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ABSTRACT. A mathematical model for boundary quenching in a subdiffusive medium is analyzed.

The quenching effect is simulated by a nonlinear flux condition at the left boundary of a one-

dimensional bar. The nonlinearity is allowed to depend upon either the local temperature of the

boundary or a global average of temperature. The right boundary of the bar is subjected to either

an insulation condition or a zero temperature condition. A separate analysis is carried out for an

extension of the model that includes the influence of advection.
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1. Introduction

We consider a model for thermal diffusion in a one-dimensional bar (0 ≤ x ≤

l) composed of a material with subdiffusive properties. To simulate a boundary

quenching effect, a nonlinear flux condition is imposed at x = 0. We treat problems

in which the nonlinear flux is determined by either local or nonlocal effects. For the

boundary constraint at x = l, cases for both a Neumann condition and a Dirichlet

condition will be considered.

It is assumed that the temperature T (x, t) of the subdiffusive material is modeled

by the fractional differential equation

(1.1)
∂T

∂t
= D1−α

t

∂2T

∂x2
, 0 < x < l, t > 0,

where

(1.2) D1−α
t (·) ≡

1

Γ(α)

∂

∂t

∫ t

0

(t − t′)−1+α(·)dt′, 0 < α < 1.

The use of (1.1) and (1.2) to describe heat flow in a subdiffusive medium has been

discussed in [6], [7], and [10].

The initial temperature distribution in the bar is given by

(1.3) T (x, 0) = T0(x) ≥ 0; 0 ≤ T0(x) ≤ 1 − δ, 0 < δ < 1,

where T0(x) is continuous for 0 ≤ x ≤ l.
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The nonlinear flux condition at x = 0 takes the form

(1.4) D1−α
t

∂T

∂x

∣

∣

∣

∣

∣

x=0

= −F [1 − v(t)], t > 0.

The specification of v(t) for the local problem is

(1.5) v(t) = u(t) ≡ T (0, t),

whereas for the nonlocal problem it is

(1.6) v(t) = ū(t) ≡
1

l

∫ l

0

|T (x, t)|dx.

To be consistent with quenching, the nonlinear function F (1 − v) is assumed to be

twice differentiable and have the properties

(1.7) F (1 − v) > 0, Fv(1 − v) > 0, Fvv(1 − v) > 0 for 0 ≤ v < 1,

and

(1.8) F (1 − v) → ∞ as v → 1−.

We note that the upper bound on the initial data in (1.3) ensures that v(t) starts

below the quenching value in both the local and nonlocal cases.

At x = l, we will impose either an insulation condition

(1.9)
∂T

∂x

∣

∣

∣

∣

∣

x=l

= 0, t > 0,

which we will refer to as the Neumann case, or a zero temperature condition

(1.10) T (l, t) = 0, t > 0,

which we will refer to as the Dirichlet case.

The classical diffusion version of the problem presented here was investigated

in [9]. The analysis here represents an extension of those results to materials with

subdiffusive properties.

In Section 2, we consider the local problem (1.5) while specifying at x = l either

the Neumann case condition (1.9) or the Dirichlet case condition (1.10). This will be

followed in Section 3 by similar considerations for the nonlocal problem (1.6).

In Section 4, the basic equation (1.1) will be extended to allow for advection

effects. Only the local problem with a Neumann type condition will be considered to

examine the effect of advection on quenching.

The goal of the analysis throughout the paper is to determine if there exists a

t̂ < ∞ such that

(1.11) v(t) → 1, v′(t) → ∞, as t → t̂.
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In view of (1.4), this behavior defines quenching, as discussed in [1], [2], [3], [5], and

[8].

2. Local Problem

Here we analyze the local problem as described in Section 1 by converting the

initial-boundary value problem into a nonlinear Volterra equation for v(t) = u(t) ≡

T (0, t). This conversion is accomplished by using the Green’s function Gα(x, t|x0, t0)

that satisfies the linear problem

(2.1)
∂Gα

∂t
= D1−α

t

∂2Gα

∂x2
+ δ(x − x0)δ(t − t0), 0 < x, x0 < l, t > t−0 ,

(2.2) Gα

∣

∣

t=t−
0

= 0, 0 ≤ x ≤ l,

(2.3)
∂Gα

∂x

∣

∣

∣

∣

∣

x=0

= 0, t > 0.

For the Neumann case, the boundary condition at x = l is

(2.4)
∂Gα

∂x

∣

∣

∣

∣

∣

x=l

= 0, t > 0,

while for the Dirichlet case, it is

(2.5) Gα

∣

∣

x=l
= 0, t > 0.

It should be noted that the homogeneous form of (1.4) associated with the Green’s

function problem, namely D1−α
t ∂Gα/∂x = 0, is implied by (2.3).

Utilizing the Green’s function, it is possible to express T (x, t) for the local problem

as

(2.6) T (x, t) =

∫ l

0

Gα(x, t|x0, 0)T0(x0)dx0 +

∫ t

0

Gα(x, t − s|0, 0)F [1− T (0, s)]ds.

By setting x = 0, a Volterra equation for T (0, t) ≡ u(t) follows as

(2.7) u(t) = h(t) +

∫ t

0

k(t − s)F [1 − u(s)]ds, t ≥ 0,

where

h(t) =

∫ l

0

Gα(0, t|x0, 0)T0(x0)dx0,

and

k(t) = Gα(0, t|0, 0).
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The analysis of (2.7) depends upon the properties of h(t) and k(t), which both de-

pend upon the behavior of Gα(x, t|x0, 0). It was demonstrated in [11] that Gα(x, t|x0, 0)

is related to the Green’s function for the classical diffusion problem by

(2.8) Gα(x, t|x0, 0) =

∫ ∞

0

fα(z)G1(x, tαz|x0, 0)dz,

where G1(x, t|x0, 0) satisfies (2.1) with α = 1. The function fα(z) is defined by the

inverse Mellin transform

fα(z) = M−1
z

[ Γ(r)

Γ(1 − α + αr)

]

=
∞
∑

j=0

(−1)jzj

j!Γ(1 − α − αj)
, z ≥ 0,

where fα(z) ≥ 0, for z ≥ 0 and fα(z) → 0 exponentially as z → ∞. In [4], the

properties of Gα(x, t|x0, 0) are examined in order to determine the behavior of k(t)

and h(t). Since G1(x, t|x0, 0) ≥ 0 for both the Neumann and Dirichlet cases, it follows

that

(2.9) Gα(x, t|x0, 0) ≥ 0, 0 ≤ x ≤ l, t ≥ 0.

For the Neumann case, an expression for k(t) was determined in [4] as

k(t) = kN(t) =
1

l
+

2

l

∞
∑

n=1

∫ ∞

0

fα(z) exp

{

−
n2π2

l2
tαz

}

dz,

which has the asymptotic behavior

(2.10) kN(t) =
1

l
+

2

l

1

tα

∞
∑

n=1

∫ ∞

0

fα(z/tα) exp

{

−
n2π2

l2
z

}

dz ∼
1

l
as t → ∞.

For the Dirichlet case, k(t) was determined in [4] as

k(t) = kD(t) =
2

l

∞
∑

n=1

∫ ∞

0

fα(z) exp

{

−

(

2n − 1

2

)2
π2

l2
tαz

}

dz,

which has the asymptotic behavior

(2.11) kD(t) ∼
2

l

∫ ∞

0

fα(z) exp

{

−
π2

4l2
tαz

}

dz ∼
8l

π2tα
as t → ∞.

In each of these cases, it is seen that

k(t) > 0, k′(t) < 0, 0 ≤ t < ∞.

To obtain bounds on h(t), it is necessary to examine the properties of

T̃ (x, t) ≡

∫ l

0

Gα(x, t|x0, 0)T0(x0)dx0.



SUBDIFFUSIVE BOUNDARY QUENCHING 483

For the Neumann case, T̃ (x, t) satisfies (1.1) with the initial condition T̃0(x) ≡ 1,

together with the boundary conditions ∂T̃
∂x
|x=0 = 0 and ∂T̃

∂x
|x=l = 0. This problem has

the unique solution T̃ (x, t) ≡ 1, and hence for the Neumann case,
∫ l

0

Gα(x, t|x0, 0)dx0 = 1, 0 ≤ x ≤ l, t ≥ 0.

For the Dirichlet case, T̃ (x, t) satisfies (1.1) with the initial condition T̃0(x) ≡ 1,

together with the boundary conditions ∂T̃
∂x
|x=0 = 0 and T̃ |x=l = 0. In this problem, it

is first noted that

0 ≤

∫ l

0

G1(x, tαz|x0, 0)dx0 ≤ 1 for 0 ≤ x ≤ l, t ≥ 0,

which follows from the maximum principle for classical diffusion. Then from (2.8),

we have
∫ l

0

Gα(x, t|x0, 0)dx0 ≤ 1

for the Dirichlet case.

Thus follows for both the Neumann and Dirichlet cases,

0 ≤ h0 ≡ min h(t) ≤ h(t) ≤ 1 − δ.

Having established appropriate bounds on k(t) and h(t), we turn to an analysis

of (2.7). We will first establish the existence of a unique solution that is continuous

with 0 ≤ u(t) < 1 for 0 ≤ t < t∗ < ∞. This will be shown by demonstrating the

contraction properties of the operator A defined by

(Au)(t) ≡ h(t) +

∫ t

0

k(t − s)F [1 − u(s)]ds, t > 0,

where u(t) belongs to the space of continuous functions that satisfy

0 ≤ u(t) ≤ M < 1, 0 ≤ t < t∗.

Clearly the operator A maps continuous functions into continuous functions. We also

need a bound on the mapping such that

(2.12) (Au)(t) ≤ 1 − δ + F (1 − M)I(t) ≤ M, M < 1, 0 ≤ t < t∗,

where

I(t) ≡

∫ t

0

k(s)ds.

For the contraction, consider

(2.13) sup
0≤t≤t∗

|Au1 − Au2| ≤ I(t)
∂F

∂u
(1 − M) sup

0≤t≤t∗
|u1 − u2|.

Thus, the contraction requires that

(2.14) I(t)
∂F

∂u
(1 − M) < 1, 0 ≤ t < t∗.
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To satisfy both (2.12) and (2.14), the optimal M is such that

M − (1 − δ)

F (1 − M)
=

1

Fu(1 − M)
.

Hence the largest t∗ is obtained from

I(t∗) = Λ ≡ max
0≤M<1

[

M − (1 − δ)

F (1 − M)

]

.

This establishes the existence of a unique solution of (2.7) which remains below the

quenching level for t < t∗.

Next we will demonstrate the existence of a t∗∗ < ∞ such that the solution of

(2.7) must have achieved the quenching level. That is, (2.7) implies that u(t) ≥ 1 for

t > t∗∗. To establish this result, we assume the contrary, namely that 0 ≤ u(t) < 1

for 0 ≤ t ≤ t∗∗. Then follows

u(t) = Au(t) ≥ h(t) + J(t) ≥ h0 + J(t),

where

J(t) ≡

∫ t

0

k(t∗∗ − s)F [1 − u(s)]ds.

Then
J ′(t) = k(t∗∗ − t)F [1 − u(t)]

≥ k(t∗∗ − t)F [1 − h0 − J(t)].

Integration yields
∫ J(t∗∗)

0

dJ

F (1 − h0 − J)
≥

∫ t∗∗

0

k(t∗∗ − t)dt =

∫ t∗∗

0

k(s)ds = I(t∗∗),

or
∫ J(t∗∗)+h0

h0

dr

F (1 − r)
≥ I(t∗∗).

If J(t∗∗) + h0 ≥ 1, then there is a contradiction of u(t) < 1. Thus if t∗∗ is such that

(2.15)

∫ 1

h0

dr

F (1 − r)
≡ κ = I(t∗∗),

then t∗∗ becomes an upper bound on the existence of a solution u(t), such that

u(t) < 1.

From the asymptotic behavior of k(t) as t → ∞ in the Neumann case (2.10) and

in the Dirichlet case (2.11), it is clear that I(t) → ∞ as t → ∞ in both cases. Thus,

there always exists a t∗∗ < ∞ such that (2.15) is satisfied. Hence the first part of the

quenching criteria (1.11) is fulfilled, namely u(t) → 1 as t → t̂, t∗ ≤ t̂ ≤ t∗∗ < ∞.

To complete the investigation of quenching, we consider u′(t) by differentiation

of (2.7) to obtain

u′(t) = h′(t) +
d

dt

∫ t

0

k(t − s)F [1 − u(s)]ds.
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We note that
∫ t

0

k(t − s)F [1 − u(s)]ds = −I(t − s)F [1 − u(s)]|s=t
s=0

+

∫ t

0

I(t − s)
∂F

∂u
[1 − u(s)]u′(s)ds

= I(t)F [1 − u(0)] − I(0)F [1 − u(t)]

+

∫ t

0

I(t − s)
∂F

∂u
[1 − u(s)]u′(s)ds.

Then follows

(2.16) u′(t) = h′(t) + k(t)F [1 − u(0)] +

∫ t

0

k(t − s)
∂F

∂u
[1 − u(s)]u′(s)ds.

Since u(t) has been shown to exist as a unique continuous function for 0 ≤ t < t∗

with 0 ≤ u(t) ≤ M < 1, then (2.16) can be expressed as

u′(t) = h̃(t) +

∫ t

0

k̃(t, s)u′(s)ds,

which represents a linear integral equation for u′(t) where

h̃(t) ≡ h′(t) + u(t)F [1 − u(0)] and k̃(t, s) ≡ k(t − s)
∂F

∂u
[1 − u(s)].

Standard theory of linear Volterra equations can then be applied to establish the

existence of a continuous u′(t) as long as u(t) < 1 exists.

We note that k̃(t, s) ≥ 0. We know that u(t) → 1− as t → t̂, t∗ ≤ t̂ ≤ t∗∗. Thus

if h′(t) + k(t)F [1 − u(0)] > 0 for t < t̂, then u′(t) > 0 for 0 < t < t̂. This follows by

noting that all terms in the Neumann series solution for u′(t) will be positive.

To see that u′(t) → ∞ as t → t̂, note that k(t − s) ≥ k(t) and hence

(2.17)

u′(t) ≥ h′(t) + k(t)F [1 − u(0)] + k(t)

∫ t

0

∂F

∂u
[1 − u(s)]u′(s)ds

= h′(t) + k(t)F [1 − u(0)] + k(t)

[

F [1 − u(s)]|s=t
s=0

]

= h′(t) + k(t)F [1 − u(t)].

Since u(t) → 1 as t → t̂, it follows that F [1− u(t)] → ∞ as t → t̂, and (2.17) implies

that u′(t) → ∞ as t → t̂.

Thus, for both the Neumann and Dirichlet cases, we have established the exis-

tence of a t̂ < ∞ such that

u(t) → 1, u′(t) → ∞, as t → t̂, t∗ ≤ t̂ ≤ t∗∗,

which is the definition of quenching.

It is worthwhile to compare the quenching result established here for a subdif-

fusive medium with that of a classical diffusive medium investigated in [9]. For the

Neumann case, quenching occurs in both types of media. For the Dirichlet case asso-

ciated with the classical diffusive medium, it is always possible to adjust the physical
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parameters so that quenching does not occur. This is in distinct contrast with the

subdiffusive medium where quenching can not be prevented.

3. Nonlocal Problem

We now consider the problem in which the nonlinear flux condition at x = 0

given by (1.4) depends upon the average temperature of the bar ū(t), as defined by

(1.6). Here the integral representation of T (x, t) in terms of the Green’s function

Gα(x, t|x0, 0) has the form

(3.1) T (x, t) =

∫ l

0

Gα(x, t|x0, 0)T0(x0)dx0 +

∫ t

0

Gα(x, t − s|0, 0)F [1 − ū(s)]ds.

From the properties of the various quantities in (3.1), it is clear that T (x, t) ≥ 0.

Hence the definition of ū(t) in (1.6) can be replaced by

ū(t) =
1

l

∫ l

0

T (x, t)dx.

For the Neumann case in which we impose ∂T
∂x
|x=l = 0, it is not necessary to

convert (3.1) to an integral equation for ū(t) as was done for the local problem.

There is a fortunate simplification that occurs by applying 1
l

∫ l

0
(·)dx to the governing

partial differential equation (1.1) so that

d

dt

[

1

l

∫ l

0

T (x, t)dx

]

=
1

l

[

D1−α
t

∂T

∂x

∣

∣

∣

∣

∣

x=l

− D1−α
t

∂T

∂x

∣

∣

∣

∣

∣

x=0

]

.

Thus follows

(3.2) ū′(t) =
1

l
F [1 − ū(t)], t > 0,

together with the initial condition

ū(0) =
1

l

∫ l

0

T0(x)dx ≤ 1 − δ.

Integration of (3.2) yields

(3.3)

∫ ū(t)

ū(0)

dy

F (1 − y)
=

t

l
,

which represents an implicit form of the exact solution of the Neumann case. From

(3.3) it is clear that ū(t) → 1 as t → t̂, where

t̂ = l

∫ 1

ū(0)

dy

F (1 − y)
.

Then follows from (3.2) that ū′(t) → ∞ as t → t̂. This implies that quenching always

occurs for the Neumann case of the nonlocal problem.

For the Dirichlet case in which we impose T |x=l = 0, there is no simplification as

found in the Neumann case. An analysis similar to the local problem is employed.



SUBDIFFUSIVE BOUNDARY QUENCHING 487

To derive an integral equation for ū(t), apply 1
l

∫ l

0
(·)dx to (3.1) to obtain

(3.4) ū(t) = h̄(t) +

∫ t

0

k̄(t − s)F [1 − ū(s)]ds, t ≥ 0,

where

h̄(t) =
1

l

∫ l

0

∫ l

0

Gα(x, t|x0, 0)T0(x0)dx0dx,

and

(3.5) k̄(t) =
1

l

∫ l

0

Gα(x, t|0, 0)dx.

Both h̄(t) and k̄(t) involve 1
l

∫ l

0
Gα(x, t|x0, 0)dx. An expression for this quantity

follows from (2.8) as

(3.6)
1

l

∫ l

0

Gα(x, t|x0, 0)dx =

∫ ∞

0

fα(z)
1

l

∫ l

0

G1(x, tαz|x0, 0)dxdz,

where

(3.7)

G1(x, z|x0, 0) =
2

l

∞
∑

n=1

cos

(

(2n − 1)πx0

2l

)

cos

(

(2n − 1)πx

2l

)

exp

[

−
(2n − 1)2π2

4l2
z

]

.

In [9], it is shown that

k̃M(τ) ≡
1

l

∫ l

0

G1(x, τ |0, 0)dx

has the properties

k̃M(τ) ≥ 0, k̃′
M(τ) ≤ 0, τ ≥ 0.

This implies that

k̄(t) ≥ 0, k̄′(t) ≤ 0, t ≥ 0.

To obtain bounds on h̄(t), it is necessary to examine the properties of

T̄ (t) ≡
1

l

∫ l

0

∫ l

0

Gα(x, t|x0, 0)dx0dx.

From (2.9) and (3.6) it is found that

0 ≤ T̄ (t) =

∫ ∞

0

fα(z)

{

8

π2

∞
∑

n=1

1

(2n − 1)2
exp

[

−
(2n − 1)2π2

4l2
tαz

]}

dz

≤

∫ ∞

0

fα(z)

{

8

π2

∞
∑

n=1

1

(2n − 1)2

}

dz = 1.

Then follows the bounds on h̄(t) as

0 ≤ h̄0 ≡ min h̄(t) ≤ h̄(t) ≤ 1 − δ.
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To obtain the asymptotic behavior of k̄(t) as t → ∞ in this Dirichlet case, it

follows from (3.5), (3.6), and (3.7) that

k̄(t) = k̄D(t) =
4

πl

∞
∑

n=1

(−1)n+1

2n − 1

∫ ∞

0

fα(z) exp

[

−
(2n − 1)2π2

4l2
tαz

]

dz.

For z = ξt−α,

k̄D(t) =
4

πl

{

∞
∑

n=1

(−1)n+1

2n − 1

∫ ∞

0

fα(ξt−α) exp

[

−
(2n − 1)2π2

4l2
ξ

]

dξ

}

t−α.

Hence

k̄D(t) ∼
4

πl

{

∞
∑

n=1

(−1)n+1

2n − 1

∫ ∞

0

exp

[

−
(2n − 1)2π2

4l2
ξ

]

dξ

}

t−α, as t → ∞,

=

{

16l

π3

∞
∑

n=1

(−1)n+1

(2n − 1)3

}

t−α, as t → ∞.

This behavior allows us to conclude that

Ī(t) ≡

∫ t

0

k̄(s)ds

is such that Ī(t) → ∞ as t → ∞.

It is now possible to apply the same analysis to (3.4) as that for the local problem

(2.7) in Section 1 to establish the existence of a t̂ < ∞ such that

ū(t) → 1, ū′(t) → ∞ as t → t̂, t∗ ≤ t̂ ≤ t∗∗,

where t∗ and t∗∗ are defined by

Ī(t∗) = Λ, Ī(t∗∗) = κ.

Since Ī(t) → ∞ as t → ∞, there always exists a t∗∗ < ∞ such that Ī(t∗∗) = κ thereby

assuring that quenching will occur. This is in contrast to the classical diffusion case

where quenching can be avoided by an appropriate selection of the material properties.

4. Local Problem with Advection

We now reconsider the local problem examined in Section 2 while allowing for

the effect of advection. It is suggested in [6] and [7] that advection in a subdiffusive

medium can be modeled by adding another fractional derivative term to the basic

subdiffusion equation. Thus, (1.1) is replaced by

(4.1)
∂T̂

∂t
= vD1−α

t

∂T̂

∂x
+ D1−α

t

∂2T̂

∂x2
, 0 < x < l, t > 0,

where v > 0 is the advection speed. The initial condition is

T̂ (x, 0) = T̂0(x), 0 ≤ x ≤ l; 0 ≤ T̂0 ≤ 1 − δ, 0 < δ < 1.
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The nonlinear flux condition at x = 0 is

D1−α
t

∂T̂

∂x

∣

∣

∣

∣

x=0

= −F [1 − T̂ (0, t)], t > 0,

where F (1 − T̂ ) has the same properties as specified in (1.7) and (1.8). At x = l, we

will only consider the Neumann case as given by

∂T̂

∂x
(l, t) = 0, t > 0.

To obtain an integral representation of T̂ (x, t) analogous to (2.6), we use the

Green’s function Ĝα(x, t|x0, 0) that satisfies

D1−α
t

∂2Ĝα

∂x2
+ vD1−α

t

∂Ĝα

∂x
−

∂Ĝα

∂t
= −δ(x − x0)δ(t), 0 < x, x0 < l, t > 0−,

Ĝα|t=0− = 0, 0 ≤ x ≤ l,

D1−α
t

∂Ĝα

∂x

∣

∣

∣

∣

x=0

= 0,
∂Ĝα

∂x

∣

∣

∣

∣

x=l

= 0, t > 0.

Then T̂ (x, t) can be expressed as

T̂ (x, t) =

∫ l

0

Ĝα(x, t|x0, 0)T̂0(x0)dx0 +

∫ t

0

Ĝα(x, t − s|0, 0)F [1 − T̂ (0, s)]ds.

By setting x = 0, a Volterra equation for T̂ (0, t) ≡ û(t) follows as

(4.2) û(t) = ĥ(t) +

∫ t

0

k̂(t − s)F [1 − û(s)]ds, t ≥ 0,

where

ĥ(t) =

∫ l

0

Ĝα(0, t|x0, 0)T̂0(x0)dx0,

and

k̂(t) = Ĝα(0, t|0, 0).

The relationship between the Green’s function Ĝα(x, t|x0, 0) for subdiffusion with

advection and that for classical diffusion with advection Ĝ1(x, t|x0, 0) is the same as

(2.8), namely

(4.3) Ĝα(x, t|x0, 0) =

∫ ∞

0

fα(z)Ĝ1(x, tαz|x0, 0)dz.

The Green’s function problem of classical diffusion with advection takes the form

(4.4)
∂2Ĝ1

∂x2
+ v

∂Ĝ1

∂x
−

∂Ĝ1

∂t
= −δ(x − x0)δ(t), 0 < x, x0 < l, t > 0−,

Ĝ1|t=0− = 0, 0 ≤ x ≤ l;
∂Ĝ1

∂x

∣

∣

∣

∣

x=0

= 0,
∂Ĝ1

∂x

∣

∣

∣

∣

x=l

= 0, t > 0.

Since Ĝ1(x, t|x0, 0) ≥ 0, (2.8) provides that Ĝα(x, t|x0, 0) ≥ 0.
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To determine the properties of k̂(t), it is useful to solve for Ĝ1(x, t|x0, 0) in terms

of the eigenfunctions {Φn(x)} that satisfy

(4.5)
∂2Φn

∂x2
+ v

∂Φn

∂x
+ λnΦn = 0, 0 < x < l,

Φ′
n(0) = 0, Φ′

n(l) = 0.

The solution of (4.5) is given by

Φn(x) = e−
vx

2 φn(x), φn(x) =
2nπ

l
cos
(nπx

l

)

+ v sin
(nπx

l

)

,

λn =
n2π2

l2
+

v2

4
, n = 1, 2, · · ·

Using an eigenfunction expansion to solve (4.4) yields

Ĝ1(x, t|x0, 0) = 2le−
v
2

4
te−

v

2
(x−x0)

∞
∑

n=1

φn(x0)φn(x)

4n2π2 + v2l2
e−

n
2

π
2

l2
t.

Then follows from (4.3),

Ĝα(x, t|x0, 0) = 2le−
v

2
(x−x0)

∞
∑

n=1

φn(x0)φn(x)

4n2π2 + v2l2

∫ ∞

0

fα(z)e−( v
2

4
+ n

2
π
2

l2
)ztαdz.

Thus we obtain an expression for the kernel k̂(t) as

(4.6) k̂(t) = Ĝα(0, t|0, 0) =
8π2

l

∞
∑

n=1

n2

4n2π2 + v2l2

∫ ∞

0

fα(z)e−( v
2

4
+ n

2
π
2

l2
)ztαdz.

From (4.6), it is easily seen that

k̂(t) > 0, k̂′(t) < 0, 0 ≤ t < ∞.

The asymptotic behavior of k̂(t) as t → ∞ is obtained from (4.6) as

k̂(t) =
8π2

l

1

tα

∞
∑

n=1

n2

4n2π2 + v2l2

∫ ∞

0

fα(st−α)e−( v
2

4
+ n

2
π
2

l2
)sds

∼
8π2

l

1

tα

∞
∑

n=1

n2

4n2π2 + v2l2

∫ ∞

0

e−( v
2

4
+ n

2
π
2

l2
)sds

∼
8π2

l

1

tα

∞
∑

n=1

4l2n2

(4n2π2 + v2l2)2
, as t → ∞.

This behavior allows us to conclude that

Î(t) ≡

∫ t

0

k̂(s)ds

is such that Î(t) → ∞ as t → ∞.

To obtain bounds on ĥ(t), it is necessary to examine the properties of

˜̂
T (x, t) ≡

∫ l

0

Ĝα(x, t|x0, 0)dx0,
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which satisfies (4.1) with the initial condition
˜̂
T0 ≡ 1 together with the boundary

condition ∂
˜̂
T

∂x
|x=0 = 0 and ∂

˜̂
T

∂x
|x=l = 0. This problem has the unique solution

˜̂
T (x, t) ≡

1, and hence
∫ l

0

Ĝα(x, t|x0, 0)dx0 = 1, 0 ≤ x ≤ 1, t ≥ 0.

Thus follows

0 ≤ ĥ0 ≡ min ĥ(t) ≤ ĥ(t) ≤ 1 − δ.

It is now possible to apply the same analysis to (4.2) as that for the local problem

(2.7) in Section 2 to establish the existence of a t̂ < ∞ such that

û(t) → 1, û′(t) → ∞ as t → t̂, t∗ ≤ t̂ ≤ t∗∗,

where t∗ and t∗∗ are defined by

Î(t∗) = Λ, Î(t∗∗) = κ.

Since Î(t) → ∞ as t → ∞, there always exists a t∗∗ < ∞ such that Î(t∗∗) = κ thereby

assuring that quenching will occur. Thus the addition of advection does not allow

the suppression of quenching in a subdiffusive medium.

5. Conclusion

We have analyzed the behavior of the solution to a mathematical model for

boundary quenching in a subdiffusive medium. The nonlinear flux condition that sim-

ulates quenching is examined for both local and nonlocal effects. The nonquenching

boundary is constrained by a homogeneous condition of either Neumann or Dirichlet

type. In all situations, it was determined that quenching occurs. This is in distinct

contrast with the classical diffusion problem in which the Dirichlet case demonstrates

that quenching can be avoided by sufficient enhancement of the material properties.

An extension of the model to include advection reveals that quenching always

occurs regardless of the magnitude of the advection speed. This result is also in con-

trast to the classical diffusion problem where quenching is prevented by a sufficiently

large advection speed.
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