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ABSTRACT. In this paper, the author gives certain sufficient conditions for the global asymptotic

stability and boundedness of solutions to a class of functional differential equations of third order

with multiple delays. The technique of proofs involve defining an appropriate Lyapunov– Krasovskii

functional and applying LaSalle’s invariance principle. An example is discussed to illustrate the

efficiency of the obtained results. Our results complement and improve some related ones in the

literature.
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1. PRELIMINARIES

In this paper, we are interested in obtaining sufficient conditions for all solutions

of the third order nonlinear functional differential equation with multiple retardations

x′′′(t) = ϕ(x(t), x′(t), x′′(t)) + ψ(x(t), x′(t)) +
N

∑

i=1

fi(x(t), x
′(t− τi))(1.1)

+h(x(t)) + p(t),

to be bounded, and in case p(t) ≡ 0, sufficient conditions for the zero solution to be

globally asymptotically stable. Our motivation comes partially from a recent paper of

El-Nahhas [11] who studied the asymptotic stability of the delay differential equation

(1.2) x′′′(t) = ax′′(t) + bx′(t) + cx(t) + f(x(t), x′(t− τ)),

where a, b and c are negative constants; τ is a constant retardation; f(0, 0) = 0.

Functional differential equations of the type (1.1) and (1.2) have been shown to

be useful in modeling many phenomena in various fields of science and engineering

and in more recent years to problems in biomathematics (see, for example, Cronin-

Scanlon [8] and Smith [19]). One special case of equations (1.1) and (1.2) is what is

known as the jerky dynamics equation

x′′′(t) + k1(x(t), x
′(t))x′′(t) + k2(x(t), x

′(t), x′′(t)) = 0
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that has gained some attention in the literature (see, Chlouverakis and Sprott [7],

Eichhorn et al. [9], Elhadj and Sprott [10], and Linz [14]). Besides, qualitative prop-

erties of solutions of various differential equations of third order with or without delay

such as stability, instability, boundedness, uniformly boundedness, oscillation, period-

icity of solutions, etc. have been studied by many authors; in this regard, we refer the

reader to the monograph by Reissig et al. [17], and the recent papers of Adams et al.

[1], Ademola and Arawomo [2], Afuwape and Adesina [3], Bai and Guo [5], Graef and

Tunç [12], Ogundare and Okecha [15], Rauch [16], Sadek [18], Tunç [20–27], Zhang

and Yu [29] and the references therein.

It should be noted that when we compare equation (1.1) with equation (1.2), it

is clear that our equation, equation (1.1), includes and improves the equation studied

by El-Nahhas [11], equation (1.2).

One tool to be used here LaSalle’s invariance principle. If we consider the delay

differential system

(1.3) x′ = F (xt), xt = x(t+ θ),−r ≤ θ ≤ 0, t ≥ 0,

we take C = C([−r, 0],ℜn) to be the space of continuous functions from [−r, 0] into

ℜn and ask that F : C → ℜn be continuous, (see, also, Krasovskii [13]). Let S be the

set of φ ∈ C such that ‖φ‖ ≥ H , denote by S• the set of all functions φ ∈ C such

that |φ(0)| ≥ H , where H is large enough.

LetD be an open (t, x)-set in ℜ+×ℜn+1 containing the origin, where ℜ+ = [0,∞).

Consider the real valued function V (t, x) defined on D, D = {(t, x) : t ≥ 0, ‖x‖ <

d ≤ +∞}.

Definition 1.1 ([4]). A function V (t, x) is known as positive definite on the set D

if V (t, 0) = 0 and there exists a function a(r) such that a(0) = 0, a(r) is strictly

monotonically increasing in r, and a(‖x‖) ≤ V (t, x), (t, x) ∈ D.

Definition 1.2 ([4]). A function V (t, x) ≥ 0 is said to be decrescent if there exists

a function b(r) such that b(0) = 0, b(r) is strictly monotonically increasing in r, and

V (t, x) ≤ b(‖x‖), (t, x) ∈ D.

We say that V : C → ℜ is a Lyapunov function on a set G ⊂ C relative to F if

V is continuous on Ḡ, the closure of G, V ≥ 0, V is positive definite, V ′ is defined on

G, and V ′ ≤ 0 on G.

The following form of LaSalle’s invariance principle can be found in Smith [19,

Theorem 5.17]. Here, ω denotes the omega limit set of a solution.

Theorem 1.3 ([19]). If V is a Lyapunov function on G and xt(φ) is a bounded

solution such that xt(φ) ∈ G for t ≥ 0, then ω(φ) 6= 0 is contained in the largest

invariant subset of E ≡ {φ ∈ Ḡ : V ′(φ) = 0}.
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Theorem 1.4 ([19]). Suppose that there exists a continuous Lyapunov functional

V (φ) defined for all φ ∈ S•, which satisfies the following conditions;

(i) a(|φ(0)|) ≤ V (φ) ≤ b1(|φ(0)|) + b2(‖φ‖), where a(r), b1(r), b2(r) ∈ CI, (CI de-

notes the families of continuous increasing functions), and are positive for r > H

and a(r) − b2(r) → ∞ as r → ∞;

(ii) V ′(φ) ≤ 0.

Then the solutions of equation (1.3) are uniformly bounded.

2. MAIN RESULTS

We consider the nonlinear third order differential equation with multiple delays

x′′′(t) = ϕ(x(t), x′(t), x′′(t)) + ψ(x(t), x′(t)) +
N

∑

i=1

fi(x(t), x
′(t− τi))(2.1)

+h(x(t)) + p(t),

where ℜ = (−∞,∞), ℜ+ = [0,∞), ϕ : ℜ3 → ℜ, ψ : ℜ2 → ℜ, fi : ℜ2 → ℜ,

i = 1, 2, . . . , N , h : ℜ → ℜ, and p : ℜ+ → ℜ are continuous with ϕ(x(t), x′(t), 0) = 0,

ψ(x(t), 0) = 0, fi(0, 0) = 0, h(0) = 0 and τi (> 0) are constants. The continuity

of the functions ϕ, ψ, fi, h and p guarantees the existence of the solutions, and

we assume that ϕ, ψ, fi and h satisfy local Lipschitz conditions so that we have

uniqueness of solutions to initial value problems as well, and the functions ψ, fi and

h are differentiable.

We can write equation (2.1) as the system

x′(t) = y(t),

y′(t) = z(t),

z′(t) = ϕ(x(t), y(t), z(t)) + ψ(x(t), y(t))

+
N

∑

i=1

fi(x(t), y(t− τi)) + h(x(t)) + p(t).

Let
N

∑

i=1

gi(x(t), y(t− τi)) =
N

∑

i=1

fi(x(t), y(t− τi)) + h(x(t)).

Hence, we have

x′(t) = y(t),

y′(t) = z(t),

z′(t) = ϕ(x(t), y(t), z(t)) + ψ(x(t), y(t))

+
N

∑

i=1

gi(x(t), y(t− τi)) + p(t),



470 C. TUNCC

which implies that

x′(t) = y(t),

y′(t) = z(t),

z′(t) = ϕ(x(t), y(t), z(t)) + ψ(x(t), y(t))

+

N
∑

i=1

gi(x(t), y(t))

−

N
∑

i=1

∫ 0

−τi

giy(x(t), y(t+ σ))z(t+ σ)dσ + p(t),(2.2)

where

giy =
∂gi

∂y
.

Assume that there are constants Pi > 0, a < 0, τi > 0 and αi > 0, i = 1, 2, . . . , N ,

such that the following assumptions hold:

(A1) v(t+ τi)[
∑N

i=1 fi(x(t), 0) + h′(x(t))x(t)] ≤ 0;

(A2)
∑N

i=1

∫ v(t+τi)

0
[fi(x(t), u)du− fi(x(t), 0)]v(t+ τi) < 0 for v(t+ τi) 6= 0;

(A3) v(t+ τi)[h
′(x)v(t+ τi) +

∑N

i=1

∫ v(t+τi)

0
fix(x(t), u)du] ≥ 0;

(A4) |fiv(x, v)| < Pi <∞;

(A5) a+ τiαi < 0;

(A6) 4αi(a+ τiαi) + τiP
2
i < 0.

Define the functions Hi(x, y), i = 1, 2, . . . , N , by

Hi(x, y) = −

∫ y

0

gi(x, u)du−
1

2
by2, (x, y) ∈ Ω0, b ∈ ℜ, b < 0,

Ω0 = {(x(t), y(t)) : (x(t), y(t+ τi)) ∈ Ω, t ≥ 0},

and Ω0 is a domain of the two dimensional Euclidean space ℜ2.

Lemma 2.1. Assume that

(B1) ψ(x, 0) = 0, ψ(x,y)
y

≤ bN for x, y 6= 0, b ∈ ℜ, b < 0, and ∂ψ

∂x
= ψx(x, y) ≥ 0 for

x, y;

(B2) ygi(x, 0) ≤ 0 for x, y;
∫ y

0
gi(x, u)du− gi(x, 0)y < 0 for x, y 6= 0.

Then the functions Hi(x, y) = Lix
2+2Mixy+Niy

2 are positive definite and decrescent,

where

Li = Li(x, y) =
1

x2

[

−

∫ y

0

gi(x, u)du+

∫ y

0

gi(x, 0)du

]

,

Mi = Mi(x) =
1

2x
gi(x, 0), and Ni = Ni(x, y) = −

1

2b
y2.
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Proof. By noting the assumptions of Lemma 2.1, it follows that

Li =
1

x2

[

−

∫ y

0

gi(x, u)du+

∫ y

0

gi(x, 0)du

]

> 0,

2Mixy = −ygi(x, 0) ≥ 0

and

Niy
2 = −

1

2
by2 ≥ 0.

Then, we can conclude that

Hi(x, y) ≥ Ki(x
2 + y2),

where Ki = min{[inf Li(x, y)] for all x, y ∈ Ω0, Ni}, Ki > 0. This means that Hi(x, y)

are positive definite.

It is also clear that the quadratic forms Hi(x, y) can be rearranged as

Hi(x, y) = XT [Ti(x, y)]X,

where

X =

[

x

y

]

, XT is transpose of X,

Ti(x, y) =







1
x2

[

−
∫ y

0
gi(x, u)du+

∫ y

0
gi(x, 0)du

]

− 1
2x
gi(x, 0)

− 1
2x
gi(x, 0) −1

2
b






.

Let λ1i(x, y) and λ2i(x, y) denote the characteristic roots of the matrices Ti(x, y).

Then, it is clear that

(2.3) Hi(x, y) ≤ L
1

2

i (x2 + y2),

where Li = sup[λ2
1i(x, y) + λ2

2i(x, y)] for all x, y ∈ Ω0, and Li > 0. Thus, the func-

tions Hi(x, y) = Lix
2 + 2Mixy + Niy

2 are decrescent. This completes the proof of

Lemma 2.1.

Theorem 2.2. Assume that p(t) ≡ 0, conditions (A1)–(A6) hold, and

h(0) = 0, h′(x) ≤ c, for x, c ∈ ℜ, c < 0;

ψ(x, 0) = 0,
∂ψ

∂x
= ψx(x, y) ≥ 0,

ψ(x, y)

y
≤ bN for x, y 6= 0, b ∈ ℜ, b < 0;

ϕ(x, y, 0) = 0,
ϕ(x, y, z)

z
≤ aN for x, y, z 6= 0, a ∈ ℜ, a < 0.

Then, the zero solution of equation (2.1) is globally asymptotically stable.
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Proof. We define the Lyapunov–Krasovskii functional V (t) = V (x(t), y(t), z(t)) by

(2.4) V (t) = −

N
∑

i=1

∫ y

0

gi(x, u)du−

∫ y

0

ψ(x, u)du+
1

2
z2+

N
∑

i=1

αi

∫ 0

−τi

[
∫ 0

θ

z2(σ)dσ

]

dθ,

where
N

∑

i=1

gi(x, y(t− τi)) =

N
∑

i=1

fi(x, y(t− τi)) + h(x),

(x, y) ∈ Ω0, z = {z(t) : z(t) = y′(t), t ≥ 0}.

and αi(> 0) are certain positive constants.

Consider the terms

−

∫ y

0

g1(x, u)du−

∫ y

0

g2(x, u)du− · · · −

∫ y

0

gN(x, u)du−

∫ y

0

ψ(x, u)du,

which are included in (2.4).

It is clear that

−

∫ y

0

g1(x, u)du−

∫ y

0

g2(x, u)du− · · · −

∫ y

0

gN(x, u)du−

∫ y

0

ψ(x, u)du

= −

∫ y

0

g1(x, u)du−

∫ y

0

g2(x, u)du− · · · −

∫ y

0

gN(x, u)du−

∫ y

0

ψ(x, u)

u
udu

≥ −

∫ y

0

g1(x, u)du−

∫ y

0

g2(x, u)du− · · · −

∫ y

0

gN(x, u)du−

∫ y

0

bNudu

≥ −

∫ y

0

g1(x, u)du−

∫ y

0

g2(x, u)du− · · · −

∫ y

0

gN(x, u)du−
1

2
(bN)y2

= −

∫ y

0

g1(x, u)du−
1

2
by2 −

∫ y

0

g2(x, u)du−
1

2
by2 · · · −

∫ y

0

gN(x, u)du−
1

2
by2

by (A1).

Then, it is obvious that

−

∫ y

0

gi(x, u)du−
1

N

∫ y

0

ψ(x, u)du ≥ −

∫ y

0

gi(x, u)du−
1

2
by2.

Hence,

(2.5) V (t) ≥

N
∑

i=1

[

−

∫ y

0

gi(x, u)du−
1

2
by2

]

+
1

2
z2 +

N
∑

i=1

αi

∫ 0

−τi

[
∫ 0

θ

z2(σ)dσ

]

dθ.

Therefore, in view of the result of Lemma 2.1, the Lyapunov–Krasovskii functional

V (t), and (2.5), it is clear that V (t) ≥ 0 for all t ≥ 0. Also note that V (t) = 0 implies

that y = z = 0. Then, x = ξ, y = z = 0. Substituting these estimates in (2.2), we

get h(ξ) = 0, which necessarily implies that ξ = 0 since h(0) = 0. Thus, V (t) = 0

implies that x = y = z = 0. Therefore, V is positive definite. Next, we show that

V (x, y, z) → ∞ as |x| + |y| + |z| → ∞. The existence of this estimate is clear when

we consider the above discussion, (2.3) and (2.4).
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Differentiating the functional V with respect to t and benefiting from the as-

sumptions of Theorem 2.2, we have

V ′(t) = −y
N

∑

i=1

∫ y

0

gix(x, u)du+ ϕ(x, y, z)z − y

∫ y

0

ψx(x, u)du

−
N

∑

i=1

∫ 0

−τi

giy(x(t), y(t+ σ))z(t)z(t + σ)dσ

+

N
∑

i=1

αi

∫ 0

−τi

[z2(t) − z2(t+ σ)]dσ

≤ −y

N
∑

i=1

∫ y

0

gix(x, u)du+

N
∑

i=1

∫ 0

−τi

[(

a

τi
+ αi

)

z2(t) − αiz
2(t+ σ)

]

dσ

−

N
∑

i=1

∫ 0

−τi

giy(x(t), y(t+ σ))z(t)z(t + σ)dσ,

where

gix =
∂gi

∂x
, giy =

∂gi

∂y
.

In view of the assumption (A3), it follows that y
∑N

i=1

∫ y

0
gix(x, u)du ≥ 0. Then

V ′(t) ≤
N

∑

i=1

∫ 0

−τi

[(

a

τi
+ αi

)

z2(t) − αiz
2(t+ σ)

]

dσ

−
N

∑

i=1

∫ 0

−τi

giy(x(t), y(t+ σ))z(t)z(t + σ)dσ.

Consider the terms
N

∑

i=1

∫ 0

−τi

[(

a

τi
+ αi

)

z2(t) − αiz
2(t+ σ)

]

dσ

−
N

∑

i=1

∫ 0

−τi

giy(x(t), y(t+ σ))z(t)z(t + σ)dσ

=

∫ 0

−τ1

[(

a

τ1
+ α1

)

z2(t) − α1z
2(t+ σ)

]

dσ

−

∫ 0

−τ1

g1y
(x(t), y(t+ σ))z(t)z(t+ σ)dσ

+

∫ 0

−τ2

[(

a

τ2
+ α2

)

z2(t) − α2z
2(t+ σ)

]

dσ

−

∫ 0

−τ2

g2y
(x(t), y(t+ σ))z(t)z(t+ σ)dσ
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+ · · ·+

∫ 0

−τN

[(

a

τN
+ αN

)

z2(t) − αNz
2(t+ σ)

]

dσ

−

∫ 0

−τN

gNy
(x(t), y(t+ σ))z(t)z(t + σ)dσ.

By noting the assumption (A4)-(A6), it can be seen that if

−α2
i −

aαi

τi
−

1

4
g2

iy
(x(t), z(t+ σ)) = −

4τiα
2
i + 4aαi + τig

2
iy
(x(t), z(t+ σ))

τi

≥ −
4τiα

2
i + 4aαi + τiP

2
i

τi
> 0,

that is, 4αi(a+ τiαi) + τiP
2
i < 0, then the quadratic form

αiz
2(t+ σ) + giy(x(t), y(t+ σ))z(t+ σ)z(t) −

(

a

τi
+ αi

)

z2(t)

= [z(t+ σ), z(t)]









αi
1
2
giy(x(t), z(t+ σ))

1
2
giy(x(t), z(t + σ)) −

(

a
τi

+ αi

)















z(t+ σ)

z(t)







is positive for any z(t+ σ) and z(t). Hence,
∫ 0

−τi

[(

a

τi
+ α1

)

z2(t) − αiz
2(t+ σ)

]

dσ −

∫ 0

−τi

giy(x(t), y(t+ σ))z(t)z(t+ σ)dσ

is negative. Therefore, we can conclude

V ′(t) < 0.

We will now apply LaSalle’s invariance principle, so consider the set

E = {(x, y, z) : V ′(x, y, z) = 0}.

Observe that (x, y, z) ∈ E implies y = z = 0, and substituting this into (2.2) shows

that x = 0. Clearly, the largest invariant set contained in E is {(0, 0, 0)}. Therefore,

the zero solution of (2.2) is globally asymptotically stable.

Finally, for the case p(t) 6= 0, we prove two theorems.

Theorem 2.3. In addition to conditions (A1)–(A6), assume that p ∈ L1(0,∞). Then

all solutions of (2.2) are bounded.

Proof. For the case p(t) 6= 0, by an easily calculation from V , which is given in (2.4),

we can see that

V ′(t) ≤ zp(t).

Then, we have

V ′(t) ≤ |z| |p(t)| ≤ (1 + z2) |p(t)| .
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From the discussion made for (2.3), it follows that

1

2
z2 +

N
∑

i=1

Ki(x
2 + y2) ≤ V (t).

Then, we have

V ′(t) ≤ (1 + 2V ) |p(t)| ,

and an application of Gronwall’s inequality [4] bounds V . Thus, all solutions of (2.2)

are bounded.

Remark 2.4. If the assumptions of Theorem 2.3 hold, then, in view of the whole

discussion made for the functional V , we can conclude

N
∑

i=1

αi

∫ 0

−τi

[
∫ 0

θ

z2(σ)dσ

]

dθ +
1

2
z2 +

N
∑

i=1

Ki(x
2 + y2) ≤ V (t)

≤
N

∑

i=1

K
1

2

i (x2 + y2) +
1

2
z2 +

N
∑

i=1

αi

∫ 0

−τi

[
∫ 0

θ

z2(σ)dσ

]

dθ.

Hence, we can conclude that all solutions of equation (2.2) are uniformly bounded.

Example 2.5. In case N = 1, consider nonlinear delay differential equation of third

order

x′′′(t) = (a− exp(−x2(t) − x′2(t) − x′′2(t))x′′(t) + (b− exp(−x(t)))x′(t)(2.6)

+cx(t) + βx2(t) − γx′(t− τ) + exp(−t) sin t,

where a, b and c are negative constants, τ is a sufficiently small positive constant.

It is clear that

ϕ(x, y, z) = (a− exp(−x2 − y2 − z2))z,

ϕ(x, y, 0) = 0,
ϕ(x, y, z)

z
= a− exp(−x2 − y2 − z2) ≤ a, z 6= 0,

h(x) = cx, h(0) = 0, h′(x) = c,

ψ(x, 0) = 0,
ψ(x, y)

y
= b− exp(−xy) ≤ b, y 6= 0,

∂ψ

∂x
= ψx(x, y) = exp(−xy)y2 ≥ 0,

f(x(t), v(t)) = βx2(t) − γv(t)
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Figure 1. Trajectories of x(t) of equation (2.6) in Example 2.5, when

a = −1, b = −2, c = −3, p(t) = 0, β = 7, γ = 5, τ = 0.0001.

such that x(t), v(t) > 0 for t ≥ 0, β and γ are constants (0 < β, γ <∞), βx+ c < 0,

α = − a
2τ

, P = γ + 1,

g(x, v) = f(x, v) + h(x)

= βx2 − γv + cx,

vg(x, 0) = −γv2 ≤ 0,

∫ y

0

g(x, u)du− g(x, 0)y =

∫ y

0

(βx2 − γu+ cx)du− βx2y − cxy

= −
1

2
γy2 < 0 for x, y 6= 0,

and

p(t) = exp(−t) sin t, p ∈ L1(0,∞).

It can also be easily shown that all assumptions (A1)–(A6) hold. Thus, all assump-

tions of Theorem 2.2 and Theorem 2.3 hold. Hence, we conclude that, in case p(t) ≡ 0,

the zero solution of equation (2.6) is asymptotically stable, and all solutions of equa-

tion (2.6) are bounded and uniformly bounded in case p(t) 6= 0.

3. DISCUSSION

A kind of functional differential equations of third order with retarded argument

has been considered. By defining an appropriate Lyapunov– Krasovskii functional



GLOBAL STABILITY AND BOUNDEDNESS OF SOLUTIONS 477

[13] globally asymptotically stability, boundedness and uniformly boundedness of so-

lutions have been discussed. It is clear that our equation, equation (1.1), includes

the equation studied by El-Nahhas [11], equation (1.2). This case is an extension and

contribution to El-Nahhas [11]. In [11], the author studied the asymptotic stability

of solutions. However, in this paper, we study, the globally asymptotically stability,

boundedness and uniformly boundedness of solutions, and the globally asymptotically

stability implies the asymptotically stability of solutions, but its inverse is not true.

This means that Theorem 2.2 includes and improves the result of El-Nahhas [11],

and Theorem 2.3 and Remark 2.4 give additional results to that in [11]. Our results

also complement some recent ones in the literature (Adams et al. [1], Ademola and

Arawomo [2], Afuwape and Adesina [3], Bai and Guo [5], Ogundare and Okecha [15],

Rauch [16], Sadek [18], Zhang and Yu [29]).
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