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ABSTRACT. Observing the monotonic type for a class of singular Volterra integral equations

we get a short proof of the singular Gronwall inequality in a completed setting with upper bounds

as usual and additional lower bounds. Moreover, the solutions to linear singular Volterra integral

equations admit norm bounds which (under an obvious restriction) depend in a monotone increasing

way on the prescribed data. We use this observation to solve a nonlinear problem: In terms of linear

singular Volterra equations we formulate an (seemingly new) iterative approximation scheme to

mild Navier-Stokes solutions. The monotonicity of the bounds mentioned above leads to the proof

of convergence and error estimates to our scheme inside a scale of Banach spaces locally in time.
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1. Introductory remarks

The integral representation of initial value problems in ordinary or partial dif-

ferential equations leads to Volterra integral equations which, in important parabolic

cases, are (weakly) singular, and any solution of the integral equation presents a mild

solution to the related initial value problem [16].

The solutions to linear singular Volterra integral equations allow useful norm

estimates like the singular Gronwall inequality [1, 2, 11]. In many cases of non-

linear parabolic problems their formulation by a (nonlinear) singular Volterra integral

equation shows the inherent smoothing properties of the problem which opens the way

to convergent iteration procedures and error estimates.

Famous examples are given by Fujita and Kato’s Hilbert space solution to the

3-dimensional initial-boundary value problem of the Navier-Stokes equations [6, 13],

and by Giga and Miyakawa’s extension of their method to n ≥ 2 dimensions and to

solutions in Sobolev spaces, [10].

Having listed some basic notations in Section 2 we recall the classical formulas

for the solutions to linear singular Volterra integral equations and for bounds of their
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norms. In particular we stress the monotone dependence of these bounds upon the

prescribed data (under some obvious restriction). Then in Section 3 we will see the

monotonic type of linear singular Volterra integral equations with positive real kernels,

which implies the singular Gronwall inequality completed by additional lower bounds.

Finally in Section 4, formulated in terms of linear singular Volterra integral equations

we present a (seemingly new) iterative approximation scheme to mild Navier-Stokes

solutions. Using the monotonicity of the bounds (stated in Section 2) we prove

convergence and error estimates to our scheme inside a scale of Banach spaces locally

in time.

2. Notations and some basic facts on linear Volterra integral equations

To any Banach space X with norm ‖ · ‖X , let B = B(X) denote the Banach

space of bounded linear operators S : X → X with norm ‖S‖B. Moreover on the

interval J = [0, a], 0 < a < ∞, we will use the Banach space C0(J, X) of all X-valued

continuous functions f : J → X having the norm supt∈J ‖f(t)‖X . On the triangle

T = {(t, s) ∈ R
2 | 0 ≤ s ≤ t ≤ a}

we consider any strongly continuous, uniformly bounded function

H : T → B(X), ‖H(t, s)‖B ≤ N

with some constant N > 0. Then there hold the following two propositions:

Proposition 2.1. To any given g ∈ C0(J, X), λ ∈ R, α ∈ [0, 1), the singular Volterra

integral equation

(2.1) u(t) = g(t) + λ ·

∫ t

0

H(t, s)

(t − s)α
· u(s)ds

has a unique solution u ∈ C0(J, X).

Proposition 2.2. With the assumptions above, the solution u of equation (2.1) has

the representation

u(t) = g(t) + λ ·

∫ t

0

H̃(t, s, λ)

(t − s)α
· g(s)ds

by means of the strongly continuous kernel

H̃(t, s, λ) ∈ B(X), ‖H̃(t, s, λ)‖B ≤ Ñ(N, λ, a),

where
H̃(t, s, λ)

(t − s)α
:= K(t, s, λ)

is given by the strongly in B(X), for all b ∈ (0,∞) uniformly on T ×{λ ∈ R | |λ| ≤ b}

convergent power expansion

K(t, s, λ) =
∞

∑

m=1

λm−1 · Km(t, s), where
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K1(t, s) :=
H(t, s)

(t − s)α
, Km(t, s) :=

∫ t

s

K1(t, σ) · Km−1(σ, s)dσ, m ≥ 2.

With κm := Nm · (Γ(1−α))m

Γ(m·(1−α))
, there holds

(t − s)α · ‖Km(t, s)‖B ≤ (t − s)(m−1)(1−α) · κm, m ≥ 1,

Γ denoting Legendre’s Gamma function. For all λ ≥ 0, the (absolutely convergent)

bound

(2.2) Ñ(N, λ, a) :=

∞
∑

m=1

|λ|m−1 · a(m−1)(1−α) · κm

is monotone increasing in N, λ, and a.

Proof. The proofs of both propositions above given in [14, pp. 17–18] and [21, pp. 151–

153], which are formulated there in the case of real valued functions, extend imme-

diately to our abstract case, if we recall the abstract integration [12, pp. 59, 66], and

the abstract Cauchy-Hadamard convergence theorem [12, p. 96].

Definition 2.3. To any function f ∈ C0(J, X), the defect Pf with respect to equa-

tion (2.1) is given by

(2.3) (Pf)(t) := f(t) −

[

g(t) + λ ·

∫ t

0

H(t, s)

(t − s)α
· f(s)ds

]

, t ∈ J.

Note 2.1. In case of any given Pf ∈ C0(J, X), equation (2.3) is equivalent to the

Volterra integral equation for f :

f(t) = (Pf)(t) + g(t) + λ ·

∫ t H(t, s)

(t − s)α
· f(s)ds, t ∈ J.

Since with our assumptions above f ∈ C0(J, X) implies Pf ∈ C0(J, X), by the two

preceding Propositions we find that each function f ∈ C0(J, X) allows the represen-

tation

f(t) = (Pf)(t) + g(t) + λ ·

∫ t

0

H̃(t, s, λ)

(t − s)α
· [(Pf)(s) + g(s)]ds, t ∈ J.

3. The monotonic type of linear Volterra integral equations with positive

real kernels and the singular Gronwall inequality

Let H : T → R+ := [0,∞) denote a continuous function,

(3.1) 0 ≤ H(t, s) ≤ N with constant N > 0 for all (t, s) ∈ T .

Due to the Propositions 2.1 and 2.2 above, to any given g ∈ C0(J, R), λ > 0, 0 ≤

α < 1, the unique solution u ∈ C0(J, R) of the Volterra integral equation

(3.2) u(t) = g(t) + λ ·

∫ t

0

H(t, s)

(t − s)α
· u(s)ds
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is given by

u(t) = g(t) + λ ·

∫ t

0

H̃(t, s, λ)

(t − s)α
· g(s)ds.

There holds

Proposition 3.1. For any two functions v, w ∈ C0(J, R), the condition

(i) (Pv)(t) ≤ 0 ≤ (Pw)(t) for all t ∈ J

implies the estimate

(ii) v(t) ≤ u(t) ≤ w(t) for all t ∈ J .

Proposition 3.1 states the fact that, under the positivity assumptions above, the

integral equation (3.2) presents a problem of monotonic type in the sense of L. Collatz

[4, 5]. Proposition 3.1 is not implied in Walter’s comparison theorem for monotone

increasing kernels [20, II. Theorem, p. 14], since in requirement (i) we admit the

equality sign at both places. Therefore a proof of Proposition 3.1 with the methods

of [20] would require the additional arguments from [20, Section 1, IX].

Evidently the left-hand sides of inequalities (i) and (ii) in Proposition 3.1 yield

Corollary 3.2 (the singular Gronwall inequality). Assume (3.1) and λ > 0. Then

each continuous function v ∈ C0(J, R) which fulfils the inequality

v(t) ≤ g(t) + λ ·

∫ t

0

H(t, s)

(t − s)α
v(s)ds, t ∈ J, 0 ≤ α < 1, 0 < λ,

is bounded from above by the solution u to (3.2).

Proof. As we have observed in the general Note 2.1., under the assumptions of Propo-

sition 3.1 each f ∈ C0(J, R) has the representation

(3.3) f(t) = (Pf)(t) + g(t) + λ ·

∫ t

0

H̃(t, s, λ)

(t − s)α
[(Pf)(s) + g(s)]ds,

where
H̃(t, s, λ)

(t − s)α
=

∞
∑

m=1

λm−1 · Km(t, s),

K1(t, s) =
H(t, s)

(t − s)α
, Km(t, s) =

∫ t

s

K1(t, σ) · Km−1(σ, s)dσ, m ≥ 2,

t ∈ J .

Therefore our assumption (3.1) and λ > 0 imply λ·H̃(t, s, σ) ≥ 0 for all (t, s) ∈ T .

Since the function f = u obeys (3.3) with Pf = 0, from the non-negativity of the

kernel λ · H̃(t,s,σ)
(t−s)α in (3.3) we conclude v(t) ≤ u(t) for each v ∈ C0(J, R) fulfilling

Pv(t) ≤ 0, and u(t) ≤ w(t) for each w ∈ C0(J, R) with Pw(t) ≥ 0 for all t ∈ J ,

respectively.

Remark 3.3. In a more general setting with functions v ∈ L∞
loc(J, R), the singular

Gronwall inequality has been proved by Amann in [1, 2] and Henry in [11].
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4. Application to Navier-Stokes approximations

Let Ω ⊂ R
n be a bounded domain with smooth boundary ∂Ω, n ≥ 2. Besides

the Lebesgue spaces Lr = Lr(Ω) of functions v, v(x) ∈ R
n, x ∈ Ω̄, in the following

we will use the fractional order spaces Hα,r = Hα,r(Ω), 0 ≤ α < ∞, 1 < r < ∞,

and the subspace Lr
σ ⊂ Lr(Ω) of weakly divergence free functions on Ω, Lr

σ being the

Lr-closure of the linear space C∞
c,σ(Ω) of C∞-test functions, which are divergence free

and have compact support in Ω.

By means of the Helmholtz-Weyl projection Pr : Lr(Ω) → Lr
σ and the Laplacian

operator ∆ =
∑n

j=1
∂2

∂x2
j

we define the Stokes operator A := −Pr∆ with its domain

DA :⊂ H2,r(Ω) ∩ Lr
σ. The operator A generates the holomorphic semigroup e−tA

on Lr
σ, t ≥ 0. Therefore the fractional powers Aα are well defined for all α ∈ R,

Aα ∈ B(Lr
σ) if α ≤ 0, DAα ⊂ H2α,r ∩ Lr

σ if α ≥ 0, [7, 9, 10, 6, 13, 3, 17, 18, 19]. In

addition there hold the relations

‖Aαe−tAw‖Lr ≤ Cα · t−α · ‖w‖Lr , t > 0, α ≥ 0 with some constant Cα > 0,(4.1)

‖(1 − e−tA)w‖Lr → 0 with t → +0,(4.2)

‖tαAαe−tAw‖Lr → 0 with t → +0, α > 0(4.3)

for w ∈ Lr
σ, [6, 7, 8, 16].

Any solution u ∈ C0(J, DAα) of the integral equation

(4.4) Aαu(t) = e−tAAαu(0) −

∫ t

0

Aα+δe−(t−s)AA−δPr(u∇u)(s)ds,

with initial value u(0) ∈ DAα and 0 ≤ δ, 0 ≤ α, α + δ < 1, is called a mild

Navier-Stokes solution on J × Ω. For short, we will assume exterior potential forces.

For solving (4.4), Fujita-Kato [6, 13] and Giga-Miyakawa [8, 15, 10] have used the

approximation scheme

Aαu0(t) := Aαe−tAu(0),

Aαum+1(t) := Aαu0(t) −

∫ t

0

Aα+δe−(t−s)AA−δPr(um∇um)(s)ds,

m ∈ N, with u(0) ∈ DAβ .

Admitting β < α < 1 − δ (Fujita-Kato: r = 2, β = 1/4, α ≥ 1/2) they proved

convergence of the sequence (Aαum(t))m∈N with respect to the singular weighted norm

sup0<τ≤t{τ
β−α · ‖Aαum(τ)‖Lr}. In this way they could point out also the smoothing

property of the integral equation (4.4).

The key for the construction of approximate solutions are estimates of the con-

vective term:



536 R. RAUTMANN

Lemma 4.1 (Giga-Miyakawa [10]). Let 0 ≤ δ < 1
2
+ n · 1

2
·
(

1 − 1
r

)

. Then there holds

‖A−δPr(u∇v)‖Lr(Ω) ≤ M · ‖Aθu‖Lr(Ω) · ‖A
ρv‖Lr(Ω)

with some constant M = M(δ, θ, ρ, r), provided that

1

2
+

n

2r
≤ δ + θ + ρ, 0 < θ, 0 < ρ,

1

2
< δ + ρ.

In the following we will always require u(0) ∈ DAα, α = θ = ρ, α + δ < 1, thus

the requirement of Lemma 4.1 reads

(4.5)

{

0 ≤ δ < 1
2

+ n · 1
2
·
(

1 − 1
r

)

, 1
2

+ n
2r

≤ δ + 2α,

0 < α, 1
2

< δ + α < 1, 1 < r < ∞.

Then from Lemma 4.1 evidently there results

Corollary 4.2. Under the assumptions (4.5) there holds

(4.6) ‖A−δPr(u∇v)‖Lr ≤ M · ‖Aαu‖Lr · ‖Aαv‖Lr , and

‖A−δPr[u∇v − ũ∇ṽ]‖Lr ≤ M · {‖Aα(u − ũ)‖Lr · ‖Aαv‖Lr+(4.7)

+ ‖Aαũ‖Lr · ‖Aα(v − ṽ)‖Lr},

for all u, v, ũ, ṽ ∈ DAα, where M = M(δ, α, r).

For solving (4.4) with any prescribed u(0) ∈ DAα we consider the approximation

scheme

Aαu0(t) := e−tAAαu(0),(4.8)

Aαum+1(t) := Aαu0(t) −

∫ t

0

Aα+δe−(t−s)AA−δPr(um · ∇um+1)(s)ds,(4.9)

t ∈ J , m ∈ N, α, δ, r from (4.5).

Let u ∈ C0(J, DAα). With any w ∈ Lr
σ, we introduce the kernel

H(t, s, u)w := H(t, s) · (Fu(s))w,

where

(4.10) H(t, s) := −Aα+δe−(t−s)A · (t − s)α+δ and

(4.11) (Fu(s))w := A−δPr(u(s) · ∇A−αw), (t, s) ∈ T .

Using these notations we get from (4.9) the linear singular Volterra integral equation

(4.12) Aαum+1(t) = Aαu0(t) +

∫ t

0

H(t, s, um)

(t − s)α+δ
Aαum+1(s)ds, t ∈ J,

with prescribed Aαu0(t) = e−tAAαu(0), u(0) ∈ DAα , um ∈ C0(J, DAα).

In the following, with any fixed value r ∈ (1,∞), we will always write ‖·‖ = ‖·‖Lr ,

omitting the norm index Lr.
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Proposition 4.3. Let u ∈ C0(J, DAα), ‖Aαu(t)‖ ≤ c, (t, s) ∈ T , with some constant

c > 0. Then

(i) ‖H(t, s, u)‖B(Lr
σ) ≤ Nc := Cα+δ · M · c, and

(ii) H(t, s, u) is strongly Lr
σ-continuous.

Note 4.1. The bound Nc is monotone increasing in the norm bound c ≥ ‖Aαu‖.

Proof. Inequality (i) results from (4.6) in Corollary 4.2 because of the semigroup esti-

mate (4.1). To show (ii), we prove that the difference D := ‖H(t, s, u)w−H(τ, σ, u)w‖

tends to zero with (t, s) → (τ, σ) inside of T . Without any restriction we may assume

(4.13) 0 ≤ s ≤ t ≤ τ ≤ a, 0 ≤ σ ≤ τ,

with any fixed (τ, σ) ∈ T . Let u ∈ C0(J, DAα), w ∈ Lr
σ. Then in the inequality

D ≤ ‖H(t, s)[(Fu(s))− (Fu(σ))]w‖+ ‖[H(t, s) − H(τ, σ)](Fu(σ))w‖ := D1 + D2,

the first term D1 on the right-hand side tends to zero with |s − σ| → 0 because of

(4.1) and (4.7) with v = ṽ = A−αw.

For estimating the second term D2, firstly in addition to (4.13) we require

(4.14) 0 ≤ t − s ≤ τ − σ.

Then σ = τ gives s = t, therefore D2 = 0. Thus we have to consider only the case

0 ≤ σ < τ.

Writing wu := (Fu(σ))w, β := α + δ, we find

D2 = ‖Aβ[e−(t−s)A · (t − s)β − e−(τ−σ)A · (τ − σ)β]wu‖

≤

{

‖Aβe−(t−s)A · (t − s)β · [1 − e−[(τ−t)−(σ−s)]A]wu‖

+‖Aβe−(τ−σ)A[(t − s)β − (τ − σ)β]wu‖

}

:= D21 + D22.

Since (4.14) means 0 ≤ η := τ − t − [σ − s], from (4.1) and (4.2) we find D21 → 0 if

(t, s) → (τ, σ). Moreover, because of 0 ≤ σ < τ with fixed (τ, σ) ∈ T , the convergence

(t, s) → (τ, σ) implies (t−s)β ≡ (τ −σ)β · (1+ ǫ) with values |ǫ| → 0. Therefore again

using (4.1), we see

D22 = ‖Aβe−(τ−σ)A(τ − σ)βwu‖ · |ǫ| → 0

with |ǫ| → 0. In the remaining case (4.13) and 0 ≤ τ − σ ≤ t − s we conclude

similarly.

From Proposition 4.3 we see that the kernel H(t, s, um) in (4.12) satisfies the

requirement of Propositions 2.1 and 2.2. Consequently there holds

Proposition 4.4. Let u(0) ∈ DAα, um ∈ C0(J, DAα), ‖Aαum(t)‖ ≤ cm with constant

cm > 0, t ∈ J , for m = 0 and some fixed m ∈ N. Then
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(i) the singular Volterra integral equation (4.12) has a unique solution

Aαum+1 ∈ C0(J, Lr
σ), and there holds with (t, s) ∈ T

(ii) Aαum+1(t) = Aαu0(t) +
∫ t

0
H̃(t,s,um)
(t−s)α+δ Aαu0(s)ds with

Aαu0(t) = e−tAAαu(0), H̃(t, s, um) ∈ B(Lr
σ),

(iii) ‖H̃(t, s, um)‖B(Lr
σ) ≤ Ñ(Ncm

), the function Ñ(Ncm
) := Ñ(Ncm

, 1, a) from (2.2)

being monotone increasing in dependence on the bound Ncm
≥ ‖H(t, s, um)‖,

(iv) ‖Aαum+1(t)‖ ≤ c0 · [1 + Ñ(Ncm
) · T ], where T = t1−(α+δ)

1−(α+δ)
.

Proof. The proof of (i)–(iii) results from the Propositions 2.1 and 2.2 because of

Proposition 4.3. Then using the bounds c0 and Ñ(Ncm
) in (iii) we find (iv) by

straightforward integration from (ii).

According to Proposition 4.4, the sequence of functions Aαum ∈ C0(J, Lr
σ) is

well defined, m ∈ N. Evidently we have um = A−α(Aαum) ∈ C0(J, Lr
σ) by the

boundedness of A−α, α ≥ 0.

Proposition 4.5. For t ∈ J we assume c > c0 ≥ ‖Aαu0(t)‖ with constants c, c0.

Then the sequence Aαum(t), m ∈ N, is uniformly Lr-bounded by c on the interval

(4.15) J1 =

{

t ∈ J | t ≤ t1 :=

[

(c − c0)(1 − (α + δ))

c0 · Ñ(Nc)

]
1

1−(α+δ)

}

.

Note 4.2. By a short calculation we see that t1 ≥ a is admitted if

a1−(α+δ)

1 − (α + δ)
· Ñ(Nc) ≤

c − c0

c0
.

Proof. To any c > c0, the requirement 0 ≤ t ≤ t1, t1 from (4.15), is equivalent with

(4.16) c0 · [1 + Ñ(Nc) · T ] ≤ c, T =
t1−(α+δ)

1 − (α + δ)
.

Using inequality (iv) in Proposition 4.4, by induction we get from (4.16):

In case m = 0 : (iv) implies ‖Aαu1(t)‖ ≤ c0 · [1 + Ñ(Nc0) · T ] ≤ c because of

(4.16) and Ñ(Nc0) ≤ Ñ(Nc) by the monotonicity of the function Ñ in Nc0, and of the

function Nc in c, respectively, where c0 < c (Nc from (i) in Proposition 4.3).

Now let ‖Aαuk(t)‖ ≤ ck ≤ c for all k = 0, 1, . . . , m and t ∈ J1. Then again from

(iv) in Proposition 4.4, using (4.16) and recalling the monotonicity as above we find

‖Aαum+1(t)‖ ≤ c0 · [1 + Ñ(Ncm
) · T ] ≤ c,

which proves our claim for all m ∈ N.

Proposition 4.6. Let u(0) ∈ DAα, u0(t) = e−tAu(0). Then with any constant c >

c0 ≥ ‖Aαu0(t)‖, t ∈ J , the sequence Aαum(t), m ∈ N, is uniformly Lr-convergent for
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all

(4.17) t ∈ J2 :=

{

τ ∈ J1 | τ ≤ t2 :=

[

q · (1 − (α + δ))

(1 + q) · C̃ · c

]
1

1−(α+δ)

}

with C̃ = Cα+δ · M and any constant q ∈ (0, 1).

Note 4.3. A short calculation shows that t2 ≥ a is admitted if t1 ≥ a and

additionally
a1−(α+δ)

1 − (α + δ)
· C̃ ·

1 + q

q
≤

1

c

holds.

Proof. As we have seen in Proposition 4.5, the functions Aαum ∈ C0(J1, L
r
σ) in (4.9)

fulfill ‖Aαum(t)‖ ≤ c with some constant c > c0. Introducing the bounds

dm(t) := sup
0≤τ≤t

‖Aα(um+1(τ) − um(τ))‖,

from (4.7) we find

(4.18) ‖(Fum+1(t))A
αum+2(t) − (Fum(t))Aαum+1(t)‖ ≤ M · c · [dm(t) + dm+1(t)].

Equation (4.12) implies

‖Aα(um+2(t) − um+1(t))‖ ≤

≤

∫ t

0

‖Aα+δe−(t−s)A[(Fum+1(s))A
αum+2(s) − (Fum(s))Aαum+1(s)]‖ds.

Inserting the bounds from (4.1) and (4.18), by straightforward integration we get

(4.19) dm+1(t) ≤ C · T · [dm(t) + dm+1(t)], t ∈ J1,

where T = t1−(α+δ)

1−(α+δ)
, C = Cα+δ · c · M . On the left-hand side we have used the

monotonicity of dm+1(t) in t. Since in case C · T < 1, inequality (4.19) is equivalent

with

(4.20) dm+1(t) ≤
CT

1 − CT
· dm(t),

the uniform convergence of the sequence Aαum(t) in Lr
σ results from the requirement

(4.21)
CT

1 − CT
≤ q ∈ (0, 1),

or equivalently, T ≤ q

C·(1+q)
, which implies C · T < 1 and gives the bound t2 in

(4.17).

Proposition 4.7. Let u(0) ∈ DAα , u0(t) = e−tAu(0), J2 from (4.17). Then there

holds

(i) The Cauchy sequence Aαum ∈ C0(J2, L
r
σ), m ∈ N, defines the Cauchy sequence

um ∈ C0(J2, L
r
σ), and

(ii) limm→∞ um = u ∈ C0(J2, L
r
σ), limm→∞ Aαum = v ∈ C0(J2, L

r
σ),
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(iii) u(t) ∈ DAα , v(t) = Aαu(t), t ∈ J2,

(iv) Aαu(t) represents a solution of the integral equation (4.4),

(v) the error estimate

‖Aα(u(t) − um(t))‖ ≤
qm

1 − q
· ‖Aα(u1(t) − u0(t))‖, t ∈ J2, m ∈ N.

Proof. Part (i) and (ii) clearly hold because of Proposition 4.6 and the boundedness

of the linear operator A−α on Lr
σ. Therefore (iii) results from the closedness of the

linear operator Aα for each t ∈ J2. Consequently also the right hand side of (4.4) is

well defined. Using the notation (4.10), (4.11), we conclude the statement (iv) from

Proposition 4.6 by means of the estimate
∥

∥

∥

∥

∫ t

0

[

H(t, s)

(t − s)α+δ
(Fu(s))Aαu(s) −

H(t, s)

(t − s)α+δ
(Fum(s))Aαum+1(s)

]

ds

∥

∥

∥

∥

≤

≤
t1−(α+δ)

1 − (α + δ)
· Cα+δ · M · c ·

[

sup
s∈J2

‖Aα(u − um)(s)‖ + sup
s∈J2

‖Aα(u − um+1)(s)‖

]

→ 0

with m → ∞, which because of Proposition 4.5 follows from (4.7) and (4.1) by

straightforward integration. Finally, to prove (v), by definition of dm(t) from (4.20)

and (4.21) we find

‖Aα(um+k(t) − um(t))‖ ≤
qm

1 − q
‖Aα(u1(t) − u0(t))‖, t ∈ J2, m, k ∈ N,

which in the limit k → ∞ gives the error estimate (v).
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