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QUENCHING FOR DEGENERATE SEMILINEAR PARABOLIC
PROBLEMS

W. Y. CHAN
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ABSTRACT. Suppose that c is a positive constant. Let f (u) be a C? ([0, ¢)) function such that
f>0,f>0,f">0, f(u) = oo when u — ¢, and foc f (u) du < oo, we investigate the quenching
problem {%u; — (§ug), = f(u) for 0 < § <a, 0 <7 <I' <00, u(§,0) =0for0<¢<a, and
u(0,7) =0=wu(a,7)for 0 < 7 <T. It is assumed that ¢ > 0 and v € [0, 1). In this paper, we study
the existence and uniqueness of the classical solution u to the problem. Furthermore, the quenching

set of the solution is discussed.

AMS (MOS) Subject Classification. 35K57, 35K58, 35K65.

1. INTRODUCTION

Let a be a positive constant, I' be a positive real number, ¢ be a nonnegative
constant, v be a nonnegative constant less than 1, and f be a twice differentiable
function such that f >0, f' >0, f” >0, f(u) — oo when u — ¢, and focf (u)du <
oco. In this paper, we study the following degenerate semilinear parabolic initial-

boundary value problem
(1.1) §fur — (ug)e = f (u) in (0,a) x (0,I),

(1.2) u(£,0)=0on [0,a] and u(0,7) =u(a,7) =0in (0,I).

The above problem is motivated by the paper of Chen, Liu, and Xie [3]. They
discussed the problem (1.1)-(1.2) with f (u) = ;' uPd¢. They showed that u blows
up in a finite time and the blow-up set is [0,a]. If ¢ = 0 and u (£,0) = ug where ug
is a smooth function such that uy € [0,¢), Ke and Ning [6] discussed the equation,
u — (p(§) ue), = f(u) where p(0) =0, p(§) € C'(0,00), and p(§) > 0 in (0, 00)
with 1/p € L' ([0,a]) and [;°1/p(€)d§ = co. They investigated the critical length
of u and proved that all possible quenching points of u must lie in a compact subset
of (0,a). When v = 0, u(£,0) = uo (§), and f (u) = u?, Floater [5] showed that if
the solution blows up in a finite time, then u blows up at £ =0 when 1 <p < ¢q+ 1.
Chan and Liu [1] examined the reverse case. They showed that £ = 0 is not a blow-up

point of v and the blow-up set is a compact subset of (0,a) when p > ¢+ 1. When
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f (u) = uP, Chan [2] studied the existence and uniqueness of the classical solution to

the problem. He also proved that u blows up at £ =0 when 1 <p < ¢+ 1.
When f (u) = 0, Day [4] used (1.1) to describe the heat conduction in a rigid slab.

The boundary £ = 0 and £ = a are in contact with a heat reservoir. % and &7 are

representing the heat capacity and the thermal conductivity of the slab, respectively.

In (1.1), the terms &7 and £” tend to zero when & approaches zero if ¢ and  are
positive, thus the coefficient of u, and wge is degenerate. In Section 2, we shall prove
that there exists a unique classical solution to the problem (1.1)—(1.2). We firstly show
that problem (1.1)—(1.2) shall have a unique solution over the domain [d, a] x [0,T)
where 0 is a positive real number less than a. The classical solution to the problem
(1.1)—(1.2) is the limiting solution of § equation when 6 — 0. In Section 3, a sufficient
condition for u quenching at a finite time shall be given through constructing a lower

solution. Then, we shall prove that the quenching set for u is a compact subset of
[0, a.

2. EXISTENCE AND UNIQUENESS OF THE CLASSICAL
SOLUTION

Let L be a degenerate semilinear parabolic operator such that
Lu = €, — (€7ug),
In the beginning of this section, let us recall the following comparison lemma (c.f.
[2]).
Lemma 2.1. For any s € (0,I') and a bounded nonnegative function B (£, T) on
0,a] x [0, 8], if u and v € C ([0,a] x [0,s]) NC*!((0,a) x (0,s]), and
(L—B)u>(L—B)vin (0,a) x (0,s],
u > v on the parabolic boundary ([0,a] x {0}) U ({0,a} x (0,s]),

then u > v on [0,a] x [0, s].

Let 0 = & (a — &)” where v € (0,1) and v+~ < 1. Suppose that hg is a positive
constant such that hof (£) < c on [0,a]. We also assume that § is a positive constant

with 6 < a/2 and h (1) is a positive increasing solution to the following initial value

problem:

n (1) = f~<<%> hET?) for 7 € (0,t0] and h(0) = hy,
Ja+ (a _ 5)

where tq is a positive constant satisfying (a?/4)"” h (to) < c¢. Furthermore, we let

(= min{y(l ) Fre (a—S)”, V(1 —v) (a—S)WS”—?},
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which satisfies
2

§>f(<%) h(7)> for 7 € (0, o) .

ho

The above inequality holds in some interval (0, o] because §7**~2and 62 tend to
large numbers when ¢ is close to 0. Suppose that o (£,7) = 0 (€) h(7), the next
lemma shows that u is bounded above by ¢ on [0, a] x [0, to].

Lemma 2.2. ¢ > u on [0,a] x [0, t].

Proof. The function v satisfies the following expression:

Ly — f(¥)
=& (a— &) N (1) — vh(7)
—f(& (a=&)"h(r))
=M (a— )N (1) +v (1 =y =) (a— &) h(7)
(Y +2) T a =) T h(D) +r (1 =) (a— ) h(7)
— [ (" (a=&)"h(T)).

4

P O A S O

We rewrite the interval (0,a) as (0,5} U (5,&—5) U [a—&a). When (¢,7) €
(0.5] x [0,ta],

Ly = f (¥)

- [C f((f>”h<f>)] -

When (§,7) € [a—g, a) x [0, 2],

Ly — f ()
> vh(r)(1—v) & (a— &) — F (& (

> vho (1-v) (a - S)W 5 f ((a{) h (T))
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When (§,7) € (S,a— 5) x [0, to],

~ W\ Y a’\”

Lo- )z i (-5 wn -7 () 1) o
When 7 =0, ¢ (£,0) = hgf > 0on [0,a]. At { =0and { =a, ¢ (,7) =0 for 7 > 0.
By Lemma 2.1, ¢ (§,7) > w (&, 7) on [0,a] x [0, %] . O

Since f > 0, by Lemma 2.1 v > 0 on [0,a] x [0,T"). Let § be a positive constant

less than a and us denote the solution of the Dirichlet initial-boundary value problem:

(2.1) §lur — (§ug) = f(u) for 6 < <a,0<7<T,

(2.2) u(&,0)=0ford0 <¢<a, u(0,7)=0=u(a,7) for0 <7 <T.

Let w = (0,a) x (0,to], @ = [0,a] x [0,t0), Ds = (6,a), ws = Ds x (0,t0], Ds = [6, al,
ws = Ds x [0,t0], and dws = (Ds x {0}) U ({,a} x (0,0]), we prove the existence
and uniqueness of the solution to the problem (1.1)—(1.2).

Theorem 2.3. The problem (1.1)—(1.2) has a unique nonnegative solution

u € C (@) NC*eITe/2((0 a] x [0,)) .

Proof. We prove ugs, > us, over the domain [01,a] x [0,T") when 0 < 0y < 67 < a.
We note that £7977 and 797771 € C®%/2 (@s) for some a € (0,1). £79f (us) <
f () /67 for some (&, T,us) € ws x [0,¢). It follows from Theorem 4.2.2 of Ladde,
Lakshmikantham, and Vatsala [8, p. 143] that the problem (2.1)-(2.2) has a unique
solution us € C?14%/2 (35). When 7 > 0 and 0; > &, > 0, ug, (61,7) > ug, (6, 7) =
0. It follows from Lemma 2.1 that us, < us, on ws,. Therefore, lims o u;s exists for
all (§,7) € w. Let u (&, 7) = lims_ous (&, 7). We want to show that u is a solution.
Let £ = [51,52] X [O,tﬂ and £ = [51,32} X [O,fl} such that E C E C @ (where
by >b >0, by <by<a,and §; < #; < to). Since us < 7 in E, we have for any

constant ¢ > 1, the following three conditions are satisfied:

i. Hu(;HLq(E) < ||¢||LQ(E) < k; for some positive constant k;.
ii. For s > 0,

H §—q+w—1H < ~bT L (0 ) 14 1/4
g L‘?([lal,laz]x(r,'r-‘rs)) =70 2 1 S

tends to 0 when s approaches 0.

iii. As f(u) is an increasing function, it gives ||~ f (u(g)||Lq(E) < b7\ f (¢)||Lq(E)

If we choose ¢ > 3/ (2 — «), by Theorem 4.9.1 of Ladyzenskaja, Solonnikov, and
Ural’ceva [9, pp. 341-342] us; € W;’l (E) By Theorem 2.3.3 there [9, p. 80,
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W;’l (E) s H®/2 (E) Thus, ||U5||Ha,a/2(E) < ko for some positive constant ks.
By the triangular inequality, it yields

16727 )
é"—q

< b If (@)l + sup

& ¢
o LDl erwien s
(€€ ‘5 —¢ (em)eE T — 7|
(E,T)EE (¢,7)eE

By the mean value theorem, we have
18 5

b 1 (0)llog + 01 1F @) o 1tsl ooy + 1 ()] 1677 [ o2 ()
ks

IA

IA

for some positive constant k3 which is independent of §. In addition, ||{7977| 4a.a /2(5)
and ||7§“1+“"1||Ha,a/2(§) are bounded. Then, by Theorem 4.10.1 of Ladyzenskaja,
Solonnikov, and Ural’ceva [9, pp. 351-352], we have

|[us] |H2+a,1+a/2 (E) < ky

for some positive constant k; which is independent of §. This implies that wug,
(us),, (us)e, and (us), are equicontinuous in E. By the Ascoli-Arzela theorem,
|u]| grosanisare 2) < k4, and the partial derivatives of u are the limits of the correspond-
ing partial derivatives of us. From Lemma 2.2, ¢) > u > 0 on w, by the Sandwich theo-
rem u (0,7) = 0 =u(a,7) for 7 € [0,%,]. Thus, u € C (@)NC**+2/2((0,a] x [0,t0]).
By Lemma 2.1, there exists a unique nonnegative solution u to the problem (1.1)—(1.2)

on w. 0

We follow Theorem 3 of Chan and Liu [1] to obtain the following result.

Theorem 2.4. Let I' be the supremum over ty for which there is a unique nonnegative
solution u € C (@) N C?+1+2/2((0,a] x [0,t]). Then, there is a unique nonnegative
solution u € C([0,a] x [0,T)) N C?**+/2((0,a] x [0,T)). If T < oo, then u is
unbounded in (0,a) x (0,I).

3. QUENCHING SET OF THE SOLUTION

Let x = £/a and t = a”~27%7. Problem (1.1)—(1.2) becomes

(3.1) 2y — (2uy), = a® 7 f (u), (z,t) € (0,1) x (0,7T),
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(3.2) u(z,0)=0on [0,1], and u (0,t) =u(1,£) =0in (0,7,

where T = a?279T". Then, let b be a positive constant less than or equal to 1 and
i(z,t) =a* 7 f(0)m@)x(1—=x)/8>0in [0,1] x (0,T) where

m(t) = %b (1—e™).

In the following lemma, we prove that u quenches in a finite time if a is sufficient
large through showing @ (z,t) < w (z,t) in [0, 1] x [0,T).

Lemma 3.1. If a is sufficient large, u quenches in a finite time.

Proof. To obtain this result, we use the method of the lower solution. With @ (z,t) =
a*> 7 f(0)m (t)x (1 — x) /8 where m (t) being a positive increasing function for ¢ > 0
and m (0) = 0, a(0,t) = a(1,t) = 0 for ¢ > 0 and u(z,0) = 0 for z € [0, 1].
Substitute u (z,t) into (3.1) to obtain the differential inequality below:

290y — 27 gy — v 1,

SR U PR . i AL T L AU
m' () o, 1 a*>7f(0) a7 f(0)

If the last expression of this inequality is less than or equal to a®>~7 f (0), it is equivalent

that m (t) satisfies the following differential equation

" =5 m()=0

where b is a positive constant less than or equal to 1. The solution of the above

differential equation is

mit) = gb (1)

Then, from f’ > 0, « > 0, and the above equation, we obtain
Ty — 2 Mgy — Y27 0y < a*7F(0) < a®77f (1)

By Lemma 2.1,

(@) > i (2,1) = %f(o)m(t)x(l—x)

for (z,t) € [0,1] x [0,T). In particular at z = 1/2 and t = T where 0 < T < T
1 - 2—y -
W(17) > 0O, (7).
2 32

Since v < 1 and m (T) > 0, there exists an a such that a®>~7f (0)m (T) /32 > c.

Hence, u quenches in a finite time 7 if a is sufficient large. O
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In the following, we are going to prove that the quenching set of u is a compact
subset of (0,1). Let 2"/~ = . Then, dz/dx = (1 — ~) z7/0=7),

L=~

Up = Uy——
z Z /(=)

(1 =) u.
S /(1)

Having the above expressions, 27y, + y27~'u, is represented by

~1
T Uy + Y27 Uy

o |2 ey, Y=Y us (1)), L=
=20 (=) 2 s = Sy | 12 P

= (1= 20y, —y (1 =) 27 YOy, 4y (1 =) 27 Yy,
=(1— 7)2 2=y

Therefore, z9u; = (27u,), + a®~7 f (u) transforms to

(3.3) 29/ A=y, = (1-— 7)2 2y 4 Q> f (u).
Let
1 ) 1 1 pu(zt)
B(0) =50 -" [ utdee [ [ 200000 f 1) dud
0 o Jo

and fou(z’t) f(u)du = F (u(zt)). We modify Theorem 2 of Kong [7] to obtain the

following result.

Lemma 3.2. The quenching points of the solution u are in the interval

21— ) 1/(1-) o 21— ) 1/(1-)
2[F (c) (1 =)+ E(0)] ’ 2[F (c) (1 =)+ E(0)]

Proof: We differentiate F (t) with respect to ¢,
1 1 1
E'(t) = 5 (1- 7)2/ 2u uydz — / G2 F () wedz.
0 0

Use integration by parts, u; (0,t) = u; (1,£) = 0, and (3.3) to obtain

1 1
E (t)=(1—7)? (uzut|é — / uzzutdz) - / A2 f () wydz
0 0

1 1
=—(1- 7)2/ Uy uydz — / D A=D G2 f (u) uydz
0 0
1
= _/ 2=y, {(1 — 7)2 2Ny, 4+ a®Tf (u)} dz
0
1
_ / A0y /0=y 4
0

1
— _/ z(“’”)/(l_“’)ufdz < 0.
0
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Since E' (t) < 0, we know that E (t) < E(0) = 1 (1 — ) fol u? (2,0) dz. Equivalently,

1 1/2 21/2 u(z,t)
(/ uidz) < — / / D f (4) dudz + E (0)
0

Then, by the Schwarz inequality, it yields

1/2

u(z,t):/ w. (2,1) dz

() ([ )
<([ ) ([ )

1/2

21/2 u(z,t)
<z2 // O f (u) dudz + E (0)

As fou(z’t) f (u) du < F (c), this leads to

1/2

ol/2 [ 1
u(z,t) < 22 F (c)/ ANy 4+ E (0)}
0

(1-7)
o1/2 [ 1
21/2

(1—=7)

1/2

+ E(0)

[F () (1 =)+ E(0)]",

Set the right side of the above inequality less than ¢, we obtain

e 22 e a—y+ B
& —7v)+ <c.
(1-7)
Then, solve for z
2 1 _ 2
L - ct(1—7)

2[F (c) (1 =)+ E(0)]

Since 2'/(=7) = gz, the upper bound of z is given by

Lo eamp Y
2[F () (1 =) + E(0)] '
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When we integrate —u, (z,t) with respect to z from z to 1,

u(zt) = /zl —u (2,) dz

< (/ldz)z: (/:ugdz)
<([) ([ )

1/2

1/2

1o 21/2 1 u(z,t) 1/2
<(l—2)? =2 — / / /UD f (u) dudz + F (0)
(1= Jo Jo
Using the similar calculation above, we obtain
2 1— 2
1—-2< ¢ ) .
2[F(c)(1 =)+ E(0)]
This leads to
2 1 — 2
1-— c( 7) <z=g'.
2[F(c)(1=~)+ E(0)]
Equivalently,
1/(1—
. 62(1_7)2 /( 7)<$
2[F(c) (1 =)+ E(0)] '
The proof is complete. O

Theorem 3.3. If a is sufficiently small, there is a global solution to the problem
(1.1)—(1.2).

Proof. Suppose that g (x) = ksz® for some positive constants 3 and ks such that
B+~ < 1and ks < c. It is noticed that g () > 0 in [0, 1]. Then, we compute

219 — (2792), — a* 7 f (g)
= — [ks2" B (6 — 1) 2”7 + yksa" ™ B2 — a7 f (ks2”)
= —ks2" P2 (3 = 14 7) — a®7 f (ksa”)
— k(- B ) - T (k)
> ksB(1—=B—7)—a " f (ksa”) .
We choose a sufficiently small such that ks (1 — 3 — ) —a* 7 f (ksz”) > 01in (0,1).

Hence,
w9, — (279,), — a7 f(9) = 0in (0,1).

By Lemma 2.1, g (x) > u (z,t) on [0, 1] x [0, 00). Therefore, u (x,t) exists globally. [J
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