in u for t ∈ J .

In this situation, the conclusion of Theorem 2.9 is true with coupled lower and upper

solutions of type I. The next theorem provides the generalized monotone method to

obtain the coupled minimal and maxima solutions of (2.6).

Theorem 2.10. Assume that

(i) v0, w0 ∈ C1[J, R]. v0, w0 are coupled lower and upper solutions of (2.6) of type

I, with v0(t) ≤ w0(t) on J .

(ii) f(t, u), g(t, u) ∈ C[J × R, R], where f(t, u) is non-decreasing in u on J , and

g(t, u) is non-increasing in u on J .
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Then there exist monotone sequences, vn(t) and wn(t), such that vn(t) → v(t) and

wn(t) → w(t) uniformly and monotonically, where v(t) and w(t) are coupled minimal

and maximal solutions of equation (2.6) on J . That is, for any solution u(t) of

(2.6) with v0 ≤ u ≤ w0 on J , we get natural sequences, {vn} and {wn}, satisfying,

v0(t) ≤ v1(t) ≤ v2(t) ≤ · · · ≤ vn(t) ≤ u(t) ≤ wn(t) ≤ · · · ≤ w2(t) ≤ w1(t) ≤ w0(t), on

J , where v(t) and w(t) satisfy the coupled system,

(2.7)
cDqv(t) = f(t, v(t)) + g(t, w(t)), v(0) = u0,
cDqw(t) = f(t, w(t)) + g(t, v(t)), w(0) = u0.

Here we use the following iterative schemes(namely type I iterative schemes),

cDqvn+1(t) = f(t, vn(t)) + g(t, wn(t)), vn+1(0) = u0,
cDqwn+1(t) = f(t, wn(t)) + g(t, vn(t)), vn+1(0) = u0.

Also, v(t) ≤ u(t) ≤ w(t) on J .

See [11] for details of the proof.

Remark 2.11. The conclusion of Theorem 2.10 holds true with natural lower and

upper solutions of (2.6) provided with further assumptions that v0 ≤ v1 and w1 ≤ w0

for t ∈ J . However, in general v0 ≤ v1 and w1 ≤ w0 is true t ∈ [0, t̄] for t̄ < T . See

numerical results in [14] for integer derivatives and [15, 16] for fractional derivatives

for details.

3. MAIN RESULTS

In the preliminary results we saw that the generalized monotone method com-

bined with coupled lower and upper solutions are very useful in computing the so-

lution of Caputo fractional differential equations (2.6) when uniqueness conditions

are satisfied. The advantage of the method is that each iterates are computed using

(2.4). Natural lower and upper solutions are relatively easy to compute. For exam-

ple, the equilibrium solutions are natural lower and upper solutions and it guarantees

that global solution or solutions exists. The equilibrium solutions are constant so-

lutions. However, computing coupled lower and upper solution are not trivial since

constants will never be coupled and lower solutions. To demonstrate that let k, K be

coupled lower and upper solutions of (2.6) such that k ≤ K. Then, it follows that

0 = cDqk ≤ f(t, k) + g(t, K) ≤ f(t, K) + g(t, k) ≤ cDqK = 0, using the increasing

and decreasing nature of f(t, u) and g(t, u) respectively, and the fact that k ≤ K.

This was the motivation to compute the next result. In this paper, we just recall the

result and for proof and other details including numerical applications see [15]. Also

see [16] for the extension of these results to Caputo fractional differential systems and

its application to Lotka-Volterra type of fractional differential equations.

Theorem 3.1. Assume that



SHORT TITLE 435

(i) v0, w0 ∈ C[J, R] are natural lower and upper solutions of (2.6) such that v0(t) ≤

w0(t) on J .

(ii) f, g ∈ C[J × R, R], f(t, u) is nondecreasing and g(t, u) is nonincreasing in u on

J . Then there exists monotone sequences {vn(t)} and {wn(t)} on J such that

vn(t) → v(t) and wn(t) → w(t) uniformly and monotonically to v and w where

v and w are coupled lower and upper solutions of (2.6) such that v ≤ w on J .

The iterative scheme is given by

cDqvn+1(t) = f(t, vn) + g(t, wn), on [0, tn], vn+1(0) = u0

cDqwn+1(t) = f(t, wn) + g(t, vn), on [0, tn], wn+1(0) = u0,

where vn(t) ≥ v0(t) on [0, tn) and wn(t) ≤ w0(t) on [0, tn).

Also define vn+1(t), wn+1(t) on [tn, T ] and [tn, T ] respectively as the solution of

cDqvn+1(t) = f(t, vn) + g(t, wn), vn+1(tn) = lim
h→0

vn+1(tn − h),

cDqwn+1(t) = f(t, wn) + g(t, vn) wn+1(tn) = lim
h→0

wn+1( tn − h).

The generalized monotone method provides linear convergence, which essentially

means the convergence rate is slow. The next result accelerates the rate of conver-

gence. See [15] for details of the proof.

Theorem 3.2. Let all the hypothesis of Theorem 2.10 hold. Then there exist mono-

tone sequences vn and wn, where the iterative scheme is given by

(3.1)
cDqv∗

n+1 = f(t, v∗

n) + g(t, w∗

n), v∗

n+1(0) = u0,
cDqw∗

n+1 = f(t, w∗

n) + g(t, v∗

n+1), w∗

n+1(0) = u0,

where v∗

0 = v1 and w∗

0 is the solution of cDqw∗

0 = f(t, w0) + g(t, v1), w∗

0(0) = u0, or

(3.2)
cDqv∗

n+1 = f(t, v∗

n) + g(t, w∗

n+1), v∗

n+1(0) = u0,
cDqw∗

n+1 = f(t, w∗

n) + g(t, v∗

n), w∗

n+1(0) = u0,

where w∗

0 = w1 and v∗

0 is the solution of cDqv∗

0 = f(t, v0) + g(t, w1), v∗

0(0) = u0.

4. CONCLUSION

Computing the solution of nonlinear ordinary Caputo differential equation is a

challenge since it does not enjoy the nice properties of the integer derivative like

the product rule for the derivatives. Generalized monotone method combined with

coupled lower and upper solutions proves to be an efficient and fruitful tool to compute

the coupled minimal and maximal solutions. If uniqueness conditions are satisfied

the coupled minimal and maximal solutions solutions will converge to the unique

solution of the nonlinear problem. In order to use generalized monotone method the

challenge is to compute the coupled lower and upper solution to the desired interval

or to the interval of existence established by upper and lower solutions. Using the
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scheme similar to generalized monotone method Theorem 3.1 provides a method to

compute the coupled lower and upper solutions to any desired interval. The rate

of convergence can be slightly accelerated by using the scheme of Theorem 3.2. In

[17] a mixed generalized iterative method to compute the solution of the nonlinear

problem (2.6) has been developed when f(t, u) is convex in u for t ∈ J and g(t, u), and

decreasing in u for t ∈ J . In addition, the method yields super linear convergence.

The method is both theoretical and computational. Computational methods have

the following challenges and lead to open problems. These challenges are partly due

to the fact that some of the nice properties enjoyed by the exponential function does

not hold good for Mittag-Leffler function. In [9] is monograph which is completely

dedicated to Mittag-Leffler function and its application. However the exponential

properties of Mittag-Leffler function is still open. Here, we mention a few of them.

(i) Each iterates are two decoupled systems with variable coefficients. There is

no closed form of solution for the linear Caputo fractional differential equations

with variable coefficients. See [13] for recent result on linear fractional differential

equation with variable coefficent;

(ii) In the simple situation when f(t, u) is linear, if we use the generalized monotone

iterative method we need to solve the linear equation with constant coefficients.

The first step is simple since we can use (2.4). The second step involves the use

of (2.4) where f(t) is either a Mittag-Leffler function or the product of Mittag-

Leffler functions. This result is yet to be established so that the solution part

related to the nonhomogeneous part can be computed accurately. The result for

q = 1 is very trivial, that is eλt × eµt = eλ+µt.

(ii) Theoretical extension of generalized monotone method has been established in

[18] for Caputo fractional nonlinear reaction diffusion equation. The computa-

tion of a simple linear Caputo fractional reaction diffusion requires us to prove

the convergence of an infinite series whose elements are Mittag-Leffler functions.

This requires us to establish the exponential properties of the Mittag-Leffler

function, which is a well known trivial result for the exponential function. That

is, eλt × e−λt = 1. This relation is not true for Mittag-Leffler function.
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