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ABSTRACT. This exploration concerns the numerical solution of degenerate singular reaction-

diffusion equations. The nonlinear partial differential equations are introduced by H. Kawarada, and
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1. Introduction

Consider the following nonlinear Kawarada equation together with homogeneous

Dirichlet boundary conditions and an initial condition,

σ(x)
∂u

∂t
=

n
∑

k=1

∂2u

∂x2
k

+ f(u), x ∈ Ω, t > t0,(1.1)

u(x, t) = 0, x ∈ ∂Ω, t > t0,(1.2)

u(x, t0) = u0(x), x ∈ Ω,(1.3)
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where Ω ⊂ Rn and ∂Ω is the boundary of Ω, 0 ≤ u0 ≪ 1, and

f(0) = f0 > 0, fu(u) > 0, lim
u→1−

f(u) = ∞.

The nonnegative degeneracy function σ(x) diminishes to zero only for x ∈ Ω0 ⊂ ∂Ω

[1–10, 15, 16, 18–22].

It is known that the solution of (1.1)–(1.3) increases monotonically till the unity

is reached at any spatial position as time t increases. Further, it is predicted that

if the shape of Ω is fixed, then there exists a critical number a∗ > 0 such that if

a, the n-volume of Ω, is less than a∗ then the solution of (1.1)–(1.3) exists globally.

Otherwise there exists a finite time T ∗(a) such that

lim
t→T ∗(a)

sup
x∈Ω

u(x, t) = 1.

Such an a∗ is called a critical value and T ∗ a critical time [6–8, 15]. The function u is

refereed as a quenching solution in the latter case. A particularly interesting example

of the quenching is the one-dimensional case of (1.1)–(1.3) when σ ≡ 1 and

(1.4) f(u) =
1

1 − u
.

In the circumstance the critical value, that, the critical spatial interval length, is

a∗ ≈ 1.53045607591062 [5, 17, 21]. Numerous recent computations have also devoted

to verify this fascinating property [1–3, 10, 13, 17–25].

Our discussion is organized as follows. In the next section, we provide a mod-

ern numerical framework for the solution of degenerate one-dimensional Kawarada

equation problem Ra01–(1.3). A generalized Crank-Nicolson type approximation is

adopted. Uniform and nonuniform meshes are considered for both space and time.

Mesh moving adaptations are controlled via properly designed arc-length monitoring

functions [16, 18]. Key numerical analysis results on the numerical stability, solution

monotonicity and convergence are given. In Section 3, two computational experiments

are carried out to validate and demonstrate quenching and no quenching solutions

via the latest adaptive and semi-adaptive algorithms constructed. Important limit-

ing values that lead to the occurrence of quenching are evaluated carefully with the

particular degeneracy and source functions. Brief concluding remarks and discussions

are given for continuing studies in the last Section.

2. Degenerate Kawarada problems

We are particularly interested in the circumstance in which n = 1, σ(x) = axp(1−

x)1−p, and f(u) = 1/(1 − u)q, 0 ≤ p ≤ 1, q > 0, due to its recent applications in

rocket fuel combustion modeling and simulations [9, 11, 23]. For the sake of simplicity,
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we may map the general spatial interval [0, a] to [0, 1]. Thus, (1.1)–(1.3) can be

reformulated to the following:

σ(x)
∂u

∂t
=

1

a2

∂2u

∂x2
+

1

(1 − u)q
, 0 < x < 1, t0 < t ≤ T,(2.1)

u(0, t) = u(1, t) = 0, t0 < t ≤ T,(2.2)

u(x, t0) = u0(x), 0 < x < 1,(2.3)

where T > 0 is sufficiently large.

We note that the following limits are equivalent [7, 9, 21],

lim
t→T ∗(a)

sup
0<x<1

u(x, t) = 1, lim
t→T ∗(a)

sup
0<x<1

ut(x, t) = +∞ whenever a > a∗.

We further rewrite the dimensionless model (2.1)–(2.3) as the standard Kawarada

problem:

∂u

∂t
= φ(x)

∂2u

∂x2
+ ψ(x, u), 0 < x < 1, t0 < t ≤ T,(2.4)

u(0, t) = u(1, t) = 0, t0 < t ≤ T,(2.5)

u(x, t0) = u0(x), 0 < x < 1,(2.6)

where

(2.7) φ(x) =
1

a2σ(x)
, ψ(x, u) =

1

σ(x)(1 − u)q
.

Let N ≫ 1 and D̄N = {x0, x1, . . . , xN+1} be an arbitrary spatial mesh superim-

posing [0, 1]. For it we set 0 < xk+1 − xk = hk ≪ 1, k = 0, 1, . . . , N , to be variable

step sizes. We often require the following smoothness constraint [11],

0 < m ≤
hk

hk+1

≤M ≪ ∞, k = 0, 1, 2, . . . , N − 1,

for given constants m and M . Assume that DN ⊂ D̄N be the set of interior mesh

points. We approximate the spatial derivative at xk ∈ DN by the central difference,

∂2u

∂x2
(xk, t) =

hkuk−1(t) − (hk−1 + hk)uk(t) + hk−1uk+1(t)

hk−1h2
k

+ O(h),

where h = maxk=0,1,...,N hk. In the case if DN is uniform, the above provides a standard

second-order central difference formula, that is,

∂2u

∂x2
(xk, t) =

uk−1(t) − 2uk(t) + uk+1(t)

h2
+ O(h2), h =

1

N + 1
.

Thus, the following initial value problem follows immediately from (2.4)–(2.7),

du

dt
= Au+ ψ, t > t0,(2.8)

u(t0) = u0,(2.9)
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where u = (u1, u2, . . . , uN)⊤, ψ = (ψ1, ψ2, . . . , ψN )⊤. We have A = BT ∈ RN×N with

B = diag [φ1, φ2, . . . , φN ], φk > 0, k = 1, 2, . . . , N , and T is tridiagonal. However, T is

not TST unless a uniform spatial mesh is used [2]. The solution of (2.8), (2.9) exists

and is unique if Au + ψ satisfies the Lipschitz condition [12, 15]. A formal solution

of the system can thus be formulated as

(2.10) u(t) = E(tA)u0 +

∫ t

t0

E((t− τ)A)ψ(u(τ))dτ, t ≥ t0,

where E(·) = exp(·) is the matrix exponential. It can be shown that all eigenvalues

of A are real and negative. Further, for the matrix exponential E(tA),

(2.11) E(tA) = B1/2E(tB1/2TB1/2)B−1/2,

where t ∈ C. Thus, if t ∈ R+ then all eigenvalues of E(tA) are real and ρ(tA) < 1,

where ρ(·) is the spectral radius of the matrix.

An application of the trapezoidal rule to (2.10) yields

u(t) ≈ E((t− τ0)A)u0 +
t− t0

2
[ψ(u(t)) + E((t− t0)A)ψ(u0)] , t ≥ t0.

Further, if we consider an A-acceptable [2/2] Padé approximant,

E(tA) ≈

(

I −
t

2
A

)−1 (

I +
t

2
A

)

,

then we arrive at an adaptive Crank-Nicolson type finite difference platform for solving

(2.4)–(2.6),

u(j+1) =
(

I −
τj
2
A

)−1 (

I +
τj
2
A

) [

u(j) +
τj
2
ψ

(

u(j)
)

]

+
τj
2
ψ

(

u(j+1)
)

,(2.12)

u(0) = u0,(2.13)

where variable steps τj , hk can be determined through different monitoring functions

[17]. Needless to mention, an iterative procedure, or an approximation of the last term

in (2.12), needs to be utilized for completing the nonlinear system solution procedure.

Since the high nonlinearity of ψ often leads to multiple solutions of (2.12), (2.13) and

upper-lower vectors can be incorporated (see [18] and references therein), the latter

choice becomes more favorable to our next step computations.

We may state

Theorem 2.1. If the nonlinear function ψ is frozen, then the Crank-Nicolson type

platform (2.12), (2.13) is unconditionally linearly stable.

Theorem 2.2. Suppose that the last term in (2.12) is approximated precisely dur-

ing the computation. Then for any initial numerical error ǫ(j) and any nonnegative

integers m, j, an upper bound of the error growth due to (2.12), (2.13) is

∥

∥ǫ(j+m+1)
∥

∥

2
< Kj,m

√

cond(B1/2)
∥

∥ǫ(j)
∥

∥

2
, m, j ∈ {0, 1, 2, . . .},
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where

Kj,m =

m+j
∏

ℓ=j

max
k=1,...,N

d
(ℓ)
k max

s=1,...,N

√

d
(j+m+1)
s ,

d
(ℓ)
k = 1 +

qτℓ

2
(

1 − ξ
(ℓ)
k

)q+1

σ(xk)
, 0 < ξ

(ℓ)
k < 1.

Theorem 2.3. For any beginning solution u(ℓ) < 1, ℓ ≥ 1, if

(i) γj = τj/h
2 ≤ a2φmin;

(ii) d
(j)
k ≤ 2, k = 1, 2, . . . , N ;

(iii) Au(j) + ψ
(

u(j)
)

≥ 0,

where j = ℓ, ℓ + 1, ℓ+ 2, . . ., then the solution vector sequence u(ℓ), u(ℓ+1), u(ℓ+2), . . .,

produced by the adaptive, or semi-adaptive, scheme (2.12), (2.13) increases monoton-

ically until unity is exceeded by a component of the vector (that is, until quenching

occurs) or converges to the steady solution of the problem. In the latter case, we do

not have a quenching solution.

We note that condition (iii) of Theorem 2.3 has been ensured at least for the

case ℓ = 0 and u(0). It seems that the solution monotonicity requires more rigorous

constraints than those for the numerical stability and convergence. This additional

numerical feature is definitely justified for ensuring expected quenching phenomena.

However, the monotonicity requirement has also made applications of nonuniform

spacial grids extremely challenging.

3. Numerical endeavors

Our experiments have again validated results presented in [1, 3, 20–23] where

similar differential equation structures are entertained. Since computational proce-

dures carried out are similar, there is little need to repeat most standard data, figures

and simulations. Instead, we only show key illustrations of solutions of the singular

reaction-diffusion equation with new and different degenerate functions in Section 1.

To this end, we consider (2.4)–(2.6) with 0 ≤ p ≤ 1 and q > 0.

Without loss the generality, in following discussions, unless specially declared, we

may set q = 1 and let the temporal adaptation start once v(t) = max0≤x≤1 u(x, t)

reaches a certain criterion, say, v∗ = 0.95. For different values of a, possible corre-

sponding quenching time and locations are searched and confirmed if they do exist.

Our second-order semi-adaptive, or the first-order adaptive, algorithm (2.12), (2.13) is

found to be extremely easy and reliable to use. The variable t-step and x-step gener-

ators are effective and accurate. CFL numbers [12] used for the stability of the adap-

tive implicit schemes are around the unity. All computations are either implemented
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using Fortran 95 with desirable NAG subroutines or parallel Matlab-Simulink

packages on cluster computers.

For the purpose of simplicity in programming, we may reorganize (2.12) to
(

I −
τj
2
A

)

u(j+1) =
(

I +
τj
2
A

)

u(j) + g
(

u(j), w(j+1)
)

, j = 0, 1, . . . ,

where

g
(

u(j), w(j+1)
)

=
τj
2

[(

I +
τj
2
A

)

ψ
(

u(j)
)

+
(

I −
τj
2
A

)

ψ
(

w(j+1)
)

]

,

and w(j+1) is determined through a forward Euler scheme. We consider homogeneous

Dirichlet boundary conditions and following a smooth initial data stream,

u0(x) = µ sin
πx

a
, 0 ≤ x ≤ a, 0 ≤ µ≪ 1.

Case I (no quenching). Take a = 1, µ = 0.001, 0.005.
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Figure 3.1. Profiles of the maximal values of the solution u. LEFT: maxx u profile as t

increases. RIGHT: u at the end of experiments with the initial function plotted in red as a

comparison. Over 200,000 temporal steps are executed. Adaptation has never been activated

due to flat ut values. No quenching solution is observed.
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Figure 3.2. Profiles of the maximal values of the rate of change function ut. LEFT: maxx ut

profile as t increases. RIGHT: the derivative ut at the end of experiments. Up to 200,000

temporal steps are executed. Adaptation has never been activated due to flat ut values. Again,

no quenching solution is observed.
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Figure 3.3. Profiles of the maximal values of the rate of change function ut. LEFT: maxx ut

profile with respect to the t values. RIGHT: maxx ut profile with respect to the t values.

Adaptation has never been trigged due to the relatively smooth ut values.
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Figure 3.4. Three-dimensional views of u and ut. TOP: Plot of u ranging for t ∈ [0, 1.2376].

BOTTOM: Plot of u ranging for t ∈ [0.1, 1.2376].

It can be observed in Figures 3.1 and 3.2 that, while the solution u increases

monotonically, the rate of change function ut decreases continuously as t increases.

As a consequence, u becomes extremely smooth and flat. Its maximal values seemly

take u∗ ≈ 0.141830 ≪ 1 as a possible ceiling.

We show maximal values of the final 100 rate of change functions ut for (2.4)–

(2.6) in Figure 3.3. We note that, though the values changes due to computational

errors, the rate function remains being positive, which is a strong evidence of the

monotonicity of the solution u.

Although the degeneracy plays a significant role of disturbances during the initial

stage of computations, the strong diffusion dominates in later stages of computations.

We show these features more clearly in Figures 3.4, where 3D views of the u, ut are

given. Figures with different values of µ are similar. The phenomena demonstrated

fit consistently with theoretical predictions given by C. Y. Chan et. al [5, 7, 10, 14].

Case II (quenching). Take a = π and µ = 0.001.

Let us first present profiles of u and ut in Figures 3.5–6. Different from the

previous situation, a strong quenching singularity occurs in the current situation. It

is found that as soon as the time t approaches T ∗
π ≈ 0.792907811312324, u quenches

and ut blows up simultaneously. The adaptation is activated at maxx u = 0.95 and
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remains for the rest of journey of computations. To see more precisely characteristic

structures and features of the solutions, in Figure 3.7–9, we show 3D surfaces of both

u and ut. The first pair is taken for the entire evolution process. The second pair is for

those on final 50 time steps before quenching, and Figure 3.9 is devoted to the solution

and rate of change function in the first 120 temporal steps in the journey. It is observed

that while u approaches the unity in the center of the spacial domain smoothly in

this case, ut blows up violently at the quenching time T ∗
π . The interesting phenomena

are again consistently with theoretic predictions and our previous investigations [6,

8, 19, 20, 22].
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Figure 3.5. Profiles of solution u. p = 0.5 is used. LEFT: maxx u t increases. RIGHT: u

immediately before the quenching. Up to 12,983 temporal steps are used. Temporal adapta-

tion kicks in at maxx u ≈ 0.95 and remains on throughout the rest of calculations. Quenching

solution is observed with a quenching time T ∗

π ≈ 0.792907811312324.
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Figure 3.6. Profiles of the rate of change function ut. p = 0.5 is used. LEFT: maxx ut as t

increases. A logarithmic y-scale is utilized. RIGHT: ut immediately before the quenching. Up

to 12,983 temporal steps are executed. Again, quenching solution is observed with a quenching

time T ∗

π ≈ 0.792907811312324.
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Figure 3.7. Three-dimensional views of u and ut till the quenching (0 ≤ t ≤ 0.792907). Peak

value of ut ≈ 587.781919 is reached. Quenching is observed.

More details of the numerical solutions near quenching are provided by Figure 3.8.
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Figure 3.8. Three-dimensional views of u and ut in the last 50 temporal steps

(0.789732027118516 ≤ t ≤ 0.792907811312324). Peak value of ut ≈ 587.781919. The blow-up

rate of ut is clearly significant.
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Figure 3.9. Three-dimensional views of u and ut in the first 120 temporal steps (0 ≤ t ≤

0.007329). Peak value of ut ≈ 2.741833. The degenerate singularity near the end points is

visible.

Apparently, the impact of the degeneracy is continuously to be true in this case. To

view this, we have more details of solutions in Figure 3.9, where p = 0.5 is utilized.

The initial 120 temporal steps are displayed. It can be seen that contributions of

the degeneracy near both ends of the spacial interval are significant. Further, we use

different value of p = 0.66 in Figure 3.10. Firstly, solutions of (2.4)–(2.6) in initial

2,000 temporal steps are computed. It has been seen again that contributions of the

degeneracy near ends of the spacial interval are significant. We may observe that,

probably due to the strong diffusion features of the differential equation and numerical

stability of the full adaptive/semi-adaptive methods (2.12), (2.13), disturbances of

degeneracy at endpoints diminish as the solution advances. Thirdly, we have found

that the degeneracy does affect the solution symmetry. In the last row of figures,

numerical solutions are apparently pushed toward x = 0 by the stronger degeneracy

at x = 0. As a consequence, the quenching location is slightly shifted to x∗ ≈

1.219125507363203. In this position, the rate of change function ut teaches its peak

value 968.5546875500277.
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Figure 3.10. Profiles of solution u (blue) and ut (black) with a = π, p = 0.66 and

µ = 0.01. LEFT: u immediately before the quenching. RIGHT: ut immediately before the

quenching near the end of experiments. Up to 12,626 temporal steps are executed. Adap-

tation kicks in once maxx u ≥ 0.95. Quenching solution is observed with a quenching time

T ∗

π ≈ 0.771104831366368 and quenching location x∗

≈ 1.219125507363203 for the maximum

of ut ≈ 968.5546875500277.

To see more about the influence of degeneracy on quenching singularity, here-

with we show the numerical solution u immediately before quenching in Figure 3.11.

Different p values are employed. Detailed information about the quenching time and

location is given in Table 3.1. It is interesting to notice that neither the quenching

location x∗ nor the quenching time T ∗ is a simple linear function of p.
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Figure 3.11. Relations of the quenching time T ∗

π and location x∗

π when different p values are

used in the degeneracy function. It is observed while the p value increases, the quenching time

increases and quenching location decreases for p ∈ (0, 0.5]. Neither the quenching location x∗

nor the quenching time T ∗ is a simple linear function of p. Kawarada problem (2.4)–(2.6) is

utilized.

p T ∗
π x∗π

0.01 0.609506274119872 2.188173987574980

0.1 0.639615151188096 2.141284544984088

0.2 0.671678356990973 2.063135473999267

0.3 0.700321487508209 1.969356588817482

0.4 0.722063394681207 1.813058446847841

0.5 0.730884483378537 1.562981419696415

Table 3.1. Quenching time T ∗

π and location x∗

π when different p values are used in the

degeneracy function. Parameters used are the same as in Figure 3.11. It is observed while the p

value increases, the quenching time increases and quenching location decreases for p ∈ (0, 0.5].

An optimized artificial singularity remover [17] is used to secure the source func-

tion during computations. It is anticipated that values of u to decline once the source

function becomes negative. This is clearly observed in our numerical experiments.

The observation also links to a more sensitive issue of research in post-quenching,

that is, after quenching, mechanism [4, 15, 17, 21]. More rigorous numerical study is

definitely required for this type of investigations.
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4. Conclusions

To conclude, in this paper, we have reviewed and restudied some latest adaptive,

semi-adaptive finite difference methods for solving a degenerate Kawarada equation

problem. The one-dimensional nonlinear model equation is closely related to multi-

physical applications, in particular in quenching-combustion and rocket fuel burning

controls [5, 23]. New study and improved analysis of key characteristic issues, includ-

ing the nonlinear stability, monotonicity, and conservations of the numerical scheme,

are mentioned. Several simulation experiments are given not only for demonstrating

singular numerical solutions, but also the degeneracy and across quenching point sin-

gularities. These have been basic properties of the Kawarada equations pointed out

by C. ;Y. Chan and other investigators.

The numerical method studied utilizes uniform and nonuniform meshes in the

space. Although adaptations in the space may reduce the overall accuracy of a finite

difference method if the algorithmic simplicity needs to be preserved [13, 24], our

forthcoming research will provide an optimized balance between the spacial adapta-

tion and efficiency for solving multidimensional singular reaction-diffusion equations.

Yet many important and interesting computational issues related to singular

problems such as (1.1)–(1.3), (2.1)–(2.3) and (2.4)–(2.6), including the use of nonlocal

boundary conditions, coupled equations with distinctive singular features, nonlinear

degeneracy impact to the quenching, and numerical impulsive quenching for highly

effective fuel combustion designs, are still open. We would wish this simple article

to serve as one of the ignition sparks to promote further researches in this extremely

promising field.
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