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ABSTRACT. Let α (< 1) be a positive constant. This article studies the following impulsive

problem: for n = 1, 2, 3, . . .

ut −
(

(n−1)T D1−α

t
u
)

xx
= λf(u), 0 < x < 1, (n − 1)T < t ≤ nT−,

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(x, nT ) = σu(x, nT−), 0 ≤ x ≤ 1,

u(0, t) = 0 = u(1, t), t > 0.

The number λ∗ is called the critical value if the problem has a unique global solution u for

λ < λ∗, and the solution quenches in a finite time for λ > λ∗. The existence of a unique λ∗ is

established.

AMS (MOS) Subject Classification. 35R11, 35R12.

1. INTRODUCTION

Let σ, λ, T be positive constants, for 0 < α < 1, Lau = ut −
(

aD
1−α
t

)

xx
where

aD
1−α
t u denotes the Riemann-Liouville fractional derivative of u. We consider the

following impulsive problem: for n = 1, 2, 3, . . . ,

(1.1)























L(n−1)T u = λf(u), 0 < x < 1, (n − 1)T < t ≤ nT−,

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(x, nT ) = σu(x, nT−), 0 ≤ x ≤ 1,

u(0, t) = 0 = u(1, t), t > 0,

where f(u) > 0, f ′(u) > 0, f ′′(u) ≥ 0 for u ≥ 0, and limu→1− f(u) = +∞. The

Riemann-Liouville fractional derivative is given as

aD
p
t u(x, t) =

1

Γ(1 − p)

d

dt

∫ t

a

(t − s)−pu(x, s)d for 0 < p < 1,

aD
−p
t u(x, t) =

1

Γ(p)

∫ t

a

(t − s)p−1u(x, s)ds for 0 < p.

For simplicity, we denote 0D
p
t by Dp

t .
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A solution u of the problem (1.1) is said to quench if there is a m ∈ N and a

positive number τ such that (m − 1)T < τ ≤ mT− and

max {u(x, t) : 0 ≤ x ≤ 1} → 1 as t → τ.

The number λ∗ is called the critical value if the problem (1.1) has a unique global

solution u for λ < λ∗, and the solution quenches in a finite time for λ > λ∗. If

σ = 1, then there is no impulse; when σ 6= 1, the problem (1.1) describes an impulse

proportional to u (with σ as the proportionality constant) being given at each time

interval T .

The problems of thermal diffusion with subdiffusive properties are formulated in

terms of fractional diffusion equations. The subdiffusive problem is described through

the Riemann-Liouville fractional differential operator D1−α
t which is used to model

diffusive behavior of mean square displacement of Brownian motion evolves on a

slower than normal time. By considering the solution u(x, t) as the temperature of

subdiffusive material, Kirk and Olmstead [5], and Olmstead and Roberts [9] studied

the blow-up behavior of the solution of the problem with concentrated source.

Owing to short-term perturbations, many evolution processes at certain moments

of time experience changes of state abruptly. Since the durations of the perturbations

are negligible in comparison with the duration of each process, it is natural to assume

that these perturbations act instantaneously in the form of impulses (cf. Lakshmikan-

tham, Bainov, and Simeonov [6]). The impulsive effects on blow-up and quenching

were first studied by Chan and Deng [1], Chan, Ke and Vatsala [2] for a semilinear

heat equation, and Chan and Kong [3] for a degenerate semilinear equation. Liu [7]

gave the quenching results for fast diffusive cases. In this paper, we study the impul-

sive effects on the existence of the solution. When σ ≤ 1, the problem has a critical

value λ∗, and when σ > 1, the solution always quenches.

A solution u(x, t) of the problem (1.1) is a C2,1((0, 1) × ((n − 1)T, nT ) function

for n = 1, 2, . . . , which satisfies the initial and boundary conditions.

By using the transformation,

un(x, t − (n − 1)T ) = u(x, t), (n − 1)T < t ≤ nT−, n = 1, 2, 3, . . . ,

and Lu = ut − (0D
1−α
t u)xx, the problem (1.1) can be written as

(1.2)























Lun(x, t) = λf(un(x, t)) in (0, 1) × (0, T−],

u1(x, 0) = 0, 0 ≤ x ≤ 1,

un+1(x, 0) = σun(x, T−), 0 ≤ x ≤ 1,

un(0, t) = 0 = un(1, t), 0 < t ≤ T−.

Thus, global existence of a solution of the problem (1.1) is now equivalent to existence

of un for all positive integers n.
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For ease of reference, we state the following theorem, which summarizes some

results about fractional differential equations (cf. Podlubny [10, p.72–75]).

Theorem 1.1. (a) For any real p and m ∈ N such that m−1 ≤ p < m, β > m−1,

Dp
t t

β =
Γ(β + 1)

Γ(−p + β + 1)
tβ−p.

(b) For m, n ∈ N and any real p and q such that m − 1 ≤ p < m, n − 1 ≤ q < n,

Dp
t (D

q
t g(t)) = Dq+p

t g(t) −

n
∑

j=1

(Dq−j
t g(t))

∣

∣

∣

∣

∣

t=0

t−p−j

Γ(1 − p − j)
;

Dq
t (D

p
t g(t)) = Dp+q

t g(t) −

m
∑

j=1

(Dp−j
t g(t))

∣

∣

∣

∣

∣

t=0

t−q−j

Γ(1 − q − j)
.

Hence Dp
t (D

q
t g(t)) = Dq

t (D
p
t g(t)) only if Dp−j

t g(0) = 0 and Dq−j
t g(0) = 0 for

j = 1, 2, . . . , r where r = max{m, n}.

(c) For any nonnegative real numbers p and q, Dp
t (D

−q
t g(t)) = Dp−q

t g(t), and

D−p(Dq
t g(t)) = Dq−p

t g(t) −

n
∑

j=1

(Dq−j
t g(t))

∣

∣

∣

∣

∣

t=0

tp−j

Γ(1 + p − j)
,

where 0 ≤ n − 1 ≤ q < n.

A weak form of maximum principle of the equation Lu ≥ 0 is studied by Chan

and Liu [4], and an extension for the operator (L− c)u is given by Liu [8]. The next

result will be used in our discussion.

Theorem 1.2. If v satisfies Lv − cv ≥ 0, v(x, 0) ≥ 0 for x ∈ (0, 1), v(0, t) ≥ 0 and

v(1, t) ≥ 0 for t ∈ (0, T ], and c ≥ 0 in (0, 1)× (0, T ], then v(x, t) ≥ 0 on [0, 1]× [0, T ].

2. EXISTENCE AND NONEXISTENCE OF SOLUTION

By using Theorem 1.2, we can show the positivity and uniqueness of the solution

un of the problem (1.2).

Theorem 2.1. The solution un(x, t) ≥ 0, and the problem (1.2) has at most one

solution on [0, 1] × [0, T ] for n = 1, 2, . . . .

Similar to the situation as in the heat equation, the increasing nature in the

fractional diffusive case follows from Theorem 1.2.

Theorem 2.2. The solution un(x, t) is increasing with respect to t in (0, 1) × (0, T )

for n = 1, 2, . . . .
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Proof. When n = 1, let 0 < η < T and w(x, t) = u1(x, t + η) − u1(x, t).

Since u1 ∈ C2,1((0, 1)× (0, T )), the function w(x, t) ∈ C2,1((0, 1)× (0, T −η)) and

satisfies the equation

Lw = λf ′(ξ) · w,

where ξ lies between u1(x, t + η) and u1(x, t).

Since un(x, t) ≥ 0 for t ≥ 0, we have w(x, 0) = u1(x, η) − u1(x, 0) ≥ 0. From

the boundary conditions, we get w(0, t) = 0 = w(1, t). It follows from Theorem 1.2

that w(x, t) ≥ 0 on [0, 1]× [0, T − η). Hence u1(x, t) is increasing with respect to t in

(0, 1) × (0, T ].

Assume that un(x, t) is increasing with respect to t in (0, 1)×(0, T ). Let w(x, t) =

(un+1)t(x, t). Then w(x, t) satisfies

Lw = λf ′(un+1) · w.

Since (un)t(x, t) ≥ 0 for t ∈ (0, T ), we have (un+1)t(x, 0) = σ(un)t(x, T ) ≥ 0. At

x = 0 and x = 1, since un+1(0, t) = 0 = un+1(1, t) for t ∈ (0, T ), we have w(0, t) =

0 = w(1, t). From Theorem 1.2 again, we have w(x, t) ≥ 0. This implies that

(un+1)t(x, t) ≥ 0. Therefore, it follows from the mathematical induction that un is

increasing with respect to t for n = 1, 2, . . . .

Since T denotes the time-step for the solution u experience the impulsive effects,

shorter the time-step implies more frequency the impulses take effect on the solution.

The next theorem gives the relation.

Theorem 2.3. Let ũn and ûn be the solutions corresponding to the problem (1.2)

on [0, 1] × [0, T1] and [0, 1] × [0, T2] respectively. If T1 < T2, then ũn ≤ ûn for any

n = 1, 2, . . . on [0, 1] × [0, T1].

Proof. From the uniqueness of the solution, ũ1 = û1 on [0, 1] × [0, T1]. The function

w2(x, t) = ũ2(x, t) − û2(x, t) satisfies

Lw2 = λf ′(ξ)w2, in (0, 1) × (0, T1),

where ξ lies between ũ2(x, t) and û2(x, t). From Theorem 2.2, we have (û1)t ≥ 0, then

the relation ũ2(x, 0) = σũ1(x, T1) = σû1(x, T1) ≤ σû1(x, T2) = û2(x, 0) gives that

w2(x, 0) ≥ 0. Since on the boundary, w2(0, t) = 0 = w2(1, t), it follows from Theorem

1.2 that w2(x, t) ≥ 0. Hence ũ2(x, t) ≤ û2(x, t) on [0, 1] × [0, T1].

Next we assume that ũn(x, t) ≤ ûn(x, t) on [0, 1] × [0, T1]. From Theorem 2.2

again, we have ûn(x, t) is increasing with respect to t, then ũn+1(x, 0) = σũn(x, T1) =

σûn(x, T1) ≤ σûn(x, T2) = ûn+1(x, 0). It follows a similar argument as in the case for

n = 1 that ũn+1(x, t) ≤ ûn+1(x, t). By induction, the result follows.

We next prove that un increases as λ increases.
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Theorem 2.4. Let un(x, t; λ) denotes the solution of the problem (1.2). If λ1 > λ2,

then

un(x, t; λ1) ≥ un(x, t; λ2).

Proof. Since u1(x, 0; λ1) = u1(x, 0; λ2) = 0, u1(x, t; λ1) = 0 = u1(x, t; λ2) = 0 on the

boundary of [0, 1], and

L(u1(x, t; λ1)− u1(x, t; λ2)) = λ1f(u1)− λ2f(u1) ≥ λ1f
′(ξ)(u1(x, t; λ1) − u1(x, t; λ2)),

we have u1(x, t; λ1) ≥ u1(x, t; λ2). By the principle of mathematical induction, the

theorem is then proved.

Let ϕ(x) be the nonnegative solution of the eigenvalue problem

ϕ′′ = −µϕ, for 0 < x < 1,

ϕ(0) = 0 = ϕ(1) with
∫ 1

0
ϕ(x)dx = 1.

Let Fn(t) =
∫ 1

0
un(x, t)ϕ(x)dx. We now prove the existence of λ∗.

Theorem 2.5. The solution un of the problem (1.2) quenches in a finite time when

λ is large enough.

Proof. Apply the operator D−1+α
t on (1.2). It follows from Theorem 1.1c and u1(x, 0) =

0 that u1 satisfies

Dα
t u1 = D−1+α

t (u1)t =
(

D−1+α
t D1−α

t u1

)

xx
+ λ

(

D−1+α
t f(u1)

)

= (u1)xx + λ
(

D−1+α
t f(u1)

)

.

Next, multiplying ϕ(x) on both sides of the equation and integrating with respect to

x from 0 to 1, we obtain

Dα
t

(
∫ 1

0

ϕ(x)u1(x, t)dx

)

= −µ

∫ 1

0

ϕ(x)u1(x, t)dx+λD−1+α
t

(
∫ 1

0

f(u1(x, t))ϕ(x)dx

)

,

or

(2.1) Dα
t F1(t) = −µF1(t) + λD−1+α

t

(
∫ 1

0

f(u1(x, t))ϕ(x)dx

)

.

Next we give an estimation of the last term on the right-hand side of (2.1). Since

f(u) > 0, f ′(u) > 0 and f ′′(u) ≥ 0 for u ≥ 0, there is k1 > 0 such that f(u1) > k1.

Then

∫ 1

0

f(u1(x, t))ϕ(x)dx ≥ k1. By using the definition of Riemann derivative and

Theorem 1.1a, we get

D−1+α
t

(
∫ 1

0

f(u1(x, t))ϕ(x)dx

)

≥
1

Γ(1 − α)

∫ t

0

(t − s)−αk1ds

=
k1

Γ(1 − α)(1 − α)
t1−α.
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Hence, from (2.1), F1(t) satisfies

Dα
t F1(t) ≥ −µF1(t) +

λk1

Γ(1 − α)(1 − α)
t1−α.

Since F1(t) ≤ 1, this gives

F1(t) ≥ D−α
t

(

−µ +
λk1

Γ(1 − α)(1 − α)
t1−α

)

.

It follows from a direct computation that

D−α
t

(

−µ +
λk1

Γ(1 − α)(1 − α)
t1−α

)

=
1

Γ(α)

[

−
µ

α
tα +

λk1Γ(α)Γ(2 − α)

Γ(1 − α)Γ(2)(1 − α)
t

]

.

Thus

F1(t) ≥
1

Γ(α)

[

−
µ

α
tα +

λk1Γ(α)Γ(2 − α)

Γ(1 − α)Γ(2)(1 − α)
t

]

=
1

Γ(α)

[

−
µ

α
tα + λk1Γ(α)t

]

.

By taking λ > (1/Γ(α) + µT α/α) / (k1Γ(α)T ), then F1(T0) > 1 for some T0 ≤ T .

This showed that u1(x, t) reaches 1 in a finite time less than T . This complete the

proof.

Next, we claim that the solution exists globally for λ is small.

Theorem 2.6. For σ ≤ 1. If λ is small, then the solution un exist and bounded above

by 1 for n = 1, 2, . . . on [0, 1] × [0, T ].

Proof. Let w(x, t) = (1 − βt)x(1 − x) where β is a positive number with βT < 1.

The initial data gives w(x, 0) = x(1 − x) ≥ 0 for 0 ≤ x ≤ 1. On the boundary, we

have w(0, t) = 0 = w(1, t). At t = T , we have w(x, 0)− σw(x, T ) = x(1− x) − σ(1 −

βT )x(1 − x) ≥ x(1 − x)(1 − (1 − βT )) ≥ 0.

It follows from the definition that wt = −βx(1 − x) and

(D1−α
t w)xx = −2(D1−α

t (1 − βt)) = −
2

Γ(α)
t−1+α +

2β

Γ(1 + α)
tα.

Hence

wt − (D1−α
t )xx − λf(w) = −βx(1 − x) +

2

Γ(α)
t−1+α −

2β

Γ(1 + α)
tα − λf(w)

≥ −β

[

x(1 − x) +
2T α

Γ(1 + α)

]

+
2

Γ(α)
T−1+α − λf

(

1

4

)

.

Let us pick λ be small such that λ < 2/(T 1−αΓ(α)f (1/4)). Then

2

Γ(α)
T−1+α − λf

(

1

4

)

> 0.

Furthermore take β be small such that

2

Γ(α)
T−1+α − λf

(

1

4

)

> β

[

x(1 − x) +
2T α

Γ(1 + α)

]

.
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Therefore wt − (D1−α
t w)xx − λf(w) > 0. Then by Theorem 1.2, we get un ≤ w

for (x, t) ∈ [0, 1] × [0, T ] for n = 1, 2, . . . . Since max w(x, t) = 1/4 < 1, this shows

that un < 1.

Then combining the Theorems 2.4, 2.5, and 2.6, we have the following result.

Theorem 2.7. For σ ≤ 1, the problem (2.1) has a unique critical λ∗.

Differ from the heat or fast diffusive cases, the fractional operator D1−α
t gives

a slower diffusive situation. Hence, when σ > 1, the impulsive effect guarantee the

solution un quenches for any λ and time-step T .

Theorem 2.8. The solution un quenches for any positive numbers λ and T when

σ > 1.

Proof. We use a similar argument as in the proof of Theorem 2.5, that is, applying

the operator D−1+α
t on the equation, multiplying ϕ(x) on both sides of the equation

and integrating with respect to x from 0 to 1. Then, we get

Dα
t

(
∫ 1

0

ϕ(x)un(x, t)dx

)

=
t−α

Γ(1 − α)

∫ 1

0

ϕ(x)un(x, 0)dx

− µ

∫ 1

0

ϕ(x)un(x, t)dx + λD−1+α
t

(
∫ 1

0

f(un(x, t))ϕ(x)dx

)

.

By using the Jensen’s inequality and the fact that Fn(t) < 1, we get

Dα
t Fn(t) ≥

t−α

Γ(1 − α)
Fn(0) − µ + λD−1+α

t f(Fn(t)).

Applying the operator D−α
t on the above inequality, it follows from Theorem 1.1c

that

Fn(t) ≥ Fn(0) − µ ·
tα

αΓ(α)
+ λf(Fn(0)) · t.

In particular, at t = T ,

Fn(T ) ≥ Fn(0) − µ ·
T α

αΓ(α)
+ λTf(Fn(0)),

for n = 2, 3, . . . . By using un(x, 0) = σun−1(x, T ) and Fn(0) = σFn−1(T ) for n =

2, 3, . . . , we get

Fn(T ) ≥ σFn−1(T ) − µ ·
T α

αΓ(α)
+ λTf(σFn−1(T )).

Next we claim that σFn−1(T ) − µ · T α/αΓ(α) > 0 for some n. Suppose that

this is not true, that is σFn−1(T ) ≤ µT α/αΓ(α) for n = 2, 3, . . . . From Theorem 2.2

Fn(T ) ≥ Fn(0) for any n = 2, 3, . . . . Then we get

Fn−1(T ) ≥ Fn−1(0) = σFn−2(T ) ≥ σFn−2(0) = σ2Fn−3(T ) ≥ · · · .



500 H.T. LIU AND C-W. CHANG

This concludes that Fn−1(T ) ≥ σn−1F1(T ) for n = 2, 3, . . . . From the above inequal-

ity, we obtain

σnF1(T ) ≤ µ ·
T α

αΓ(α)
.

For σ > 1, as n → ∞, we have σn → ∞ which leads to a contradiction. This shows

that there is n∗ such that σFn∗
−1(T ) − µ · T α/αΓ(α) > 0. Since Fn−1(T ) ≤ Fn(T ),

we get σFn−1(T ) > µ · T α/αΓ(α) for n ≥ n∗. Therefore,

Fn(T ) ≥ σFn−1(T ) − µ ·
T α

αΓ(α)
+ λTf(σFn−1(T )) ≥ λTf(σFn−1(T )),

for n ≥ n∗.

From f > 0, f ′ > 0 and f ′′ ≥ 0, there is k2 > 0 such that f(u) ≥ k2u. The above

inequality becomes

(2.2) Fn(T ) ≥ λTk2σFn−1(T )

for n ≥ n∗. Using the inequality (2.2) repeatedly, we obtain

Fn(T ) ≥ λTσn−n∗

k2Fn∗(T )

for n > n∗. There exists some N such that λTσN−n∗

k2Fn∗(T ) > 1. Hence FN(T ) > 1,

this implies uN reaches 1 in a finite time.
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