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ABSTRACT. This paper deals with the convergence of solutions to nabla dynamic equations

x∇ = f(t, x) on time scales {Tn}∞n=1
when this sequence converges to the time scale T. The

convergent rate of solutions is evaluated when f satisfies the Lipschitz condition in both variables.

A new approach to the approximation of dynamic equations on time scales is derived by a general

view, especially the implicit Euler method for differential equations. Some examples are given to

illustrate results.
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1. Introduction

Many scientific disciplines, for instance in physics, chemistry, biology, and eco-

nomics, are described by ordinary differential equations (ODEs). Thus, finding solu-

tions of ODEs is important both in theory and practice. However, almost ODEs can

not be solved analytically. Therefore, it is necessary to find a numeric approximation

to the solutions in science and engineering. The Euler methods is very well-known

because it is simple and useful to perform this, see [4, 9, 11, 18]. For solving the stiff

initial value problem

(1.1)





ẋ(t) = f(t, x(t)),

x(t0) = x0,

at each step [tm−1, tm], the implicit Euler approximation of (1.1) is

(1.2) xm = xm−1 + hf(tm, xm),
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where tm = tm−1 + h and xm is the approximative value of x(t) at t = tm. The

quantity em := |x(tm) − xm| is called the error of this method after m− 1 time steps

which characterizes the difference between the approximative solution and the exact

solution. The interested problem is how the error em can be estimasted when the

mesh step h tends to zero. We have known that em tends to zero as h tends to zero

with some added assumptions on f . Further, it has been shown that the implicit

Euler method is more stable than explicit one (see [9, 11, 14]).

On the other hand, in recent years, the theory of the analysis on time scales has

received a lot of attentions, see [1, 2, 7, 12, 13, 15, 16] in order to unify the continuous

and discrete analysis. By using the notation of the analysis on time scales, equations

(1.1) and (1.2) can be rewritten under the form

(1.3)





x∇(t) = f(t, x(t)),

x(t0) = x0,

with the time t belongs to the time scales T = R or Th = hZ. Thus, using the implicit

Euler method means we consider equation (1.1) on the time Th, which is “close” to

T = R in some sense by view of analysis on time scale. Then the problem of the

error estimation above can be restated as follows: How do the solutions of (1.3) on

Th converge to the solution of (1.3) on T = R as the mesh step h tends to zero? In

case of positive answer, what is the convergent rate of the error em?

Following this idea in a more general context, in this article, we will consider

the behavior of solutions of equation (1.3) on time scales {Tn}
∞
n=1 when Tn tends to

T by the Hausdorff distance. Under assumption that f(t, x) satisfies the Lipschitz

condition in the variable x, we will prove that

(1.4) xn(t) → x(t) as Tn → T,

where {xn(t)}∞n=1, x(t) are solutions of equation (1.3) on time scales {Tn}
∞
n=1, T, re-

spectively. Moreover, if f satisfies the Lipschitz condition in both variables t and x

then the convergent rate of solutions is estimated as a same degree as the Hausdorff

distance between Tn and T, i.e.,

(1.5) ‖xn(t) − x(t)‖ 6 C2dH(T, Tn), for all t ∈ T ∩ Tn : t0 6 t 6 T.

By using these results, we obtain the convergence of the implicit Euler method as a

consequence. It can be considered as a new and general approach to the convergence

problems of the approximative solutions.

This paper is organized as follows. Section 2 summarizes some preliminary results

on time scales. In Section 3, we study the convergence of solutions of nabla dynamic

equations on time scales. The main results of the paper are derived here. In Section 4,
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we give some illustrating examples and show the convergence of the implicit Euler

method. The last section deals with some conclusions.

2. Preliminaries

Let T be a closed subset of R, endowed with the topology inherited from the

standard topology on R. Let σ(t) = inf{s ∈ T : s > t}, µ(t) = σ(t) − t and ρ(t) =

sup{s ∈ T : s < t}, ν(t) = t− ρ(t) (supplemented by sup ∅ = inf T, inf ∅ = sup T). A

point t ∈ T is said to be right-dense if σ(t) = t, right-scattered if σ(t) > t, left-dense

if ρ(t) = t, left-scattered if ρ(t) < t and isolated if t is simultaneously right-scattered

and left-scattered.

A function f defined on T is called rd-continuous provided it is continuous at

right-dense points in T and its left-sided limits exist (finite) at left dense points.

Similarly, f is ld-continuous if it is continuous at every left-dense point and if the

right-sided limit exists in every right-dense point. It is easy to see that a function

is continuous if and only if it is both rd-continuous and ld-continuous. A function

f from T to R is regressive (respectively positively regressive) if 1 − ν(t)f(t) 6= 0

(respectively 1 − ν(t)f(t) > 0) for every t ∈ T.

Definition 2.1 (Nabla Derivative). A function f : T → Rd is called nabla differen-

tiable at t if there exists a vector f∇(t) such that for all ǫ > 0

‖f(ρ(t)) − f(s) − f∇(t)(ρ(t) − s)‖ 6 ǫ|ρ(t) − s|

for all s ∈ (t − δ, t + δ) ∩ T and for some δ > 0. The vector f∇(t) is called the nabla

derivative of f at t.

If T = R then the nabla derivative is f
′

(t) from continuous calculus; if T = Z

then the nabla derivative is the backward difference, ∇f(t) = f(t) − f(t − 1), from

discrete calculus.

Let f be a ld-continuous function and a, b ∈ T. Then, the Riemann integral∫ b

a
f(s)∇s exists (see, e.g., [6, 7, 10]). In case b 6∈ T, writing

∫ b

a
f(s)∇s means

∫ b

a
f(s)∇s, where b = max{t < b : t ∈ T}.

Consider the dynamic equation on the time scale T

(2.1)





x∇(t) = f(t, x),

x(t0) = x0,

where f : T × R
d → R

d. If f is ld-continuous and satisfies the Lipschitz condition in

the variable x with a positively regressive Lipschitz coefficient then the problem (2.1)

has a unique solution. For the existence, uniqueness and extensibility of solution of

equation (2.1) we refer to [5, 7].
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For any regressive ld-continuous functions p(·) from T to R, the solution of the

dynamic equation x∇ = p(t)x, with the initial condition x(s) = 1, defines a so-called

exponential function. We denote this exponential function by êp(T; t, s). For the

properties of exponential function êp(T; t, s) the interested reader can see [1] and [7].

To simplify notations, we write êp(T; t, s) for êp(t, s) if there is no confusion. It is

known that for any positively regressive number α, we have the estimate

(2.2) 0 < êα(t, t0) 6 eC0α(t−t0),

where C0 is a constant depending on the bounds of ν (see [1, 2, 7]).

It is easy to see that if f(t, x) is a continuous function in (t, x) then x(t) is a

solution to (2.1) if and only if

x(t) = x0 +

∫ t

t0

f(s, x(s))∇s.

Lemma 2.2 (Gronwall-Bellman lemma, see [7, 10]). Let x(t) be a continuous function

and k > 0, x0 ∈ R. Assume that x(t) satisfies the inequality

(2.3) x(t) 6 x0 + k

∫ t

t0

x(s)∇s, for all t ∈ T, t > t0,

where k is positively regressive. Then, the relation

(2.4) x(t) 6 x0êk(t, t0) for all t ∈ T, t > t0

holds.

Fix t0 ∈ R. Let T = T(t0) be the set of all time scales with bounded graininess

such that t0 ∈ T for all T ∈ T. We endow T with the Hausdorff distance, that is

Hausdorff distance between two time scales T1 and T2 defined by

(2.5) dH(T1, T2) := max{ sup
t1∈T1

d(t1, T2), sup
t2∈T2

d(t2, T1)},

where

d(t1, T2) = inf
t2∈T2

|t1 − t2| and d(t2, T1) = inf
t1∈T1

|t2 − t1|.

For properties of the Hausdorff distance, we refer interested readers to [3, 8, 17].

3. Convergence of solutions

In this section, we consider the dynamic equation (2.1) on the sequence {Tn}n∈N

of time scales satisfying:

lim
n→∞

Tn = T,

by the Hausdorff distance and t0 ∈ Tn for any n ∈ N. We define the time scale

(3.1) T̂ = ∪n∈NTn ∪ T.
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Assume that f is continuous on T̂ and satisfies the Lipschitz condition in the variable

x, that is there exists a constant k > 0 such that

(3.2) ‖f(t, x) − f(t, y)‖ 6 k‖x − y‖, for all t ∈ T̂ : t0 6 t 6 T and x, y ∈ R
d,

where k is positively regressive. By these assumptions, the initial value problems

(IVPs)

(3.3) x∇

n (t) = f(t, xn(t)), t ∈ Tn, xn(t0) = x0, n = 1, 2, . . .

and

(3.4) x∇(t) = f(t, x(t)), t ∈ T, x(t0) = x0,

have a unique solution xn(t) defined on Tn (respectively solution x(t) defined on T).

It is clear that the solutions of the IVPs (3.3) and (3.4) are given by

(3.5) xn(t) = x0 +

∫ t

t0

f(s, xn(s))∇ns

and

(3.6) x(t) = x0 +

∫ t

t0

f(s, x(s))∇s,

respectively, where
∫

f∇ns denotes the integral on time scale Tn.

The following lemma gives the uniformly bounded property of solutions of the

IVPs (3.3) and (3.4) on different time scales.

Lemma 3.1. Let xS(t) be the solution to the dynamic equation

x∇(t) = f(t, x(t)), t ∈ S, x(t0) = x0.

Then, for any T > t0 one has

(3.7) sup
S∈T;S⊂bT

sup
t∈S:t06t6T

‖xS(t)‖ < ∞.

Proof. Let S ∈ T; S ⊂ T̂. For any t ∈ S, we have

‖xS(t)‖ =
∥∥∥x0 +

∫ t

t0

f(s, xS(s))∇s
∥∥∥

6 ‖x0‖ +
∥∥∥

∫ t

t0

f(s, 0)∇s
∥∥∥ +

∥∥∥
∫ t

t0

f(s, xS(s))∇s −

∫ t

t0

f(s, 0)∇s
∥∥∥

6 ‖x0‖ +

∫ t

t0

‖f(s, 0)‖∇s +

∫ t

t0

‖f(s, xS(s)) − f(s, 0)‖∇s.

(3.8)

By virtue of continuity of f on T̂, one has C = sup
s∈bT;t06s6T

‖f(s, 0)‖ 6 ∞. Hence,

∫ t

t0

‖f(s, 0)‖∇s 6 C(t − t0) 6 C(T − t0).
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Moreover, since f satisfies the Lipschitz condition (3.2),
∫ t

t0

‖f(s, xS(s)) − f(s, 0)‖∇s 6 k

∫ t

t0

‖xS(s)‖∇s.

Therefore,

‖xS(t)‖ 6 ‖x0‖ + C(T − t0) + k

∫ t

t0

‖xS(s)‖∇s.

By using the Gronwall-Bellman lemma, we get

‖xS(t)‖ 6
(
‖x0‖ + C(T − t0)

)
êk(S; t, t0),

where êk(S; t, t0) is exponential function defined on S. Thus, by (2.2), we obtain

sup
S∈bT

sup
t∈S:t06t6T

‖xS(t)‖ 6
(
‖x0‖ + C(T − t0)

)
eC0k(T−t0) < ∞.

The proof is complete.

Let n ∈ N, we denote by ρn the backward jump operator on the time scale Tn.

For any t ∈ T, there exists a unique s ∈ Tn, say s = γT,Tn(t), such that either s = t

or t ∈ (ρn(s), s). It is easy to check that the function γT,Tn(t) is ld-continuous on T.

Also, there exists t∗n = t∗n(t) ∈ Tn satisfying

(3.9) |t − t∗n| = d(t, Tn) = inf{|t − s| : s ∈ Tn}.

We choose t∗n = γT,Tn(t) if |t−γT,Tn(t)| = d(t, Tn), otherwise t∗n = ρn(γT,Tn(t)). Define

fn(t, x) = f(γT,Tn(t), x), t ∈ T; x ∈ R
d,(3.10)

x̃n(t) = x(γT,Tn(t)), t ∈ T.(3.11)

Assume that Tn ⊂ T. Then, by the definition of Riemann integral on time scales, we

have ∫ t

t0

f(s, x(s))∇ns =

∫ t

t0

fn(s, x̃n(s))∇s,

for any t ∈ Tn (see, e.g. [6, 7]).

Since dH(T, Tn) → 0 as n → ∞, we can assume that t∗n(t) < T + 1 when t 6 T .

By Lemma 3.1, A = sup
S∈bT

supt∈S:t06t6T+1 ‖xS(t)‖ < ∞, and hence let

M = sup{‖f(t, x)‖ : t0 6 t 6 T + 1, ‖x‖ < A}.

Now, we need the following lemmas for proving the convergence of the solution se-

quence {xn(t)} of the IVPs (3.3) when Tn tends to T.

Lemma 3.2. Let xn(t), n = 1, 2, . . . be solutions to the IVPs (3.3) and x(t) be the

solution to the IVP (3.4). Assume that Tn ⊂ T. Then,

(3.12) ‖x(t) − xn(t)‖ 6 δ
(n)
T êk(Tn; t, t0), t ∈ Tn : t0 6 t 6 T,

and

(3.13) ‖x(t) − xn(t∗n)‖ 6 δ
(n)
T+1êk(Tn; t∗n, t0) + MdH(T, Tn), t ∈ T : t0 6 t 6 T,
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where t∗n is defined by (3.9) and

(3.14) δ
(n)
t =

∫ t

t0

‖f(s, x(s)) − fn(s, x̃n(s))‖∇s.

Proof. For any t ∈ Tn, t 6 T we have

x(t) − xn(t) =

∫ t

t0

f(s, x(s))∇s −

∫ t

t0

f(s, xn(s))∇ns

=

∫ t

t0

f(s, x(s))∇s −

∫ t

t0

f(s, x(s))∇ns +

∫ t

t0

[f(s, x(s)) − f(s, xn(s))]∇ns

=

∫ t

t0

[f(s, x(s)) − fn(s, x̃n(s))]∇s +

∫ t

t0

[f(s, x(s)) − f(s, xn(s))]∇ns.

By virtue of Lipschitz condition

‖f(s, x(s)) − f(s, xn(s))‖ 6 k‖x(s) − xn(s)‖,

it follows that

‖x(t) − xn(t)‖ 6

∫ t

t0

‖f(s, x(s)) − fn(s, x̃n(s))‖∇s + k

∫ t

t0

‖x(s) − xn(s)‖∇ns

6 δ
(n)
T + k

∫ t

t0

‖x(s) − xn(s)‖∇ns.

By using Gronwall-Bellman lemma, we obtain (3.12).

If t ∈ T, t 6 T then

‖x(t) − xn(t∗n)‖ 6 ‖x(t) − x(t∗n)‖ + ‖x(t∗n) − xn(t∗n)‖.

Since t∗n 6 T + 1 and supt06t6T+1 ‖x(t))‖ 6 A,

‖x(t∗n) − xn(t∗n)‖ 6 δ
(n)
T+1êk(Tn; t∗n, t0), t ∈ T : t0 6 t 6 T.

Further,

‖x(t) − x(t∗n)‖ =
∥∥∥

∫ t∗n

t

f(s, x(s))∇s
∥∥∥ 6 M |t − t∗n| 6 MdH(T, Tn).

Summing up, (3.13) holds. The proof is complete.

Lemma 3.3. Assume that Tn ⊂ T. For each ǫ and T ∈ T, there exists θ = θ(ǫ, T )

such that if dH(T, Tn) < θ then

(3.15) δ
(n)
T 6 (T − t0)ǫ +

2M(T − t0)

θ
dH(T, Tn),

where δ
(n)
T is defined by (3.14).

Proof. Since f is continuous, f is uniformly continuous on [t0, T ] × B(0, A) where

B(0, A) is the ball with the center 0 and radius A. Therefore, for each ǫ, there exists

δ = δ(ǫ) such that if |t1 − t2| + ‖x1 − x2‖ < δ then

‖f(t1, x1) − f(t2, x2)‖ 6 ǫ on [t0, T ] × B(0, A).
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We choose θ = θ(ǫ) =
δ(ǫ)

M + 1
. If γT,Tn(t) − t < θ then

‖x(t) − x̃n(t)‖ = ‖

∫ γT,Tn (t)

t

f(s, x(s))∇s‖ 6 M(γT,Tn(t) − t) < Mθ,

and

|t − γT,Tn(t)| + ‖x(t) − x̃n(t)‖ < (M + 1)θ = δ.

This implies that if γT,Tn(t) − t < θ then

‖f(t, x(t)) − fn(t, x̃n(t))‖ < ǫ.

We see that the number of values s ∈ Tn satisfying t0 6 s 6 T and

{t ∈ T : ρn(s) < t < s, s − t > θ} 6= ∅,

is less than or equal to [T−t0
θ

]. Assume that these values are s1 < s2 < · · · < sr

with r 6 [T−t0
θ

]. In case dH(T, Tn) < θ, we see that if t ∈ T such that ρn(si) < t <

si, si − t > θ then

t − ρn(si) = d(t, Tn) 6 dH(T, Tn).

Let

τi = max{t ∈ T : ρn(si) < t < si, si − t > θ}; i = 1, r.

It is clear τi − ρn(si) 6 dH(T, Tn). Further,

δ
(n)
T =

∫ T

t0

‖f(s, x(s)) − fn(s, x̃n(s))‖∇s

=

∫ ρn(s1)

t0

‖f(s, x(s)) − fn(s, x̃n(s))‖∇s +
r∑

i=1

∫ τi

ρn(si)

‖f(s, x(s)) − fn(s, x̃n(s))‖∇s

+
r−1∑

i=1

∫ ρn(si+1)

τi

‖f(s, x(s)) − fn(s, x̃n(s))‖∇s +

∫ T

τr

‖f(s, x(s)) − fn(s, x̃n(s))‖∇s.

Since ‖f(s, x(s)) − fn(s, x̃n(s))‖ < ǫ for all s ∈ [t0, ρn(s1)] ∪ (τi, ρn(si+1)] ∪ (τr, T ]

∫ ρ(s1)

t0

‖f(s, x(s)) − fn(s, x̃n(s))‖∇s 6 ǫ(ρ(s1) − t0) 6 ǫ(τ1 − t0),

∫ ρn(si+1)

τi

‖f(s, x(s)) − fn(s, x̃n(s))‖∇s 6 ǫ(ρn(si+1) − τi) 6 ǫ(τi+1 − τi),

∫ T

τr

‖f(s, x(s)) − fn(s, x̃n(s))‖∇s 6 ǫ(ρ(s1) − t0) 6 ǫ(T − τr),

On the other hand, for i = 1, 2, . . . , r we have
∫ τi

ρn(si)

‖f(s, x(s)) − fn(s, x̃n(s))‖∇s 6 2M(τi − ρn(si)) 6 2MdH(T, Tn).
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Thus, we obtain

δ
(n)
T 6 ǫ(τ1 − t0) + ǫ(T − τr) +

r−1∑

i=1

ǫ(τi+1 − τi) +
r∑

i=1

2MdH(T, Tn)

= ǫ(T − t0) + 2rMdH(T, Tn) 6 ǫ(T − t0) +
2M(T − t0)

θ
dH(T, Tn).

The proof is complete.

We are now derive the convergence theorem for the IVPs (3.3) and (3.4).

Theorem 3.4. Let the sequence of time scales {Tn}
∞
n=1 satisfy limn→∞ Tn = T. Let

xn(t), n = 1, 2, . . . be the solutions to the IVPs (3.3) and x(t) be the solution to the

IVP (3.4). Then, for any T > t0 we have

(3.16) lim
n→∞

sup
t∈T;t06t6T

‖x(t) − xn(t∗n)‖ = 0,

where t∗n is defined by (3.9).

Proof. Firstly, we assume that Tn ⊂ T for all n ∈ N. From Lemma 3.2, it follows that

‖x(t) − xn(t∗n)‖ 6 δ
(n)
T+1êk(Tn; t∗n, t0) + MdH(Tn, T) 6 δ

(n)
T+1e

C0k(t∗n−t0) + MdH(Tn, T)

6 δ
(n)
T+1e

C0k(T+1−t0) + MdH(Tn, T),

for any t0 6 t 6 T . By Lemma 3.3, we get limn→∞ δ
(n)
T+1 = 0. Therefore, (3.16) holds.

In the general case, we put

T̂n = Tn ∪ T.

Then, it is easy to see that

(3.17) dH(T, Tn) = max{dH(T̂n, T), dH(T̂n, Tn)}.

Let x̂n(t) be the solution to equation (2.1) on time scale T̂n. For t ∈ T, we have

‖x(t) − xn(t∗n)‖ 6 ‖x̂n(t) − x(t)‖ + ‖x̂n(t) − xn(t∗n)‖.

Since T ⊂ T̂n and Tn ⊂ T̂n, we can apply Lemma 3.2 to obtain

‖x̂n(t)−x(t)‖ 6 δ̂
(n1)
T eC0k(T−t0), ‖x̂n(t)−xn(t∗n)‖ 6 δ̂

(n2)
T+1e

C0k(T+1−t0) +MdH(T̂n, Tn),

where

δ̂
(n1)
T =

∫ T

t0

‖f(s, x̂n(s)) − f(γ
bTn,T(s), x̂n(γ

bTn,T(s)))‖∇bTn
s,

δ̂
(n2)
T+1 =

∫ T+1

t0

‖f(s, x̂n(s)) − f(γ
bTn,Tn(s), x̂n(γ

bTn,Tn(s)))‖∇bTn
s.

(3.18)

By Lemma 3.1, Lemma 3.3 and equality (3.17), we imply that δ̂
(n1)
T → 0, δ̂

(n2)
T+1 → 0 as

n → ∞. Thus, (3.16) holds. The proof is complete.

For estimating the convergent rate, we need the following lemma.
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Lemma 3.5. Assume that Tn ⊂ T. Then, we have
∫ T

t0

(γT,Tn(s) − s)∇s 6 2(T − t0)dH(T, Tn).

Proof. With the value θ = dH(T, Tn), we follow a similar way as in the proof of

Lemma 3.3 to construct the sequence s1, s2, . . . , sr and the sequence τ1, τ2, . . . , τr

satisfying

ρn(s1) < τ1 < s1 < · · · < ρn(sr) < τr < sr.

Note that γT,Tn(s)− s 6 si − ρn(si) = νn(si) for all s ∈ [ρn(si), τi] and γT,Tn(s)− s 6

dH(T, Tn) for all s ∈ [t0, ρn(s1)] ∪ (τi, ρn(si+1)] ∪ (τr, T ]. Therefore,
∫ τi

ρn(si)

(γT,Tn(s) − s)∇s 6 νn(si)(τi − ρn(si)) 6 νn(si)dH(T, Tn).

Thus, we get
∫ T

t0

(γT,Tn(s) − s)∇s 6 (T − t0)dH(T, Tn) +
r∑

i=1

νn(si)dH(T, Tn)

6 2(T − t0)dH(T, Tn).

The proof is complete.

Assume further that f(t, x) satisfies the Lipschitz condition in both variables t

and x, that is

(3.19) ‖f(t, x) − f(s, y)‖ 6 k(|t − s| + ‖x − y‖), for all s, t ∈ T and x, y ∈ R
d.

We now estimate the convergent rate of approximation.

Theorem 3.6. Assume that assumption (3.19) is satisfied. Let xn(t), n = 1, 2, . . . be

solutions of the IVPs (3.3) and x(t) be the solution of the IVP (3.4). If t ∈ T : t0 6

t < T then

(3.20) ‖x(t) − xn(t∗n)‖ 6 C1dH(T, Tn),

where C1 = 2k(2T + 1 − 2t0)(M + 1)eC0k(T+1−t0) + M and t∗n is defined by (3.9).

Moreover, if t ∈ T ∩ Tn : t0 6 t < T then

‖x(t) − xn(t)‖ 6 C2dH(T, Tn),

where C2 = 4k(T − t0)(M + 1)eC0k(T−t0).

Proof. Let

T̂n = Tn ∪ T,

and x̂n(t) be the solution of equation (2.1) on the time scale T̂n. It is showed in

Theorem 3.4, for t ∈ T : t0 6 t 6 T , we have

‖x(t) − xn(t∗n)‖ 6 ‖x̂n(t) − x(t)‖ + ‖x̂n(t) − xn(t∗n)‖,

6 (δ̂
(n1)
T + δ̂

(n2)
T+1)e

C0k(T+1−t0) + MdH(T̂n, Tn),
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where δ̂
(n1)
t , δ̂

(n2)
t are given by (3.18). Note that if t ∈ T ∩ Tn : t0 6 t 6 T then

‖x(t) − xn(t)‖ 6 (δ̂
(n1)
T + δ̂

(n2)
T )eC0k(T−t0).

Since f(t, x) satisfies the Lipschitz condition (3.19),

δ̂
(n1)
T =

∫ T

t0

‖f(s, x̂n(s)) − f(γ
bTn,T(s), x̂n(γ

bTn,T(s)))‖∇bTn
s

6 k

∫ T

t0

(|s − γ
bTn,T(s)| + ‖x̂n(s) − x̂n(γ

bTn,T(s))‖)∇bTn
s.

We have

‖x̂n(s) − x̂n(γ
bTn,T(s))‖ =

∥∥∥
∫ s

γ
bTn,T(s)

f(u, x̂n(γ
bTn,T(u)))∇bTn

u
∥∥∥

6 M |s − γ
bTn,T(s)|.

Therefore, by Lemma 3.5, we get

δ̂
(n1)
T 6 k(M + 1)

∫ T

t0

|s − γ
bTn,T(s)|∇bTn

s 6 2k(M + 1)(T − t0)dH(T̂n, T).

Similarly, we imply that

δ̂
(n2)
T+1 6 2k(M + 1)(T + 1 − t0)dH(T̂n, Tn).

Thus, we obtain

‖x(t) − xn(t∗n)‖ 6 (δ̂
(n1)
T + δ̂

(n2)
T+1)e

C0k(T−t0)

6 2k(M + 1)eC0k(T+1−t0)
(
(T − t0)dH(T̂n, T) + (T + 1 − t0)dH(T̂n, Tn)

)

+ MdH(T̂n, Tn)

6 2k(2T + 1 − 2t0)(M + 1)eC0k(T+1−t0)dH(T, Tn) + MdH(T, Tn)

= C1dH(T, Tn),

where C1 = 2k(2T + 1 − 2t0)(M + 1)eC0k(T+1−t0) + M . Similarly, if t ∈ T ∩ Tn : t0 6

t < T then

‖x(t) − xn(t)‖ 6 C2dH(T, Tn),

where C2 = 4k(T − t0)(M + 1)eC0k(T−t0). The proof is complete.

4. Examples

Example 4.1. Consider the IVP

(4.1) x′ = f(t, x), t0 6 t 6 T, x(t0) = x0.

In numerical analysis, approximations to the solution x(t) of (4.1) will be generated

at various values, called mesh points, in the interval [t0, T ]. For a positive integer n,

we select a subdivision of the interval [t0, T ]

(4.2) t0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
kn−1 < t

(n)
kn

:= T, kn ∈ N.
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Associating with (4.2), we study a difference equation, called the implicit Euler

method [9, 11, 14], as follows

(4.3) x
(n)
0 = x0, x

(n)
i = x

(n)
i−1 + (t

(n)
i − t

(n)
i−1)f(t

(n)
i , x

(n)
i ), i = 1, 2, . . . , kn.

Let T := [t0, T ] and Tn := {t
(n)
0 , t

(n)
1 , . . . , t

(n)
kn−1, t

(n)
kn

}. Then T and Tn are time scales.

This leads to that we can rewrite (4.1) and (4.3) as follows

x∇(t) = f(t, x(t)), t ∈ T, x(t0) = x0,

and

x∇

n (τ) = f(τ, xn(τ)), τ ∈ Tn, xn(t0) = x0,

respectively. In this case, it is easy to see that

(4.4) 2dH(Tn, T) = hn := sup
16i6kn

{t
(n)
i − t

(n)
i−1} for all n ∈ N.

Suppose that f(t, x) is continuous and satisfies Lipschitz condition

‖f(t, x1) − f(t, x2)‖ 6 k‖x1 − x2‖, for all t ∈ [t0, T ].

By Theorem 3.4 and (4.4), we see that limn→∞ xn(γTn,T
n (t)) = limn→∞ xn(t∗n(t)) = x(t)

uniformly in [t0, T ]. Hence, we obtain the well-known result for the convergence of

implicit Euler method in numerical analysis [9, 11, 14].

Assume further that f satisfies the Lipschitz condition in both variables with

constant k. That is,

‖f(t, x1) − f(s, x2)‖ 6 k(|t − s| + ‖x1 − x2‖), for all t, s ∈ [t0, T ], x1, x2 ∈ R
d.

By Theorem 3.6, we get an estimation of the convergent rate as well as an error bound

for the implicit Euler method as follows

sup
06i6kn

‖x(t
(n)
i ) − x

(n)
i ‖ 6 C3hn, for all n ∈ N,

where C3 = 2k(T − t0)(M + 1)eC0k(T−t0).

Example 4.2 (Approximation of solutions to logistic equations on R+). Let T =

[0,∞). We now consider plant population models. Let x(t) be the number of plants

of one particular kind at time t ∈ T in a certain area. By experiments we know that

x(t) grows according to the logistic equation

(4.5) x∇(t) = x(t)[1 − 4x(t)], t ∈ T and x(0) = 1 > 0.

Suppose that we are unable to observe the values of x(t) but xn(t) with xn(t) to be the

number of plants of one particular kind at time t ∈ Tn in a certain area, subjecting

to the equation

(4.6) x∇

n (t) = xn(t)[1 − 4xn(t)], t ∈ Tn and xn(0) = 1 for all n ∈ N,
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where Tn is a time scale given by

Tn = {0} ∪
∞⋃

k=1

[2k − 1

n
,
2k

n

]
for all n ∈ N.

This means that we lack the observation, for some reasons, at the times in the intervals(
2k
n

, 2k+1
n

)
. It is easy to see that dH(Tn, T) = 1

2n
. Hence,

lim
n→∞

Tn = T.

We have x(t) =
et

1 + 4(et − 1)
; t ∈ T and

xn(0) = 1; xn

(2k + 1

n

)
= xn

(2k

n

)
+

1

n
xn

(2k + 1

n

)
−

4

n
x2

n

(2k + 1

n

)
;

xn(t) =
xn(2k−1

n
)et− 2k−1

n

1 + 4xn(2k−1
n

)
(
et− 2k−1

n − 1
) , ∀ t ∈

[2k − 1

n
,
2k

n

]
,

for all k = 1, 2, . . . , n ∈ N. Note that if f satisties the local Lipschitz condition and

the solution sequence {xn(t)} is bounded then Theorem 3.4 also holds. Therefore, by

this theorem, we imply that xn(t) → x(t) as n → ∞.

The discrete graph of solutions xn(t) and x(t) on the interval [0, 1] is shown in

Figure 1.
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(a) xn(t) and x(t) with n = 10 on the interval [0, 1]

in Example 4.2
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(b) xn(t) and x(t) with n = 20 on the interval

[0, 1] in Example 4.2

Figure 1. The graph of the solution xn(t) on the time scale Tn

Example 4.3 (Approximation of solutions to logistic equation on Cantor set). Let

K be be the Cantor set in [0, 1]. Following the construction of this Cantor set, we

define K0 = [0, 1]. We obtain K1 by removing the ”middle third” of K0, i.e., the open

interval
(

1
3
, 2

3

)
from K0. K2 is obtained by removing two ”middle thirds of K1, i.e.,
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the two open intervals
(

1
9
, 2

9

)
and

(
7
9
, 8

9

)
from K1. Proceeding in this manner we

obtain a sequence of time scales (Kn)n∈N. The Cantor set is defined

K =
∞⋂

n=0

Kn.

Let (Tn) be a sequence of time scales, where Tn = Kn∪(Kn +1) and T = K∪(K+1).

Consider the dynamic equation (4.5) with x(0) = 1. It is known that we are unable

to give an explicit formula for solutions as well as a numerical solution to equation

(4.5). However, we can use Theorem 3.4 to approximate these solutions.

We illustrate this approximation by Figure 2. It is seen that the graph on T4 of

the equation (4.5) (the green line) is similar to one on T0 = [0, 2] (the red line).
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4
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4

Figure 2. The graph of the solution x4(t) on the time scale T4

5. Conclusion

In this paper, we have proved the convergence of solutions of nabla dynamic

equations x∇(t) = f(t, x) on time scales {Tn}
∞
n=1 when this sequence converges to

the time scale T. The convergent rate of solutions is estimated when f satisfies the

Lipschitz condition in both variables.
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