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ABSTRACT. This paper is devoted to study the existence of nontrivial solutions for second order

Neumann boundary value problem with impulse effects in ordered Banach spaces. Under more

general conditions of non-compactness measure and partial ordering, the existence of nontrivial

solutions is obtained by employing the fixed point index theory of condensing mapping.
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1. Introduction

The theory of impulsive differential equations describes processes which experi-

ence a sudden change their state at certain moments. Processes with such a character

arise naturally and often, especially in phenomena studied in physics, chemical, bio-

logical, population and dynamics, engineering and economics. The theory of impulsive

differential equations has been emerging as an important area of investigation in the

last few decades; see [1–8] and the references therein.

In this paper, we use the fixed point index theory of condensing mapping to

discuss the existence of solutions to the Neumann boundary value problem (BVP) of

second order nonlinear impulsive integro-differential equations of Fredholm type in

an ordered Banach space E

(1.1)





−u′′(t) + Mu(t) = f(t, u(t), (Su)(t)), t ∈ J, t 6= tk,

−∆u′|t=tk = Ik(u(tk)), k = 1, 2, . . . , m,

u′(0) = u′(1) = θ,

where M > 0 is a constant, f ∈ C(J × E × E, E), J = [0, 1]; 0 < t1 < t2 < · · · <

tm < 1; Ik ∈ C(E, E) is an impulsive function, k = 1, 2, . . . , m; θ denotes the zero

element of E; and

(1.2) (Su)(t) =

∫ 1

0

H(t, s)u(s)ds
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is a Fredholm integral operator with integral kernel H ∈ C(J × J, R+); ∆u′|t=tk

denotes the jump of u′(t) at t = tk, i.e., ∆u′|t=tk = u′(t+k ) − u′(t−k ), where u′(t+k )

and u′(t−k ) represent the right and left limits of u′(t) at t = tk, respectively. Let

PC(J, E) = {u : J → E | u(t) is continuous at t 6= tk, left continuous at t = tk, and

u(t+k ) exists, k = 1, 2, . . . , m}. Evidently PC(J, E) is a Banach space with the norm

‖u‖PC = supt∈J ‖u(t)‖.
Let J ′ = J\{t1, t2, . . . , tm}, PC1(J, E) = {u ∈ PC(J, E) ∩ C1(J ′, E) | u′(t+k )

and u′(t−k ) exist, k = 1, 2, . . . , m}. For u ∈ PC1(J, E), it is easy to see that the left

derivative u′

−
(tk) of u(t) at t = tk exists and u′

−
(tk) = u′(t−k ), and set u′(tk) = u′(t−k ),

then u′ ∈ PC(J, E). Therefore, PC1(J, E) = {u : J → E | u ∈ PC(J, E), u′ ∈
PC(J, E)}. Evidently, PC1(J, E) is also a Banach space with the norm ‖u‖PC1 =

max{‖u‖PC, ‖u′‖PC}. If u ∈ PC1(J, E)
⋂

C2(J ′, E) satisfy all the equalities of

(1.1), we call u a solution of BVP (1.1).

Neumann boundary value problem were studied extensively, see [9–12] and the

references therein. Jiang and Liu [9] applied Krasnoselskii’s fixed point theorem to

establish the existence of positive solution for Neumann boundary value problem in

real space R

(1.3)

{
−u′′(t) + Mu(t) = f(t, u(t)), t ∈ J, t 6= tk,

u′(0) = u′(1) = 0.

They proved that BVP (1.3) exists one positive solution provided 0 < M < π2/4 and

one of the following conditions holds:

(I) limx→0 maxt∈J
f(t,x)

x
= 0 and limx→∞ maxt∈J

f(t,x)
x

= +∞;

(II) limx→0 maxt∈J
f(t,x)

x
= +∞ and limx→∞ maxt∈J

f(t,x)
x

= 0.

In [10], Lin et al. obtained the existence of multiple positive solutions of BVP (1.3) by

using the Krasnoselskii’s fixed point theorem. Sun and Li [11] obtained the existence

of three positive solutions for BVP (1.3) via the Leggett-Williams fixed point theorem.

Yao [12] obtained the existence of nontrivial sign-changing solutions of BVP (1.3) by

applying the fixed point theorem of increasing operator on the order interval.

Recently, Lin and Jiang [8] studied the Dirichlet boundary value problems of

second order impulsive differential equation in R

(1.4)





−u′′(t) = f(t, u(t)), t ∈ J, t 6= tk,

−∆u′|t=tk = Ik(u(tk)), k = 1, 2, . . . , m,

u(0) = u(1) = 0.

They applied a fixed point index theorem in cones to establish the existence of multiple

positive solutions of BVP (1.4).

However, all these results mentioned above are in real spaces R. In this paper, we

will deal with the existence of positive solutions and negative solutions of BVP (1.1)
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in abstract Banach spaces by applying the fixed point index theory of condensing

mapping. The positive solution of BVP (1.1) is that: u(t) > θ, t ∈ J ; the negative

solution is that: u(t) < θ, t ∈ J . As far as we know, no works yet exist for the

existence of nontrivial solutions to BVP (1.1) in Banach spaces by applying the fixed

point index theory of condensing mapping.

2. Preliminaries

Let E be an ordered Banach space with the norm ‖ · ‖ and partial order “≤”,

whose positive cone K = {x ∈ E | x ≥ θ} is normal with normal constant 1. Let

C(J, E) denote the Banach space of all continuous E-value functions on interval J

with the norm ‖u‖C = maxt∈J ‖u(t)‖. Evidently, C(J, E) is also an ordered Banach

space induced by the convex cone C(J, K) = {u ∈ C(J, E) | u(t) ≥ θ, t ∈ J}, and

C(J, K) is also a normal cone.

Evidently, PC(J, E) is also an ordered Banach space with the partial order “≤”

induced by the positive cone PC(J, K) = {u ∈ PC(J, E) | u(t) ≥ θ, t ∈ J}.
PC(J, K) is also normal with the same normal constant 1. Since no confusion may

occur, we denote by α(·) the Kuratowski measure of noncompactness on both the

bounded sets of E and PC(J, E). For the details of the definition and properties of

the measure of noncompactness, we refer to the monograph [13].

The following lemmas will be used in the prove of our main results.

Lemma 2.1 ([13]). Let B ⊂ PC(J, E) be bounded and equicontinuous. Then α(B(t))

is continuous on J , and

(2.1) α(B) = max
t∈J

α(B(t)) = α(B(J)).

Lemma 2.2 ([13]). Let E be a Banach space. Assume that Ω is a bounded closed

and convex set in E, and Q : Ω → Ω is condensing. Then Q has a fixed point in Ω.

Lemma 2.3 ([14]). Let B = {un} ⊂ PC(J, E) be a bounded and countable set. Then

α(B(t)) is Lebesgue integral on J , and

(2.2) α
({∫

J

un(t)dt | n ∈ N

})
≤ 2

∫

J

α(B(t))dt.

Lemma 2.4 ([15, 16]). Let D ⊂ E be bounded. Then there exists a countable set

D0 ⊂ D, such that α(D) ≤ 2α(D0).

Let G is Green function of boundary value problem −x′′ + Mx = 0, x′(0) =

x′(1) = 0, then

(2.3) G(t, s) =

{
cosh(m(1−t)) cosh(ms)

m sinh m
, 0 ≤ s ≤ t ≤ 1,

cosh(mt) cosh(m(1−s))
m sinh m

, 0 ≤ t ≤ s ≤ 1,
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where m =
√

M , cosh x = ex+e−x

2
, sinh x = ex

−e−x

2
, and it is easy to see that G(t, s) ≤

G(s, s), 0 ≤ t, s ≤ 1.

By simply calculation, we know that

(2.4)
1

m sinh m
≤ G(t, s) ≤ cosh m

m sinh m
.

For the convenience, set H = maxt,s∈J H(t, s), H = mint,s∈J H(t, s), and assume

that H > 0 throughout the paper, where H is integral kernel of the Fredholm integral

operator S defined by (1.2).

To prove our main results, for any h ∈ PC(J, E), we consider the linear impulsive

differential equation with Neumann boundary condition in E

(2.5)





−u′′(t) + Mu(t) = h(t), t ∈ J ′,

−∆u′|t=tk = yk, k = 1, 2, . . . , m,

u′(0) = u′(1) = θ,

where yk ∈ E, k = 1, 2, . . . , m.

Lemma 2.5. If u ∈ PC1(J, E) is a solution of the following impulsive integral equa-

tion

(2.6) u(t) =

∫ 1

0

G(t, s)h(s)ds +

m∑

k=1

G(t, tk)yk,

then u ∈ PC1(J, E) ∩ C2(J ′, E) is a unique solution of problem (2.5).

Proof. If u ∈ PC1(J, E) is a solution of impulsive integral equation (2.6). Direct

differentiation of (2.6) implies for t 6= tk,

(2.7) u′(t) =

∫ 1

0

G′

t(t, s)h(s)ds +

m∑

k=1

G′

t(t, tk)yk,

where

(2.8) G′

t(t, s) =

{
cosh(m(1−t)) sinh(ms)

sinh m
, 0 ≤ s ≤ t ≤ 1,

− cosh(mt) sinh(m(1−s))
sinhm

, 0 ≤ t ≤ s ≤ 1.

Evidently

(2.9) −∆u′|t=tk = yk, k = 1, 2, . . . , m,

and

(2.10) −u′′(t) + Mu(t) = h(t).

Hence u ∈ PC1(J, E) ∩ C2(J ′, E), −∆u′|t=tk = yk, and it is easy to verify that

u′(0) = u′(1) = θ.
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Now, we define an operator A : PC(J, E) → PC(J, E) as follows

(2.11) (Au)(t) =

∫ 1

0

G(t, s)f(s, u(s), (Su)(s))ds +

m∑

k=1

G(t, tk)Ik(u(tk)).

Lemma 2.6. Suppose the following condition is satisfied:

(H0) For any R > 0, f(J ×B(θ, R)×B(θ, R)) is bounded, and exist constants L, L >

0, Lk > 0 (k = 1, 2, . . . , m) with 4(L+L·H)
M

+ 2 cosh m
m sinh m

∑m

k=1 Lk < 1, such that for

∀ t ∈ J and D, D ⊂ B(θ, R)

(2.12) α(f(t, D, D)) ≤ Lα(D) + Lα(D), α(Ik(D)) ≤ Lkα(D),

then the operator A : PC(J, E) → PC(J, E) is condensing.

Proof. By the definition of operator A, we know that A maps the bounded set of

PC(J, E) to bounded and equicontinuous set. For any bounded and noncompactness

set B ⊂ PC(J, E), let R = sup{‖u‖PC | u ∈ B}, for any t ∈ J, B(t) ∈ B(θ, R). By

Lemma 2.4, there exist a countable set B1 = {un} ⊂ B, such that

(2.13) α(A(B)) ≤ 2α(A(B1)).

For ∀ t ∈ J , by Lemma 2.3 and assumption (H0), we have

α(A(B1(t))) = α
({∫ 1

0

G(t, s)f(s, un(s), (Sun)(s))ds

+
m∑

k=1

G(t, tk)Ik(un(tk))|n = 1, 2, . . .
})

≤ 2

∫ 1

0

G(t, s)α(f(s, B1(s), (SB1)(s)))ds

+
m∑

k=1

G(t, tk)α(Ik(B1(tk)))

≤ 2

∫ 1

0

G(t, s)
{
Lα(B1(s)) + Lα

(∫ 1

0

H(s, τ)B1(τ)dτ
)}

ds

+
cosh m

m sinh m

m∑

k=1

Lkα(B1(s))

≤ 2(L + L · H)

∫ 1

0

G(t, s)dsα(B1) +
cosh m

m sinh m

m∑

k=1

Lkα(B1)

=
(2(L + L · H)

M
+

cosh m

m sinh m

m∑

k=1

Lk

)
α(B1).

Since A(B1) is equicontinuous, by Lemma 2.1, α(A(B1)) = maxt∈J α(A(B1)(t)). Com-

bining this with (2.13) and the condition (H0), we have

(2.14) α(A(B)) ≤ 2α(A(B1)) ≤
(4(L + L · H)

M
+

2 coshm

m sinh m

m∑

k=1

Lk

)
α(B1) < α(B).
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Hence, the operator A : PC(J, E) → PC(J, E) is condensing.

Let P be a cone in PC(J, E) which is defined as

(2.15) P = {u ∈ PC(J, K)| u(t) ≥ σu(τ), t, τ ∈ J},

where σ = 1
cosh m

.

Then we have the following lemma.

Lemma 2.7. If f(J × K × K) ⊂ K, Ik(K) ⊂ K, k = 1, 2, . . . , m, then A(P ) ⊂ P .

Proof. For any u ∈ P and t ∈ J , by (2.11), we have

(Au)(τ) =

∫ 1

0

G(τ, s)f(s, u(s), (Su)(s))ds +
m∑

k=1

G(τ, tk)Ik(u(tk))

≤ cosh m

m sinh m

[ ∫ 1

0

f(s, u(s), (Su)(s))ds +

m∑

k=1

Ik(u(tk))
]
.

Therefore, from (2.11) and the above inequality, we know that

(Au)(t) =

∫ 1

0

G(t, s)f(s, u(s), (Su)(s))ds +

m∑

k=1

G(t, tk)Ik(u(tk))

≥ 1

m sinh m

[ ∫ 1

0

f(s, u(s), (Su)(s))ds +
m∑

k=1

Ik(u(tk))
]

≥ σ(Au)(τ).

Hence, Au ∈ P , namely A(P ) ⊂ P .

Therefore, if f(J × K × K) ⊂ K, Ik(K) ⊂ K, k = 1, 2, . . . , m, then A : P → P

is condensing. And from Lemma 2.2 we know that the positive solution of BVP (1.1)

is equivalent to the nonzero fixed point of A in P . For 0 < r < R < ∞, let

Ω1 = {u ∈ PC(J, E) | ‖u‖PC < r}, Ω2 = {u ∈ PC(J, E) | ‖u‖PC < R}.

Then

∂Ω1 = {u ∈ PC(J, E) | ‖u‖PC = r}, ∂Ω2 = {u ∈ PC(J, E) | ‖u‖PC = R}.

Hence, the fixed point of A in P ∩ (Ω2\Ω1) is the positive solution of BVP (1.1). In

this paper, we will seek the nonzero fixed point of A in P ∩ (Ω2\Ω1) by applying the

fixed point index theory of condensing mapping.

Let E be a Banach space, and let P be a closed convex cone of E. Assume

that Ω is a bounded open subset of E and let ∂Ω be its boundary, P ∩ Ω 6= ∅. Let

Φ : P ∩ Ω → P be a condensing mapping. If Φu 6= u for every u ∈ P ∩ ∂Ω, then the

fixed point index i(Φ, P ∩ Ω, P ) is defined. If i(Φ, P ∩ Ω, P ) 6= 0, then Φ has a fixed

point in P ∩ Ω.

The following two lemmas are needed in our argument.
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Lemma 2.8 ([17]). Let Ω ⊂ E be a bounded open set, θ ∈ Ω, Φ : P ∩ Ω → P be a

condensing mapping, if Φ satisfy

u 6= λΦu, ∀ u ∈ P ∩ ∂Ω, 0 < λ ≤ 1.

Then i(Φ, P ∩ Ω, P ) = 1.

Lemma 2.9 ([17]). Let Ω ⊂ E be a bounded open set, θ ∈ Ω, Φ : P ∩ Ω → P be a

condensing mapping. If there exist v0 ∈ P , v0 6= θ, such that

u − Φu 6= τv0, ∀u ∈ P ∩ ∂Ω, τ ≥ 0.

Then i(Φ, P ∩ Ω, P ) = 0.

3. Main results

Theorem 3.1. Assume that f : J × E × E → E is continuous, Ik : E → E is

continuous, and the condition (H0) is satisfied. If f(J × K × K) ⊂ K, Ik(K) ⊂ K,

k = 1, 2, . . . , m, and f and Ik satisfy the following conditions:

(H1) There exist constants a, b > 0 with a + bH < M , δ > 0 and qk > 0 with∑m

k=1 qk < σ(M − a − bH) such that for any x, y ∈ Kδ

f(t, x, y) ≤ ax + by, Ik(x) ≤ qkx, k = 1, 2, . . . , m,

(H2) There exist c, d > 0 with c + dH > M and h0 ∈ PC(J, K) such that for any

x, y ∈ K

f(t, x, y) ≥ cx + dy − h0(t).

Then the BVP (1.1) has at least one positive solution.

Proof. Let 0 < r < min{δ, δ

H
}, where δ is the constant in (H1). For ∀ t ∈ J , u ∈

P ∩ ∂Ω1, we have ‖u(t)‖PC ≤ ‖u‖PC = r < δ, ‖(Su)(t)‖PC ≤ ‖Su‖PC ≤ Hr < δ.

Hence by the condition (H1), we know that

(3.1) f(t, u(t), (Su)(t)) ≤ au(t) + b(Su)(t) Ik(u(tk)) ≤ qku(tk), k = 1, 2, . . . , m.

Next, we show that the operator A satisfy

(3.2) u 6= λAu, ∀ u ∈ P ∩ ∂Ω1, 0 < λ ≤ 1.

If this is not true, then there exist u0 ∈ P∩∂Ω1 and 0 < λ0 ≤ 1, such that u0 = λ0Au0.

By the definition of operator A, we get that

(3.3)





−u′′

0(t) + Mu0(t) = λ0f(t, u0(t), (Su0)(t)), t ∈ J, t 6= tk,

−∆u′

0|t=tk = λ0Ik(u0(tk)), k = 1, 2, . . . , m,

u′

0(0) = u′

0(1) = θ,
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Integrating (3.3) from 0 to 1, use integration by parts in the left sides, we have

(3.4) −λ0

m∑

k=1

Ik(u0(tk)) + M

∫ 1

0

u0(t)dt = λ0

∫ 1

0

f(t, u0(t), (Su0)(t))dt.

By (3.1), we get that

(3.5) (M − a − bH)σu0(τ) ≤ (M − a − bH)

∫ 1

0

u0(t)dt ≤
m∑

k=1

qku0(tk).

Hence, we have

(3.6) σ(M − a − bH) ≤
m∑

k=1

qk,

which is a contradiction. Therefore, (3.2) is satisfied, by Lemma 2.8, we have

(3.7) i(A, P ∩ Ω1, P ) = 1.

On the other hand, let v0(t) ≡ e ∈ P , ‖e‖PC = 1. Next we show that there

exists a constant R > r, which is large enough, such that

(3.8) u − Au 6= τv0, ∀ u ∈ P ∩ ∂Ω2, τ ≥ 0.

In fact, if there exist u0 ∈ P ∩ ∂Ω2 and τ0 ≥ 0, such that u0 − Au0 = τ0v0, i.e.

u0 = Au0 + τ0v0. Then by the definition of operator A, we have

(3.9)





−u′′

0(t) + Mu0(t) = f(t, u0(t), (Su0)(t)) + τ0v0(t), t ∈ J, t 6= tk,

−∆u′

0|t=tk = Ik(u0(tk)), k = 1, 2, . . . , m,

u′

0(0) = u′

0(1) = θ,

Integrating (3.9) from 0 to 1, use integration by parts in the left sides, we have

(3.10) −
m∑

k=1

Ik(u0(tk)) + M

∫ 1

0

u0(t)dt =

∫ 1

0

f(t, u0(t), (Su0)(t))dt + τ0

∫ 1

0

v0(t)dt.

By the condition (H2), we get that

(3.11)

∫ 1

0

h0(t)dt ≥ (c + dH − M)

∫ 1

0

σu0(τ)dt = σ(c + dH − M)u0(τ).

Therefore, by the normality of cone K, we have

(3.12) ‖u0‖PC ≤ ‖h0‖PC

σ(c + dH − M)
:= R.

If we chose R > max{δ, δ

H
, R}, then (3.8) is satisfied. By Lemma 2.9, we have

(3.13) i(A, P ∩ Ω2, P ) = 0.

Hence, from (3.7) and (3.13), we get that

(3.14) i(A, P ∩ (Ω2\Ω1), P ) = i(A, P ∩ Ω2, P ) − i(A, P ∩ Ω1, P ) = −1

Therefore, A has a fixed point u in P ∩ (Ω2\Ω1), which means u(t) is a positive

solution of the BVP (1.1).
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Theorem 3.2. Assume that f : J × E × E → E is continuous, Ik : E → E is

continuous, and the condition (H0) is satisfied. If f(J × K × K) ⊂ K, Ik(K) ⊂ K,

k = 1, 2, . . . , m, and f and Ik satisfy the following conditions:

(H3) There exist constants c, d > 0 with c + dH > M and δ > 0, such that for any

x, y ∈ Kδ

f(t, x, y) ≥ cx + dy,

(H4) There exist a, b > 0 with a + bH < M , qk > 0 with
∑m

k=1 qk < σ(M − a − bH)

and h0 ∈ PC(J, K), such that for any x, y ∈ K

f(t, x, y) ≤ ax + by + h0(t), Ik(x) ≤ qkx, k = 1, 2, . . . , m.

Then the BVP (1.1) has at least one positive solution.

Proof. Let 0 < r < min{δ, δ

H
}, where δ is the constant in (H3). We show that

(3.15) u − Au 6= τv0, ∀ u ∈ P ∩ ∂Ω1, τ ≥ 0,

where, v0(t) ≡ e ∈ P , ‖e‖PC = 1. If (3.15) is not true, then there exist u0 ∈ P ∩∂Ω1

and τ0 ≥ 0, such that u0 − Au0 = τ0v0, i.e. u0 = Au0 + τ0v0. By the definition of

operator A, we have

(3.16)





−u′′

0(t) + Mu0(t) = f(t, u0(t), (Su0)(t)) + τ0v0(t), t ∈ J, t 6= tk,

−∆u′

0|t=tk = Ik(u0(tk)), k = 1, 2, . . . , m,

u′

0(0) = u′

0(1) = θ.

Integrating (3.16) from 0 to 1, use integration by parts in the left sides, we have

(3.17) −
m∑

k=1

Ik(u0(tk)) + M

∫ 1

0

u0(t)dt =

∫ 1

0

f(t, u0(t), (Su0)(t))dt + τ0

∫ 1

0

v0(t)dt.

By the condition (H3), we get that

(3.18) M

∫ 1

0

u0(t)dt ≥ −
m∑

k=1

Ik(u0(tk)) + M

∫ 1

0

u0(t)dt ≥ (c + dH)

∫ 1

0

u0(t)dt.

Therefore, we get that

(3.19) (M − c − dH)

∫ 1

0

u0(t)dt ≥ 0,

which is an contradiction. Hence, (3.15) is satisfied, by Lemma 2.9, we have

(3.20) i(A, P ∩ Ω1, P ) = 0.

On the other hand, We show that there exists a constant R > r, which is large

enough, such that

(3.21) u 6= λAu, ∀ u ∈ P ∩ ∂Ω2, 0 < λ ≤ 1.
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In fact, if there exist u0 ∈ P ∩ ∂Ω2 and 0 < λ0 ≤ 1, such that u0 = λ0Au0. Then by

the definition of operator A, we have

(3.22)





−u′′

0(t) + Mu0(t) = λ0f(t, u0(t), (Su0)(t)), t ∈ J, t 6= tk,

−∆u′

0|t=tk = λ0Ik(u0(tk)), k = 1, 2, . . . , m,

u′

0(0) = u′

0(1) = θ.

Integrating (3.22) from 0 to 1, use integration by parts in the left sides, we have

(3.23) −λ0

m∑

k=1

Ik(u0(tk)) + M

∫ 1

0

u0(t)dt = λ0

∫ 1

0

f(t, u0(t), (Su0)(t))dt.

By the condition (H4), we get that

(3.24)

σ(M−a−bH)u0(τ)−
m∑

k=1

qku0(tk) ≤ (M−a−bH)

∫ 1

0

u0(t)dt−
m∑

k=1

qku0(tk) ≤
∫ 1

0

h0(t)dt.

Therefore, by the normality of the cone K, we have

(3.25) ‖u0‖PC ≤ ‖h0‖PC

σ(M − a − bH) − ∑m

k=1 qk

:= R.

If we chose R > max{δ, δ

H
, R}, then (3.21) is satisfied. By Lemma 2.8, we have

(3.26) i(A, P ∩ Ω2, P ) = 1.

Hence, from (3.20) and (3.26), we get that

(3.27) i(A, P ∩ (Ω2\Ω1), P ) = i(A, P ∩ Ω2, P ) − i(A, P ∩ Ω1, P ) = 1.

Therefore, A has a fixed point u in P ∩ (Ω2\Ω1), which means u(t) is a positive

solution of the BVP (1.1).

Next, we discuss the existence of the negative solutions of the BVP (1.1). The

following assumptions are needed:

(H1)
′ There exist constants a, b > 0 with a + bH < M , δ > 0 and qk > 0 with∑m

k=1 qk < σ(M − a − bH) such that for any x, y ∈ −Kδ

f(t, x, y) ≥ −ax − by, Ik(x) ≥ −qkx, k = 1, 2, . . . , m,

(H2)
′ There exist c, d > 0 with c + dH > M and h0 ∈ PC(J, K) such that for any

x, y ∈ −K

f(t, x, y) ≤ −cx − dy + h0(t),

(H3)
′ There exist constants c, d > 0 with c + dH > M and δ > 0 such that for any

x, y ∈ −Kδ

f(t, x, y) ≤ −cx − dy,
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(H4)
′ There exist a, b > 0 with a + bH < M , qk > 0 with

∑m

k=1 qk < σ(M − a − bH)

and h0 ∈ PC(J, K) such that for any x, y ∈ −K

f(t, x, y) ≥ −ax − by − h0(t), Ik(x) ≥ −qkx, k = 1, 2, . . . , m.

Theorem 3.3. Assume that f : J × E × E → E is continuous, Ik : E → E is

continuous, and the condition (H0) is satisfied. If f(J × {−K} × {−K}) ⊂ −K,

Ik(−K) ⊂ −K, k = 1, 2, . . . , m, and f and Ik satisfy the conditions (H1)
′ and (H2)

′.

Then the BVP (1.1) has at least one negative solution.

Proof. Let f(t, x, y) = −f(t,−x,−y), Ik(x) = −Ik(−x), t ∈ J , x, y ∈ E. If f and Ik

satisfy the conditions (H1)
′ and (H2)

′, it is easy to verify that f and Ik satisfy the

conditions (H1) and (H2). Hence, by Theorem 3.1, the problem

(3.28)





−u′′(t) + Mu(t) = f(t, u(t), (Su)(t)), t ∈ J, t 6= tk,

−∆u′|t=tk = Ik(u(tk)), k = 1, 2, . . . , m,

u′(0) = u′(1) = θ

has a positive solution ũ. Evidently, −ũ is the negative solution of the BVP (1.1).

Similar with Theorem 3.3, we have the following result:

Theorem 3.4. Assume that f : J × E × E → E is continuous, Ik : E → E is

continuous, and the condition (H0) is satisfied. If f(J × {−K} × {−K}) ⊂ −K,

Ik(−K) ⊂ −K, k = 1, 2, . . . , m, and f and Ik satisfy the conditions (H3)
′ and (H4)

′.

Then the BVP (1.1) has at least one negative solution.
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