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ABSTRACT. Let T and p be positive constants with p ≥ 1, Ω be a bounded domain in R
n, and

∆ be the Laplace operator. This paper considers the semilinear integro-differential problem under

nonlocal boundary conditions:

ut(x, t) − ∆u(x, t) =

(∫ t

0

[F (u(x, s))]pds

)
G(u(x, t)) in Ω × (0, T ),

α0

∂u

∂ν
+ u(x, t) =

∫

Ω

K(x, y)H(u(y, t))dy in ∂Ω × (0, T ),

u(x, 0) = u0(x) on Ω̄.

We determine some conditions on functions F , G and H for finding criterion for the solution to

blow-up in a finite time.

AMS (MOS) Subject Classification. 35K38.

1. Introduction

Let T and p be positive constants with p ≥ 1, Ω be a smooth bounded domain

in R
n, ∂Ω be the smooth boundary of Ω, Ω̄ be the closure of Ω, ∆ be the Laplace

operator, and ∂/∂t − ∆ = ∂/∂t −
∑n

i=1 ∂
2/∂x2

i be the heat operator. This article

considers the following semilinear integro-differential problem with nonlocal boundary

conditions in the form:

(1.1)






ut(x, t) − ∆u(x, t) =

(∫ t

0

[F (u(x, s))]pds

)
G(u(x, t)) in Ω × (0, T ),

α0
∂u

∂ν
+ u(x, t) =

∫

Ω

K(x, y)H(u(y, t))dy in ∂Ω × (0, T ),

u(x, 0) = u0(x) on Ω̄,

where K(x, y) and u0(x) are nonnegative continuous functions on Ω̄ such that∫
Ω
K(x, y)dy ≤ 1 for x ∈ ∂Ω, α0 ≥ 0 and ∂u/∂ν denotes the outward normal deriva-

tive of u on ∂Ω.
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Here are preliminary conditions on F , G and H that we require: (i) F , G and

H are nonnegative continuous functions with G(0) = 0 = H(0) such that G(u) ≥

F (u) ≥ u, H(u) ≤ u for u ≥ 0, (ii) F ′, G′ and H ′ exist, and F ′(u) and G′(u) are

nonnegative for u ≥ 0, and (iii) F ′′(u), G′′(u) and H ′′(u) are nonnegative continuous

functions for u ≥ 0.

Notice that (1.1) with F (u(x, s)) = |u(x, s)|, G(u(x, t)) = u(x, t) and p = 1 has

been appeared in the theory of nuclear reactor kinetics [7]. We also found that the

above nonlocal boundary condition where, H(u(y, t)) = u(y, t) appears in quasi-static

thermoelasticity. In there, the entropy is governed by a parabolic equation under a

nonlocal boundary condition [10].

One of the basic approaches to our problem is the method of upper and lower

solutions and the associated monotone iterations [10, 11, 12]. This technique allows

us to show the existence and uniqueness of the solution of (1.1). Some qualitative

properties of the solution can be extracted through suitable construction of upper

and lower solutions.

One important property in the analysis of parabolic-type problems is the finite

time blow-up of the solution.

Definition 1.1 ([8]). If u(x, t) is unbounded in Ω× (0, T ), then the solution u is said

to be blow-up in a finite time T .

A lot of researchers [2, 3, 5] have been studied the blow-up behavior for semilinear

parabolic equations of the following type.

ut(x, t) − ∆u(x, t) = f(x, u) in Ω × (0, T ),

u(x, t) = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x), x ∈ Ω.

Such a nonlocal parabolic equation including the time-integral nonlocal source

term does not seem to be so much investigated. The nonlocal equations with space-

integral terms, that is the nonlocal terms involved an integral over Ω have been

studied extensively, for instant, Beberens and Ely [2] and Pao [9]. They considered

the problem of the form

(1.2) ut − ∆u = eu(x,t) +

∫

Ω

keu(x,t)dx, t > 0, x ∈ Ω,

where k is a positive constant. (1.2) is known as an ignition model for a compressible

reactive gas. They could prove that the solution blows up in the whole domain. A

similar problem of the form

ut(x, t) − ∆u(x, t) =

(∫

Ω

up(y, t)dy

)
− kuq(x, t) in Ω × (0, T ),
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u(x, t) = 0 in ∂Ω × (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

was studied by Wang and Wang [13]. They explored the blow-up behavior of the

positive solution u of the above problem.

In 2003, Chan and Tian [4] studied the following degenerate semilinear parabolic

first initial-boundary value problem:

xqut(x, t) − uxx(x, t) = amq+2δ(x− b)f(u(x, t))Um(t) for 0 < x < 1, 0 < t ≤ T,

u(x, 0) = ψ(x) for 0 ≤ x ≤ 1,

u(0, t) = 0 = u(1, t) for 0 < t ≤ T,

where q, m and T are real numbers such that q ≥ 0, m > 1, T > 0 and U(t) =∫ 1

0
xq|u(x, t)|dx, δ(x) is the Dirac delta function, f and ψ are given functions such

that f(0) ≥ 0, f(u) and f ′(u) are positive for u > 0, ψ is nontrivial, nonnegative and

continuous such that ψ(0) = 0 = ψ(1), and ψ′′ + amq+2δ(x− b)f(ψ(x))Um(0) ≥ 0 for

0 < x < 1. They showed that it has a unique solution before a blow-up occurs. A

criterion for u to blow-up in a finite time is given. Finally, they also proved that if u

blows up, then the blow-up set consists of the single-point b.

In 2008, a nonlocal parabolic problem involving the time-integral nonlocal source

term has been studied by Liu and Chen [8]. They considered the semilinear integro-

differential problem of the form

(1.3)






ut(x, t) − ∆u(x, t) =

(∫ t

0

|u(x, s)|pds

)
u(x, t) in Ω × (0, T ),

α0
∂u

∂ν
+ u(x, t) =

∫

Ω

K(x, y)u(y, t)dy in ∂Ω × (0, T ),

u(x, 0) = u0(x) on Ω̄.

They assumed that the function K(x, y) satisfies the followings

K(x, y) ≥ 0 and

∫

Ω

K(x, y)dy ≤ 1 for x ∈ ∂Ω, y ∈ Ω,

and u0 is a nonnegative continuous function on Ω̄. They showed the local existence

and uniqueness of the solution of (1.3). The method of upper and lower solutions is

used to obtain existence and comparison results for time dependent problem. The

comparison results with the suitable lower solution are also used to show a finite time

blow-up criterion for their problem.

In this study, we modify (1.3) by considering (1.1) with more general forcing term

under some prescribed conditions. This extends the work of Liu and Chen [8] for the

problem that have the time-integral nonlocal source.
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Recently, Aiewcharoen and Boonklurb [1] studied the existence and uniqueness

of the solution for (1.1). For ease of reference, we collect their results here in this

paper.

First, let DT = Ω × (0, T ) and D̄T = Ω̄ × [0, T ]. By modifying the proof of

Lemma 2.1 of Liu and Chen [8], we can obtain the following lemma which is proved

by contradiction.

Lemma 1.2 ([1]). Let w(x, t) ∈ C(D̄T ) ∩ C2,1(DT ) be such that

wt(x, t) − ∆w(x, t) ≥ g1(x, t)F (w(x, t)) +

(∫ t

0

g2(x, s)F (w(x, s))ds

)
g3(x, t) in DT ,

α0
∂w

∂ν
+ w(x, t) ≥

∫

Ω

K(x, y)g4(y, t)H(w(y, t))dy in ∂Ω × (0, T ),

w(x, 0) ≥ 0 on Ω̄,

where g1(x, t), g2(x, s), g3(x, t) and g4(y, t) are nonnegative continuous functions on

DT . Then, w(x, t) ≥ 0 on D̄T .

By Lemma 1.2, if we let g1(x, t), g2(x, s), g3(x, t) and g4(y, t) as 0, [F (u(x, s))]p−1,

G(u(x, t)) and 1, respectively, then u(x, t) ≥ 0 on D̄T , which is the following theorem.

Theorem 1.3 ([1]). If u(x, t) ∈ C(D̄T ) ∩ C2,1(DT ) is a solution of the problem

ut(x, t) − ∆u(x, t) =

(∫ t

0

[F (u(x, s))]pds

)
G(u(x, t)) in Ω × (0, T ),

α0
∂u(x, t)

∂ν
+ u(x, t) =

∫

Ω

K(x, y)H(u(y, t))dy in ∂Ω × (0, T ) and

u(x, 0) ≥ 0 on Ω̄,

then u(x, t) ≥ 0 for (x, t) ∈ D̄T .

Aiewcharoen and Boonklurb [1] used the monotone iterative method to show the

local existence of the solution u of (1.1). First, let us give the following definition for

upper and lower solutions.

Definition 1.4. A nonnegative function ũ(x, t) ∈ C(D̄T ) ∩ C2,1(DT ) is called an

upper solution of (1.1) if it satisfies

(1.4)






ũt(x, t) − ∆ũ(x, t) ≥

(∫ t

0

[F (ũ(x, s))]pds

)
G(ũ(x, t)) in Ω × (0, T ),

α0
∂ũ

∂ν
+ ũ(x, t) ≥

∫

Ω

K(x, y)H(ũ(y, t))dy in ∂Ω × (0, T ),

ũ(x, 0) ≥ u0(x) on Ω̄.
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Similarly, a nonnegative function û(x, t) is called a lower solution of (1.1) if it satisfies

(1.5)






ût(x, t) − ∆û(x, t) ≤

(∫ t

0

[F (û(x, s))]pds

)
G(û(x, t)) in Ω × (0, T ),

α0
∂û

∂ν
+ û(x, t) ≤

∫

Ω

K(x, y)H(û(y, t))dy in ∂Ω × (0, T ),

û(x, 0) ≤ u0(x) on Ω̄.

We can see from the definition that û(x, t) ≡ 0 is a lower solution of (1.1). Next,

Aiewcharoen and Boonklurb [1] used the idea of Liu and Chen [8] to construct an

upper solution for (1.1). For a > 0, consider the following initial value problem

(1.6) g′(t) =

(∫ t

0

[F (g(s))]pds

)
G(g(t)), t ∈ [0, a],

with g(0) > 0. The solution of (1.6) has the integral representation form as follow

g(t) = g(0) +

∫ t

0

(∫ s

0

[F (g(σ))]pG(g(s))dσ

)
ds.

By modifying the lemma 3.2 from Liu and Chen [8], Aiewcharoen and Boonklurb [1]

can have the following lemma that gives an existence of g(t) which satisfies (1.6).

Lemma 1.5 ([1]). Let a and b be positive real numbers, and Z = {φ : φ is nonnegative

continuous on [0, a], φ(0) = g(0) and ‖φ(t) − g(0)‖∞ ≤ b}. Then, the integro-

differential equation (1.6) possesses at least one solution g(t) on [0, α], for some 0 <

α ≤ a.

Next, Aiewcharoen and Boonklurb [1] consider ũ(x, t) = g(t), where g(t) satisfies

(1.6) with g(0) ≥ ‖u0(x)‖∞. Then, ũ(x, t) is an upper solution for (1.1). They showed

that the upper solution, (1.4), is greater than or equal to the lower solution, (1.5),

whenever both exist. In particular, any solution of (1.1) should lie between the upper

and lower solutions, which is the following lemma.

Lemma 1.6 ([1]). Let û(x, t) and ũ(x, t) be nonnegative lower and upper solutions for

(1.1), respectively. Then, û(x, t) ≤ ũ(x, t) on D̄T . Moreover, if u∗(x, t) is a solution

of (1.1), then û(x, t) ≤ u∗(x, t) ≤ ũ(x, t).

If we let u1 and u2 be two solutions of (1.1), then by the definition, we can regard

u1 as an upper solution and u2 as a lower solutions of (1.1). Thus, by Lemma 1.6,

u1 ≤ u2. By interchanging the role between upper and lower solution of u1 and u2,

we can use Lemma 1.6 again to conclude the uniqueness result of (1.1).

Theorem 1.7 ([1]). (1.1) has at most one solution.

Aiewcharoen and Boonklurb [1] constructed sequences of upper and lower solu-

tions of (1.1) in order to prove existence of the (1.1). Next, using the iterative process



460 B. AIEWCHAROEN AND R. BOONKLURB

to construct {u(k)} successively in the sector < û, ũ >= {u ∈ C(D̄T ) : 0 ≤ û ≤ u ≤

ũ}. Let u(0) be either the upper solution ũ or the lower solution û, and for k ≥ 1,

define u(k) to be the solution of the problem:

(1.7)




u
(k)
t (x, t) − ∆u(k)(x, t) =

(∫ t

0

[F (u(k−1)(x, s))]pds

)
G(u(k−1)(x, t)) in Ω × (0, T ),

α0
∂u(k)(x, t)

∂ν
+ u(k)(x, t) =

∫

Ω

K(x, y)H(u(k−1)(y, t))dy in ∂Ω × (0, T ),

u(k)(x, 0) = u0(x) on Ω̄.

If ū(0) = ũ, the constructed sequence will be denoted by {ū(k)}. Otherwise,

it will be {u(k)}. By Theorem 7 of Friedman [6] (pp. 65–68), (1.7) has a solution

u(k)(x, t) ∈ C(D̄T ) ∩ C2+α,1+α/2(DT ) for some α ∈ (0, 1).

Since u(0) = û and ū(0) = ũ, from Lemma 1.6, we have u(0) ≤ ū(0). Now, we can

use Lemma 1.2 to show that {ū(k)} is a monotone nonincreasing sequence, and {u(k)}

is a monotone nondecreasing sequence.

Lemma 1.8 ([1]). The sequences {ū(k)} and {u(k)} possess the monotone property,

that is,

0 ≤ û ≤ u(k) ≤ u(k+1) ≤ ū(k+1) ≤ ū(k) ≤ ũ on D̄T ,

for every k ∈ N.

Aiewcharoen and Boonklurb [1] used the sequences {ū(k)} and {u(k)} to prove

the existence of the solution of (1.1).

Theorem 1.9. (1.1) has a unique solution in D̄T .

2. Comparison Results and Finite Time Blow-Up

After Aiewcharoen and Boonklurb [1] established the existence and uniqueness of

(1.1), we can now study the behavior of the solution of (1.1). Comparison theorem is

one of the key concepts in studying parabolic differential equations. Here, we explore

some comparison results which will be need in main results. Let DT = Ω × (0, T )

and D̄T = Ω̄× [0, T ], where T > 0 is a finite constant. Let K̂(x) =
∫
Ω
K(x, y)dy and

assume that K̂(x) ≤ 1 for x ∈ ∂Ω.

Theorem 2.1. If u(x, t), v(x, t) ∈ C(D̄T ) ∩ C2,1(DT ) and satisfy the relations

ut(x, t) − ∆u(x, t) ≥ g1(x, t)F (u(x, t))

+

(∫ t

0

g2(x, s)F (u(x, s))ds

)
g3(x, t) in Ω × (0, T ),

α0
∂u

∂ν
+ u(x, t) ≥

∫

Ω

K(x, y)u(y, t)dy in ∂Ω × (0, T ),
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and

vt(x, t) − ∆v(x, t) ≤ g1(x, t)F (v(x, t))

+

(∫ t

0

g2(x, s)F (v(x, s))ds

)
g3(x, t) in Ω × (0, T ),

α0
∂v

∂ν
+ v(x, t) ≤

∫

Ω

K(x, y)v(y, t)dy in ∂Ω × (0, T ),

respectively, and u(x, 0) ≥ v(x, 0) for x ∈ Ω̄, where g1(x, t), g2(x, t) and g3(x, t) are

nonnegative continuous functions on DT , then u(x, t) ≥ v(x, t) on D̄T .

Proof. From the above assumptions, in Ω × (0, T ), by the Mean-Value theorem, we

have

∂

∂t
(u(x, t) − v(x, t)) − ∆ (u(x, t) − v(x, t))

≥ g1(x, t)[F (u(x, t)) − F (v(x, t))]

+

(∫ t

0

g2(x, s)[F (u(x, s)) − F (v(x, s))]ds

)
g3(x, t)

= (u(x, t) − v(x, t))F ′(ξ1(x, t))g1(x, t)

+

(∫ t

0

g2(x, s)[u(x, s) − v(x, s)]F ′(ξ2(x, s))ds

)
g3(x, t),

where ξ1(x, t) and ξ2(x, s) are between u(x, t), v(x, t) and u(x, s), v(x, s), respectively.

For the boundary conditions, we have

α0
∂

∂ν
(u− v) + u(x, t) − v(x, t) ≥

∫

Ω

K(x, y)[u(y, t)− v(y, t)]dy

Next, the initial condition gives

u(x, 0) − v(x, 0) ≥ 0, for x ∈ Ω̄.

By Lemma 2.1 of [8], we have u(x, t) − v(x, t) ≥ 0 on D̄T . That is, u(x, t) ≥ v(x, t)

on D̄T .

Comparison results obtained above will be used later. Theorem 1.9 shows that

the solution u of (1.1) exists in DT for some T > 0. Moreover, as in Definition 1.1,

if the solution becomes unbounded in DT , then we say that u blows up in a finite

time T . In this section, we show that for sufficiently large initial data, the solution u

always blows up in a finite time.

Let λ1 be the first eigenvalue of the eigenvalue problem

(2.1)

{
−∆ϕ(x) = λϕ(x) in Ω,

ϕ(x) = 0 on ∂Ω,
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and ϕ1(x) be the eigenfunction corresponding to λ1. Then, ϕ1(x) is a nonnegative

smooth function on Ω̄, and ϕ1(x) is positive in Ω. For convenience, we normalize

ϕ1(x) in sup-norm, that is, we let

sup
x∈Ω̄

ϕ1(x) = 1.

In order to prove the blow-up result, we first prove the following useful inequality.

Lemma 2.2. For 1 ≤ p <∞, let F be nonnegative function. Then,
∫ t

0

[F (u(x, s))ϕ1(x)]
pds ≥ t−(p−1)

(∫ t

0

F (u(x, s))ϕ1(x)ds

)p

.

Proof. Let 1 ≤ p <∞.

Case p = 1. We have
∫ t

0

F (u(x, s))ϕ1(x)ds = t−(1−1)

(∫ t

0

F (u(x, s))ϕ1(x)ds

)1

.

Case 1 < p <∞. Since 1
p

+ p−1
p

= 1, Hölder’s inequality implies

t−(p−1)

(∫ t

0

F (u(x, s))ϕ1(x)ds

)p

≤ t−(p−1)

(∫ t

0

[F (u(x, s))ϕ1(x)]
pds

)(∫ t

0

1
p

p−1ds

)p−1

=

∫ t

0

[F (u(x, s))ϕ1(x)]
pds.

The lemma is proved.

Theorem 2.3. For sufficiently large initial data u0, the solution u of the problem

(1.1) blows up in a finite time.

Proof. Let (x, t) ∈ Ω × (0, T ). Then, we multiply the equation (1.1) by ϕ1(x). Using

the fact that (ϕ1(x))
p ≤ ϕ1(x) ≤ 1 on Ω̄, and G(u) ≥ F (u), we get

ut(x, t)ϕ1(x) − ∆u(x, t)ϕ1(x) =

(∫ t

0

[F (u(x, s))]pds

)
G(u(x, t))ϕ1(x)

≥

(∫ t

0

[F (u(x, s))]p[ϕ1(x)]
pds

)
G(u(x, t))ϕ1(x)

≥

(∫ t

0

[F (u(x, s))ϕ1(x)]
pds

)
F (u(x, t))ϕ1(x).

By Lemma 2.2, the right-hand side of the above inequality becomes
(∫ t

0

[F (u(x, s))ϕ1(x)]
pds

)
F (u(x, t))ϕ1(x)

≥ t−(p−1)

(∫ t

0

F (u(x, s))ϕ1(x)ds

)p

F (u(x, t))ϕ1(x)
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=
1

p+ 1
t−(p−1) ∂

∂t

(∫ t

0

F (u(x, s))ϕ1(x)ds

)p+1

.

Thus, we have

ut(x, t)ϕ1(x) − ∆u(x, t)ϕ1(x) ≥
1

p+ 1
t−(p−1) ∂

∂t

(∫ t

0

F (u(x, s))ϕ1(x)ds

)p+1

.

Integrating the above inequality over Ω × (0, t) to obtain

∫

Ω

∫ t

0

ut(x, s)ϕ1(x)dsdx−

∫

Ω

∫ t

0

∆u(x, s)ϕ1(x)dsdx

≥

∫

Ω

∫ t

0

[
1

p+ 1
s−(p−1) ∂

∂s

(∫ s

0

F (u(x, σ))ϕ1(x)dσ

)p+1
]
dsdx.(2.2)

For ease of reference, we recall here some of the main conditions on F,G and p which

are G(u) ≥ F (u) ≥ u and p ≥ 1. Now, we are ready to prove the result about the

blow-up of our solution. Consider

∫

Ω

∫ t

0

ut(x, s)ϕ1(x)dsdx =

∫

Ω

u(x, t)ϕ1(x) − u(x, 0)ϕ1(x)dx

=

∫

Ω

u(x, t)ϕ1(x)dx−

∫

Ω

u0(x)ϕ1(x)dx.

Next, by the Green’s second identity, and (2.1), we have

∫ t

0

∫

Ω

∆u(x, s)ϕ1(x)dxds =

∫ t

0

∫

Ω

u(x, s)∆ϕ1(x)dxds

+

∫ t

0

∫

∂Ω

(
ϕ1(x)

∂u

∂ν
− u(x, s)

∂ϕ1(x)

∂ν

)
dxds

≥ −λ1

∫ t

0

∫

Ω

u(x, s)ϕ1(x)dxds.

Finally, we use integration by parts, and Jensen’s inequality to get

∫

Ω

∫ t

0

[
1

p+ 1
s−(p−1) ∂

∂s

(∫ s

0

F (u(x, σ))ϕ1(x)dσ

)p+1
]

dsdx

=
1

p+ 1
t−(p−1)

∫

Ω

(∫ t

0

F (u(x, s))ϕ1(x)ds

)p+1

dx

+

∫

Ω

∫ t

0

(∫ s

0

F (u(x, σ))ϕ1(x)dσ

)p+1 (
p− 1

p+ 1
s−p

)
dsdx

≥
1

p+ 1
t−(p−1)

∫

Ω

(∫ t

0

F (u(x, s))ϕ1(x)ds

)p+1

dx

≥
1

p+ 1
t−(p−1)

(∫

Ω

∫ t

0

F (u(x, s))ϕ1(x)dsdx

)p+1
1

|Ω|p+1
,
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where |Ω| =
∫
Ω

1dx is the volume of Ω. Since F (u) ≥ u, (2.2) becomes

∫

Ω

u(x, t)ϕ1(x)dx−

∫

Ω

u0(x)ϕ1(x)dx+ λ1

∫ t

0

∫

Ω

u(x, s)ϕ1(x)dxds

≥
1

|Ω|p+1

1

p+ 1
t−(p−1)

(∫ t

0

∫

Ω

F (u(x, s))ϕ1(x)dxds

)p+1

≥
1

|Ω|p+1

1

p+ 1
t−(p−1)

(∫ t

0

∫

Ω

u(x, s)ϕ1(x)dxds

)p+1

.

Let us define

A(t) ≡

∫ t

0

∫

Ω

u(x, s)ϕ1(x)dxds.

Then, A(t) ∈ C1((0, T )) with A(0) = 0, A′(t) =
∫
Ω
u(x, t)ϕ1(x)dx ≥ 0, and A(t)

satisfies the integro-differential inequality

A′(t) + λ1A(t) −
1

|Ω|p+1

1

p+ 1
t−(p−1)(A(t))p+1 −

∫

Ω

u0(x)ϕ1(x)dx ≥ 0.

Next, we modify the idea of Liu and Chen [8] to construct a function B(t) such

that B(t) ≤ A(t) and B(t) tends to infinity in a finite time. Let a > 1. Then, we

define [t]a and B(t) as follows

[t]a ≡





t− a, if t > a,

0, otherwise

and

B(t) =
µt

(a− [t]a)
1

p

for 0 ≤ t < 2a,(2.3)

where µ > 0 is a finite number to be chosen. Then, B(t) ∈ C([0, 2a)) and B(t) is

differentiable in [0, a) ∪ (a, 2a).

Case 1: For 0 ≤ t < a. We obtain B′(t) = µ
a1/p , and by direct calculation

B′(t) + λ1B(t) −
1

|Ω|p+1

1

p+ 1
t−(p−1)(B(t))p+1 −

∫

Ω

u0(x)ϕ1(x)dx

=
µ

a1/p
+ λ1

µt

a1/p
−

1

p+ 1

1

|Ω|p+1
t2

µp+1

a(p+1)/p
−

∫

Ω

u0(x)ϕ1(x)dx.

Note that (λ1µt/a
1/p) − (µp+1t2/(p+ 1)|Ω|p+1a(p+1)/p) attains its maximum value at

t∗ =
λ1(p+ 1)|Ω|p+1a

2µp
,

and the maximum value is (p+ 1)|Ω|p+1λ2
1µ

1−pa1− 1

p/4. By choosing

µ ≥

(
λ1(p+ 1)

2

) 1

p

|Ω|
p+1

p ,(2.4)
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we have 0 < t∗ < a. Furthermore, if u0(x) satisfies

(2.5)

∫

Ω

u0(x)ϕ1(x)dx ≥
µ

a1/p
+

1

4
(p+ 1)|Ω|p+1λ2

1µ
1−pa1− 1

p ,

we have

B′(t) + λ1B(t) −
1

|Ω|p+1

1

p+ 1
t−(p−1)(B(t))p+1 −

∫

Ω

u0(x)ϕ1(x)dx ≤ 0.

By regarding F (u(x, t)) = u(x, t) = B(t), F (v(x, t)) = v(x, t) = A(t), g1(x, t) = λ1,

g2(x, s) = A(s)p−1, B(s)p−1 and g3(x, t) = t1−p/|Ω|p+1 in Theorem 2.1, we obtain

B(t) ≤ A(t) for 0 ≤ t < a. Since B(t) and A(t) are continuous on [0, a], we get

B(a) ≤ A(a). Hence, B(t) ≤ A(t) on [0, a].

Case 2: For a < t < 2a. We have B(t) = µt/(2a− t)1/p, and hence,

B′(t) + λ1B(t) −
1

|Ω|p+1

1

p+ 1
t−(p−1)(B(t))p+1 −

∫

Ω

u0(x)ϕ1(x)dx

=
1

p
µt(2a− t)−

1

p
−1 + µ(2a− t)−

1

p + λ1µt(2a− t)−
1

p

−
1

|Ω|p+1

1

p+ 1
t2µp+1(2a− t)−

1

p
−1 −

∫

Ω

u0(x)ϕ1(x)dx

= µ(2a− t)−
1

p
−1

{
2a+

(
1

p
+ 2aλ1 − 1

)
t−

(
λ1 +

1

|Ω|p+1

µp

p+ 1

)
t2

}

−

∫

Ω

u0(x)ϕ1(x)dx.(2.6)

If we take

(2.7) µ ≥

{ (
p(2a− 1) + 1

p

)
(p+ 1) + (2a− 1)λ1(p+ 1)

} 1

p

|Ω|
1

p
+1,

then

(2a− 1)λ1 +
p(2a− 1) + 1

p
≤

1

|Ω|p+1

µp

p+ 1
.

This gives

2a+

(
1

p
+ 2aλ1 − 1

)
−

(
λ1 +

1

|Ω|p+1

µp

p+ 1

)
≤ 0,

Since

2a

t
+

(
1

p
+ 2aλ1 − 1

)
−

(
λ1 +

1

|Ω|p+1

µp

p+ 1

)
t

< 2a+

(
1

p
+ 2aλ1 − 1

)
−

(
λ1 +

1

|Ω|p+1

µp

p+ 1

)

≤ 0,

we have

2a+

(
1

p
+ 2aλ1 − 1

)
t−

(
λ1 +

1

|Ω|p+1

µp

p+ 1

)
t2 ≤ 0
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for any t ∈ (a, 2a). Since µ(2a− t)−
1

p
−1 ≥ 0 in the open interval (a, 2a), we have the

right-hand side of (2.6) is nonpositive in (a, 2a). This implies

B′(t) + λ1B(t) −
1

|Ω|p+1

1

p+ 1
t−(p−1)(B(t))p+1 −

∫

Ω

u0(x)ϕ1(x)dx ≤ 0

in the open interval (a, 2a). By Theorem 2.1 again, we have B(t) ≤ A(t) for t ∈

(a, 2a).

From both cases, we can see that if µ satisfies (2.7), then it must satisfy (2.4).

Thus, if µ satisfies (2.7) and u0 is large enough such that (2.5) holds, we can conclude

that B(t) ≤ A(t) for t ∈ [0, 2a).

Now, from (2.3) we can see that as t tends to 2a, B(t) tends to infinity, this

implies A(t) is unbounded in [0, 2a). Since

A(t) =

∫ t

0

∫

Ω

u(x, s)ϕ1(x)dxds,

we have u(x, t) blows up in Ω × [0, 2a).

3. Discussion

One can investigate this type of problem further by approximating the blow-up

time using numerical technique or considering the asymptotic behavior of a solution.
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