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QUENCHING FOR DEGENERATE SEMILINEAR PARABOLIC

PROBLEMS
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ABSTRACT. Suppose that c is a positive constant. Let f (u) be a C2 ([0, c)) function such that

f > 0, f ′ > 0, f ′′ > 0, f (u) → ∞ when u → c−, and
∫ c

0
f (u)du < ∞, we investigate the quenching

problem ξquτ − (ξγuξ)ξ
= f (u) for 0 < ξ < a, 0 < τ < Γ ≤ ∞, u (ξ, 0) = 0 for 0 ≤ ξ ≤ a, and

u (0, τ) = 0 = u (a, τ)for 0 < τ < Γ. It is assumed that q ≥ 0 and γ ∈ [0, 1). In this paper, we study

the existence and uniqueness of the classical solution u to the problem. Furthermore, the quenching

set of the solution is discussed.
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1. INTRODUCTION

Let a be a positive constant, Γ be a positive real number, q be a nonnegative

constant, γ be a nonnegative constant less than 1, and f be a twice differentiable

function such that f > 0, f ′ > 0, f ′′ > 0, f (u) → ∞ when u→ c−, and
∫ c

0
f (u) du <

∞. In this paper, we study the following degenerate semilinear parabolic initial-

boundary value problem

(1.1) ξquτ − (ξγuξ)ξ = f (u) in (0, a) × (0,Γ) ,

(1.2) u (ξ, 0) = 0 on [0, a] and u (0, τ) = u (a, τ) = 0 in (0,Γ) .

The above problem is motivated by the paper of Chen, Liu, and Xie [3]. They

discussed the problem (1.1)–(1.2) with f (u) =
∫ a

0
updξ. They showed that u blows

up in a finite time and the blow-up set is [0, a]. If q = 0 and u (ξ, 0) = u0 where u0

is a smooth function such that u0 ∈ [0, c), Ke and Ning [6] discussed the equation,

ut − (p (ξ)uξ)ξ = f (u) where p (0) = 0, p (ξ) ∈ C1 (0,∞), and p (ξ) > 0 in (0,∞)

with 1/p ∈ L1 ([0, a]) and
∫

∞

0
1/p (ξ) dξ = ∞. They investigated the critical length

of u and proved that all possible quenching points of u must lie in a compact subset

of (0, a). When γ = 0, u (ξ, 0) = u0 (ξ), and f (u) = up, Floater [5] showed that if

the solution blows up in a finite time, then u blows up at ξ = 0 when 1 < p ≤ q + 1.

Chan and Liu [1] examined the reverse case. They showed that ξ = 0 is not a blow-up

point of u and the blow-up set is a compact subset of (0, a) when p > q + 1. When
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f (u) = up, Chan [2] studied the existence and uniqueness of the classical solution to

the problem. He also proved that u blows up at ξ = 0 when 1 < p ≤ q + 1.

When f (u) = 0, Day [4] used (1.1) to describe the heat conduction in a rigid slab.

The boundary ξ = 0 and ξ = a are in contact with a heat reservoir. ξq and ξγ are

representing the heat capacity and the thermal conductivity of the slab, respectively.

In (1.1), the terms ξq and ξγ tend to zero when ξ approaches zero if q and γ are

positive, thus the coefficient of uτ and uξξ is degenerate. In Section 2, we shall prove

that there exists a unique classical solution to the problem (1.1)–(1.2). We firstly show

that problem (1.1)–(1.2) shall have a unique solution over the domain [δ, a] × [0,Γ)

where δ is a positive real number less than a. The classical solution to the problem

(1.1)–(1.2) is the limiting solution of δ equation when δ → 0. In Section 3, a sufficient

condition for u quenching at a finite time shall be given through constructing a lower

solution. Then, we shall prove that the quenching set for u is a compact subset of

[0, a].

2. EXISTENCE AND UNIQUENESS OF THE CLASSICAL

SOLUTION

Let L be a degenerate semilinear parabolic operator such that

Lu = ξquτ − (ξγuξ)ξ .

In the beginning of this section, let us recall the following comparison lemma (c.f.

[2]).

Lemma 2.1. For any s ∈ (0,Γ) and a bounded nonnegative function B (ξ, τ) on

[0, a] × [0, s], if u and v ∈ C ([0, a] × [0, s]) ∩ C2,1 ((0, a) × (0, s]), and

(L− B) u ≥ (L−B) v in (0, a) × (0, s] ,

u ≥ v on the parabolic boundary ([0, a] × {0}) ∪ ({0, a} × (0, s]) ,

then u ≥ v on [0, a] × [0, s].

Let θ = ξν (a− ξ)ν where ν ∈ (0, 1) and ν + γ < 1. Suppose that h0 is a positive

constant such that h0θ (ξ) < c on [0, a] . We also assume that δ̃ is a positive constant

with δ̃ < a/2 and h (τ) is a positive increasing solution to the following initial value

problem:

h′ (τ) =
f

((

a2

4

)ν

h (τ)
)

δ̃q+ν
(

a− δ̃
)ν for τ ∈ (0, t0] and h (0) = h0,

where t0 is a positive constant satisfying (a2/4)
ν
h (t0) < c. Furthermore, we let

ζ = min

{

ν (1 − γ − ν) δ̃γ+ν−2
(

a− δ̃
)ν

, ν (1 − ν)
(

a− δ̃
)γ+ν

δ̃ν−2

}

,
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which satisfies

ζ ≥
f

((

a2

4

)ν

h (τ)
)

h0

for τ ∈ (0, t0] .

The above inequality holds in some interval (0, t0] because δ̃γ+ν−2and δ̃ν−2 tend to

large numbers when δ̃ is close to 0. Suppose that ψ (ξ, τ) = θ (ξ)h (τ), the next

lemma shows that u is bounded above by ψ on [0, a] × [0, t0].

Lemma 2.2. ψ ≥ u on [0, a] × [0, t0].

Proof. The function ψ satisfies the following expression:

Lψ − f (ψ)

= ξq+ν (a− ξ)ν h′ (τ) − νh (τ)
d

dξ

[

ξγ+ν−1 (a− ξ)ν − ξγ+ν (a− ξ)ν−1]

− f (ξν (a− ξ)ν h (τ))

= ξq+ν (a− ξ)ν h′ (τ) + ν (1 − γ − ν) ξγ+ν−2 (a− ξ)ν h (τ)

+ ν (γ + 2ν) ξγ+ν−1 (a− ξ)ν−1 h (τ) + ν (1 − ν) ξγ+ν (a− ξ)ν−2 h (τ)

− f (ξν (a− ξ)ν h (τ)) .

We rewrite the interval (0, a) as
(

0, δ̃
]

∪
(

δ̃, a− δ̃
)

∪
[

a− δ̃, a
)

. When (ξ, τ) ∈
(

0, δ̃
]

× [0, t0],

Lψ − f (ψ)

≥ νh (τ) (1 − γ − ν) ξγ+ν−2 (a− ξ)ν − f (ξν (a− ξ)ν h (τ))

≥ νh0 (1 − γ − ν) δ̃γ+ν−2
(

a− δ̃
)ν

− f

((

a2

4

)ν

h (τ)

)

≥ h0



ζ −
f

((

a2

4

)ν

h (τ)
)

h0



 ≥ 0.

When (ξ, τ) ∈
[

a− δ̃, a
)

× [0, t0],

Lψ − f (ψ)

≥ νh (τ) (1 − ν) ξγ+ν (a− ξ)ν−2 − f (ξν (a− ξ)ν h (τ))

≥ νh0 (1 − ν)
(

a− δ̃
)γ+ν

δ̃ν−2 − f

((

a2

4

)ν

h (τ)

)

≥ h0



ζ −
f

((

a2

4

)ν

h (τ)
)

h0



 ≥ 0.



472 W. Y. CHAN

When (ξ, τ) ∈
(

δ̃, a− δ̃
)

× [0, t0],

Lψ − f (ψ) ≥ δ̃q+ν
(

a− δ̃
)ν

h′ (τ) − f

((

a2

4

)ν

h (τ)

)

= 0.

When τ = 0, ψ (ξ, 0) = h0θ ≥ 0 on [0, a]. At ξ = 0 and ξ = a, ψ (ξ, τ) = 0 for τ ≥ 0.

By Lemma 2.1, ψ (ξ, τ) ≥ u (ξ, τ) on [0, a] × [0, t0] . �

Since f > 0, by Lemma 2.1 u ≥ 0 on [0, a] × [0,Γ). Let δ be a positive constant

less than a and uδ denote the solution of the Dirichlet initial-boundary value problem:

(2.1) ξquτ − (ξγuξ)ξ = f (u) for δ < ξ < a, 0 < τ < Γ,

(2.2) u (ξ, 0) = 0 for δ ≤ ξ ≤ a, u (δ, τ) = 0 = u (a, τ) for 0 < τ < Γ.

Let ω = (0, a) × (0, t0], ω̄ = [0, a] × [0, t0], Dδ = (δ, a), ωδ = Dδ × (0, t0], D̄δ = [δ, a],

ω̄δ = D̄δ × [0, t0], and ∂ωδ =
(

D̄δ × {0}
)

∪ ({δ, a} × (0, t0]), we prove the existence

and uniqueness of the solution to the problem (1.1)–(1.2).

Theorem 2.3. The problem (1.1)–(1.2) has a unique nonnegative solution

u ∈ C (ω̄) ∩ C2+α,1+α/2 ((0, a] × [0, t0]) .

Proof. We prove uδ2 ≥ uδ1 over the domain [δ1, a] × [0,Γ) when 0 < δ2 < δ1 < a.

We note that ξ−q+γ and ξ−q+γ−1 ∈ Cα,α/2 (ω̄δ) for some α ∈ (0, 1). ξ−qf (uδ) ≤

f (ψ) /δq for some (ξ, τ, uδ) ∈ ω̄δ × [0, c). It follows from Theorem 4.2.2 of Ladde,

Lakshmikantham, and Vatsala [8, p. 143] that the problem (2.1)–(2.2) has a unique

solution uδ ∈ C2+α,1+α/2 (ω̄δ). When τ ≥ 0 and δ1 > δ2 > 0, uδ2 (δ1, τ) ≥ uδ1 (δ1, τ) =

0. It follows from Lemma 2.1 that uδ1 ≤ uδ2 on ω̄δ1. Therefore, limδ→0 uδ exists for

all (ξ, τ) ∈ ω̄. Let u (ξ, τ) = limδ→0 uδ (ξ, τ). We want to show that u is a solution.

Let Ẽ =
[

b̃1, b̃2

]

×
[

0, t̃1
]

and Ê =
[

b̂1, b̂2

]

×
[

0, t̂1
]

such that Ẽ ⊂ Ê ⊂ ω̄ (where

b̃1 > b̂1 > 0, b̃2 < b̂2 ≤ a, and t̃1 ≤ t̂1 ≤ t0). Since uδ ≤ ψ in Ê, we have for any

constant q̃ > 1, the following three conditions are satisfied:

i. ||uδ||Lq̃(Ê) ≤ ||ψ||Lq̃(Ê) ≤ k1 for some positive constant k1.

ii. For s > 0,

∣

∣

∣

∣γξ−q+γ−1
∣

∣

∣

∣

Lq̃([b̂1,b̂2]×(τ,τ+s)) ≤ γb̂−q+γ−1
1

(

b̂2 − b̂1

)1/q̃

s1/q̃

tends to 0 when s approaches 0.

iii. As f (u) is an increasing function, it gives ||ξ−qf (uδ)||Lq̃(Ê) ≤ b̂−q
1 ||f (ψ)||Lq̃(Ê).

If we choose q̃ > 3/ (2 − α), by Theorem 4.9.1 of Ladyženskaja, Solonnikov, and

Ural′ceva [9, pp. 341–342] uδ ∈ W 2,1
q̃

(

Ê
)

. By Theorem 2.3.3 there [9, p. 80],
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W 2,1
q̃

(

Ê
)

→֒ Hα,α/2
(

Ê
)

. Thus, ||uδ||Hα,α/2(Ê) ≤ k2 for some positive constant k2.

By the triangular inequality, it yields

∣

∣

∣

∣ξ−qf (uδ)
∣

∣

∣

∣

Hα,α/2(Ê)

≤ b̂−q
1 ||f (ψ)||

∞
+ sup

(ξ,τ)∈Ê

(ξ̃,τ)∈Ê

ξ−q
∣

∣

∣
f (uδ (ξ, τ)) − f

(

uδ

(

ξ̃, τ
))

∣

∣

∣

∣

∣

∣
ξ − ξ̃

∣

∣

∣

α

+ sup
(ξ,τ)∈Ê

(ξ̃,τ)∈Ê

∣

∣

∣
f

(

uδ

(

ξ̃, τ
))

∣

∣

∣

∣

∣

∣
ξ−q − ξ̃−q

∣

∣

∣

∣

∣

∣
ξ − ξ̃

∣

∣

∣

α + sup
(ξ,τ)∈Ê

(ξ,τ̃)∈Ê

ξ−q |f (uδ (ξ, τ)) − f (uδ (ξ, τ̃))|

|τ − τ̃ |α/2
.

By the mean value theorem, we have

∣

∣

∣

∣ξ−qf (uδ)
∣

∣

∣

∣

Hα,α/2(Ê)

≤ b̂−q
1 ||f (ψ)||

∞
+ b̂−q

1 ||f ′ (ψ)||
∞
||uδ||Hα,α/2(Ê) + ||f (ψ)||

∞

∣

∣

∣

∣ξ−q
∣

∣

∣

∣

Hα,α/2(Ê)

≤ k3

for some positive constant k3 which is independent of δ. In addition, ||ξ−q+γ||Hα,α/2(Ê)
and ||γξ−q+γ−1||Hα,α/2(Ê) are bounded. Then, by Theorem 4.10.1 of Ladyženskaja,

Solonnikov, and Ural′ceva [9, pp. 351–352], we have

||uδ||H2+α,1+α/2(Ẽ) ≤ k4

for some positive constant k4 which is independent of δ. This implies that uδ,

(uδ)τ , (uδ)ξ, and (uδ)ξξ are equicontinuous in Ẽ. By the Ascoli-Arzela theorem,

||u||H2+α,1+α/2(Ẽ) ≤ k4, and the partial derivatives of u are the limits of the correspond-

ing partial derivatives of uδ. From Lemma 2.2, ψ ≥ u ≥ 0 on ω̄, by the Sandwich theo-

rem u (0, τ) = 0 = u (a, τ) for τ ∈ [0, t0]. Thus, u ∈ C (ω̄)∩C2+α,1+α/2 ((0, a] × [0, t0]).

By Lemma 2.1, there exists a unique nonnegative solution u to the problem (1.1)–(1.2)

on ω̄. �

We follow Theorem 3 of Chan and Liu [1] to obtain the following result.

Theorem 2.4. Let Γ be the supremum over t0 for which there is a unique nonnegative

solution u ∈ C (ω̄) ∩ C2+α,1+α/2 ((0, a] × [0, t0]). Then, there is a unique nonnegative

solution u ∈ C ([0, a] × [0,Γ)) ∩ C2+α,1+α/2 ((0, a] × [0,Γ)). If Γ < ∞, then u is

unbounded in (0, a) × (0,Γ).

3. QUENCHING SET OF THE SOLUTION

Let x = ξ/a and t = aγ−2−qτ . Problem (1.1)–(1.2) becomes

(3.1) xqut − (xγux)x = a2−γf (u) , (x, t) ∈ (0, 1) × (0, T ) ,
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(3.2) u (x, 0) = 0 on [0, 1] , and u (0, t) = u (1, t) = 0 in (0, T ) ,

where T = aγ−2−qΓ. Then, let b be a positive constant less than or equal to 1 and

û (x, t) = a2−γf (0)m (t) x (1 − x) /8 ≥ 0 in [0, 1] × (0, T ) where

m (t) =
8b

3

(

1 − e−12t
)

.

In the following lemma, we prove that u quenches in a finite time if a is sufficient

large through showing û (x, t) ≤ u (x, t) in [0, 1] × [0, T ).

Lemma 3.1. If a is sufficient large, u quenches in a finite time.

Proof. To obtain this result, we use the method of the lower solution. With û (x, t) =

a2−γf (0)m (t) x (1 − x) /8 where m (t) being a positive increasing function for t > 0

and m (0) = 0, û (0, t) = û (1, t) = 0 for t ≥ 0 and û (x, 0) = 0 for x ∈ [0, 1].

Substitute û (x, t) into (3.1) to obtain the differential inequality below:

xqût − xγ ûxx − γxγ−1ûx

≤
m′ (t)

8
a2−γf (0)x (1 − x) +

2a2−γf (0)

8
m (t) −

γa2−γf (0)

8
m (t) (1 − 2x)

≤
m′ (t)

8
a2−γf (0)

1

4
+
a2−γf (0)

4
m (t) +

a2−γf (0)

8
m (t) .

If the last expression of this inequality is less than or equal to a2−γf (0), it is equivalent

that m (t) satisfies the following differential equation

m′ (t)

32
+

3

8
m (t) = b, m (0) = 0

where b is a positive constant less than or equal to 1. The solution of the above

differential equation is

m(t) =
8

3
b
(

1 − e−12t
)

.

Then, from f ′ > 0, û ≥ 0, and the above equation, we obtain

xqût − xγ ûxx − γxγ−1ûx ≤ a2−γf (0) ≤ a2−γf (û) .

By Lemma 2.1,

u (x, t) ≥ û (x, t) =
a2−γf (0)

8
m (t) x (1 − x)

for (x, t) ∈ [0, 1] × [0, T ). In particular at x = 1/2 and t = T̃ where 0 < T̃ < T

u

(

1

2
, T̃

)

≥
a2−γf (0)

32
m

(

T̃
)

.

Since γ < 1 and m
(

T̃
)

> 0, there exists an a such that a2−γf (0)m
(

T̃
)

/32 ≥ c.

Hence, u quenches in a finite time T̃ if a is sufficient large. �
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In the following, we are going to prove that the quenching set of u is a compact

subset of (0, 1). Let z1/(1−γ) = x. Then, dz/dx = (1 − γ) z−γ/(1−γ),

ux = uz
1 − γ

zγ/(1−γ)
,

uxx = (1 − γ)2 z−2γ/(1−γ)uzz −
γ (1 − γ) uz

z(1+γ)/(1−γ)
.

Having the above expressions, xγuxx + γxγ−1ux is represented by

xγuxx + γxγ−1ux

= zγ/(1−γ)

[

(1 − γ)2 z−2γ/(1−γ)uzz −
γ (1 − γ)uz

z(1+γ)/(1−γ)

]

+ γz(γ−1)/(1−γ)uz
1 − γ

zγ/(1−γ)

= (1 − γ)2 z−γ/(1−γ)uzz − γ (1 − γ) z−1/(1−γ)uz + γ (1 − γ) z−1/(1−γ)uz

= (1 − γ)2 z−γ/(1−γ)uzz.

Therefore, xqut = (xγux)x + a2−γf (u) transforms to

(3.3) zq/(1−γ)ut = (1 − γ)2 z−γ/(1−γ)uzz + a2−γf (u) .

Let

E (t) =
1

2
(1 − γ)2

∫ 1

0

u2
zdz −

∫ 1

0

∫ u(z,t)

0

zγ/(1−γ)a2−γf (u) dudz,

and
∫ u(z,t)

0
f (u) du = F (u (z, t)). We modify Theorem 2 of Kong [7] to obtain the

following result.

Lemma 3.2. The quenching points of the solution u are in the interval




{

c2 (1 − γ)2

2 [F (c) (1 − γ) + E (0)]

}1/(1−γ)

,

{

1 −
c2 (1 − γ)2

2 [F (c) (1 − γ) + E (0)]

}1/(1−γ)


 .

Proof: We differentiate E (t) with respect to t,

E ′ (t) =
1

2
(1 − γ)2

∫ 1

0

2uzuztdz −

∫ 1

0

zγ/(1−γ)a2−γf (u)utdz.

Use integration by parts, ut (0, t) = ut (1, t) = 0, and (3.3) to obtain

E ′ (t) = (1 − γ)2

(

uzut|
1
0 −

∫ 1

0

uzzutdz

)

−

∫ 1

0

zγ/(1−γ)a2−γf (u)utdz

= − (1 − γ)2

∫ 1

0

uzzutdz −

∫ 1

0

zγ/(1−γ)a2−γf (u)utdz

= −

∫ 1

0

zγ/(1−γ)ut

[

(1 − γ)2 z−γ/(1−γ)uzz + a2−γf (u)
]

dz

= −

∫ 1

0

zγ/(1−γ)utz
q/(1−γ)utdz

= −

∫ 1

0

z(γ+q)/(1−γ)u2
tdz < 0.
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Since E ′ (t) < 0, we know that E (t) < E (0) = 1
2
(1 − γ)2 ∫ 1

0
u2

z (z, 0) dz. Equivalently,

(
∫ 1

0

u2
zdz

)1/2

<
21/2

(1 − γ)

[

∫ 1

0

∫ u(z,t)

0

zγ/(1−γ)f (u) dudz + E (0)

]1/2

.

Then, by the Schwarz inequality, it yields

u (z, t) =

∫ z

0

uz (z, t) dz

≤

(
∫ z

0

dz

)1/2 (
∫ z

0

u2
zdz

)1/2

≤

(
∫ z

0

dz

)1/2 (
∫ 1

0

u2
zdz

)1/2

< z1/2 21/2

(1 − γ)

[

∫ 1

0

∫ u(z,t)

0

zγ/(1−γ)f (u) dudz + E (0)

]1/2

.

As
∫ u(z,t)

0
f (u) du < F (c), this leads to

u (z, t) < z1/2 21/2

(1 − γ)

[

F (c)

∫ 1

0

zγ/(1−γ)dz + E (0)

]1/2

= z1/2 21/2

(1 − γ)

[

F (c)
1

γ
(1−γ)

+ 1
+ E (0)

]1/2

= z1/2 21/2

(1 − γ)
[F (c) (1 − γ) + E (0)]1/2 .

Set the right side of the above inequality less than c, we obtain

z1/2 21/2

(1 − γ)
[F (c) (1 − γ) + E (0)]1/2 < c.

Then, solve for z

z <
c2 (1 − γ)2

2 [F (c) (1 − γ) + E (0)]
.

Since z1/(1−γ) = x, the upper bound of x is given by

x <

{

c2 (1 − γ)2

2 [F (c) (1 − γ) + E (0)]

}1/(1−γ)

.
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When we integrate −uz (z, t) with respect to z from z to 1,

u (z, t) =

∫ 1

z

−uz (z, t) dz

≤

(
∫ 1

z

dz

)1/2 (
∫ 1

z

u2
zdz

)1/2

≤

(
∫ 1

z

dz

)1/2 (
∫ 1

0

u2
zdz

)1/2

< (1 − z)1/2 21/2

(1 − γ)

[

∫ 1

0

∫ u(z,t)

0

zγ/(1−γ)f (u) dudz + E (0)

]1/2

.

Using the similar calculation above, we obtain

1 − z <
c2 (1 − γ)2

2 [F (c) (1 − γ) + E (0)]
.

This leads to

1 −
c2 (1 − γ)2

2 [F (c) (1 − γ) + E (0)]
< z = x1−γ .

Equivalently,
{

1 −
c2 (1 − γ)2

2 [F (c) (1 − γ) + E (0)]

}1/(1−γ)

< x.

The proof is complete. �

Theorem 3.3. If a is sufficiently small, there is a global solution to the problem

(1.1)–(1.2).

Proof. Suppose that g (x) = k5x
β for some positive constants β and k5 such that

β + γ < 1 and k5 < c. It is noticed that g (x) ≥ 0 in [0, 1]. Then, we compute

xqgt − (xγgx)x − a2−γf (g)

= −
[

k5x
γβ (β − 1)xβ−2 + γk5x

γ−1βxβ−1
]

− a2−γf
(

k5x
β
)

= −k5x
γ+β−2β (β − 1 + γ) − a2−γf

(

k5x
β
)

= k5x
γ+β−2β (1 − β − γ) − a2−γf

(

k5x
β
)

≥ k5β (1 − β − γ) − a2−γf
(

k5x
β
)

.

We choose a sufficiently small such that k5β (1 − β − γ)− a2−γf
(

k5x
β
)

≥ 0 in (0, 1).

Hence,

xqgt − (xγgx)x − a2−γf (g) ≥ 0 in (0, 1) .

By Lemma 2.1, g (x) ≥ u (x, t) on [0, 1]× [0,∞). Therefore, u (x, t) exists globally. �
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