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1. INTRODUCTION

The notion of essential maps was introduced by Granas [3] and extended in the

literature by many authors (see [2, 4, 5, 6, 7, 9] and the references therein). In

Section 2, using the notions of homotopy and Φ-essential maps we establish a variety

of coincidence theorems (in particular we show if G is Φ-essential and if natural

conditions are assumed so F ∼= G then F is Φ-essential). In Section 3 we discuss

d-Φ-essential maps.

2. Φ-ESSENTIAL MAPS

Let E be a completely regular topological space and U an open subset of E.

We consider classes A and B of maps.

Definition 2.1. We say F ∈ A(U, E) (respectively F ∈ B(U, E)) if F : U → 2E and

F ∈ A(U, E) (respectively F ∈ B(U, E)); here 2E denotes the family of nonempty

subsets of E.

In this section we fix a Φ ∈ B(U, E).

Definition 2.2. We say F ∈ A∂U(U, E) if F ∈ A(U, E) with F (x) ∩ Φ(x) = ∅ for

x ∈ ∂U ; here ∂U denotes the boundary of U in E.
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Definition 2.3. Let F ∈ A∂U(U, E). We say F : U → 2E is Φ-essential in A∂U(U, E)

if for every map J ∈ A∂U(U, E) with J |∂U = F |∂U there exists x ∈ U with J(x) ∩

Φ(x) 6= ∅.

Theorem 2.4. Let E be a completely regular (respectively normal) topological space,

U an open subset of E, F ∈ A∂U(U, E) and let G ∈ A∂U(U, E) be Φ-essential in

A∂U(U, E). For any map R ∈ A∂U(U, E) with R|∂U = F |∂U assume there exists a

map HR : U × [0, 1] → 2E with HR(·, η(·)) ∈ A(U, E) for any continuous function

η : U → [0, 1] with η(∂U) = 0, Φ(x) ∩ HR
t (x) = ∅ for any x ∈ ∂U and t ∈ (0, 1) and

{

x ∈ U : Φ(x) ∩ HR(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact (respectively closed) and

HR
0 = G, HR

1 = R; here HR
t (x) = HR(x, t). Then F is Φ-essential in A∂U(U, E).

Proof. Let R ∈ A∂U (U, E) with R|∂U = F |∂U . We must show there exists a x ∈ U

with R(x) ∩ Φ(x) 6= ∅. Choose the map HR : U × [0, 1] → 2E as in the statement of

Theorem 2.4. Let

D =
{

x ∈ U : Φ(x) ∩ HR(x, t) 6= ∅ for some t ∈ [0, 1]
}

.

Note D 6= ∅ since HR
0 (= G) is Φ-essential in A∂U(U, E). Also D is compact (respec-

tively closed) if E is a completely regular (respectively normal) topological space.

Next note D ∩ ∂U = ∅. Thus there exists a continuous map µ : U → [0, 1] with

µ(∂U) = 0 and µ(D) = 1. Define Jµ : U → 2E by Jµ(x) = HR(x, µ(x)) = HR
µ(x)(x).

Note Jµ ∈ A∂U(U, E) with Jµ|∂U = HR
0 |∂U . Now since HR

0 is Φ-essential in A∂U(U, E)

then there exists a x ∈ U with Jµ(x) ∩Φ(x) 6= ∅ (i.e. HR
µ(x)(x) ∩Φ(x) 6= ∅), and thus

x ∈ D so µ(x) = 1 and as a result ∅ 6= HR
1 (x) ∩ Φ(x) = R(x) ∩ Φ(x).

Remark 2.5. (i). In applications usually one puts conditions on the maps so that D

in the proof of Theorem 2.4 is closed and D is compact (so as a result D is compact).

However in the weak topology case one might need to work a little differently (the

case we describe below occurs in applications [8]). Suppose E is a metrizable locally

convex linear topological space. Note E = (E, w), the space E endowed with the weak

topology, is completely regular. Let D ⊆ E and suppose D is weakly sequentially

closed and Dw is weakly compact. Then D is weakly compact. To see this let

x ∈ Dw. Then the Eberlein–Šmulian theorem [1 pg. 549] guarantees that that there

is a sequence (xn) in D with xn ⇀ x (here ⇀ denotes weak convergence). Now since

D is weakly sequentially closed then x ∈ D, so Dw = D, and D is weakly compact.

(ii). Suppose in the statement of Theorem 2.4 we have that E is a topological

vector space and F and G are as in the statement of Theorem 2.4. Assume there

exists a map H : U × [0, 1] → 2E with H0 = G and H1 = F . Now for any map R

with R|∂U = F |∂U note

HR(x, t) =

{

H(x, 2t), t ∈
[

0, 1
2

]

2(1 − t)F (x) + 2
(

t − 1
2

)

R(x), t ∈
[

1
2
, 1

]
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connects G to R (note as well for x ∈ ∂U and t ∈
[

1
2
, 1

]

that HR(x, t) = 2(1 −

t)F (x) + 2
(

t − 1
2

)

F (x) = F (x)).

It is possible to obtain an analogue result if we change Definition 2.3 as follows.

Definition 2.6. Let E be a completely regular (respectively normal) topological

space, and U an open subset of E. Let F, G ∈ A∂U(U, E). We say F ∼= G in

A∂U(U, E) if there exists a map H : U × [0, 1] → 2E with H(·, η(·)) ∈ A(U, E) for any

continuous function η : U → [0, 1] with η(∂U) = 0, Ht(x) ∩ Φ(x) = ∅ for any x ∈ ∂U

and t ∈ [0, 1], H1 = F , H0 = G and
{

x ∈ U : Φ(x) ∩ H(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact (respectively closed); here Ht(x) = H(x, t).

Definition 2.7. Let F ∈ A∂U(U, E). We say F : U → 2E is Φ-essential in A∂U(U, E)

if for every map J ∈ A∂U(U, E) with J |∂U = F |∂U and J ∼= F in A∂U(U, E) there

exists x ∈ U with J(x) ∩ Φ(x) 6= ∅.

Theorem 2.8. Let E be a completely regular (respectively normal) topological space,

U an open subset of E, F ∈ A∂U(U, E) and let G ∈ A∂U(U, E) be Φ-essential in

A∂U(U, E). For any map R ∈ A∂U(U, E) with R|∂U = F |∂U and R ∼= F in A∂U(U, E)

assume there exists a map H : U × [0, 1] → 2E with H(·, η(·)) ∈ A(U, E) for any

continuous function η : U → [0, 1] with η(∂U) = 0, Φ(x) ∩Ht(x) = ∅ for any x ∈ ∂U

and t ∈ (0, 1) and

{

x ∈ U : Φ(x) ∩ H(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact (respectively closed), H0 = G, H1 = R (here Ht(x) = H(x, t)) and for any

continuous map µ : U → [0, 1] with µ(∂U) = 0 assume

{

x ∈ U : ∅ 6= Φ(x) ∩ H(x, tµ(x)) for some t ∈ [0, 1]
}

is closed. Then F is Φ-essential in A∂U(U, E).

Proof. Let R ∈ A∂U(U, E) with R|∂U = F |∂U and R ∼= F in A∂U(U, E). We must

show there exists a x ∈ U with R(x)∩Φ(x) 6= ∅. Choose the map H : U × [0, 1] → 2E

as in the statement of Theorem 2.8. Let

D =
{

x ∈ U : Φ(x) ∩ H(x, t) 6= ∅ for some t ∈ [0, 1]
}

.

Note D 6= ∅. Also D is compact (respectively closed) if E is a completely regular

(respectively normal) topological space. Next note D ∩ ∂U = ∅. Thus there exists a

continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(D) = 1. Define Jµ : U → 2E by

Jµ(x) = H(x, µ(x)) = Hµ(x)(x). Note Jµ ∈ A∂U(U, E) with Jµ|∂U = H0|∂U . We now

claim

(2.1) Jµ
∼= H0 in A∂U(U, E).
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If the claim is true then since H0 is Φ-essential in A∂U(U, E) then there exists a x ∈ U

with Jµ(x)∩Φ(x) 6= ∅ (i.e. Hµ(x)(x)∩Φ(x) 6= ∅), and thus x ∈ D so µ(x) = 1 and as

a result ∅ 6= H1(x) ∩ Φ(x) = R(x) ∩ Φ(x).

It remains to show (2.1). Let Q : U × [0, 1] → 2E be given by Q(x, t) =

H(x, tµ(x)). Note Q(·, η(·)) ∈ A(U, E) for any continuous function η : U → [0, 1]

with η(∂U) = 0 and
{

x ∈ U : ∅ 6= Φ(x) ∩ Q(x, t) = Φ(x) ∩ H(x, tµ(x)) for some t ∈ [0, 1]
}

is compact (respectively closed). Note Q0 = H0 and Q1 = Jµ. Finally if there exists

a t ∈ [0, 1] and x ∈ ∂U with Φ(x) ∩ Qt(x) 6= ∅ then Φ(x) ∩ Htµ(x)(x) 6= ∅ so x ∈ D

and so µ(x) = 1 i.e. Φ(x) ∩ Ht(x) 6= ∅, a contradiction. Thus (2.1) holds.

Remark 2.9. In Theorem 2.8 note one example of a map R is F itself. It is of

interest to note if we consider maps R other than F and if we suppose

∼= is an equivalence relation in A∂U(U, E),

then (see in the statement of Theorem 2.8) if R ∼= F in A∂U (U, E) and R ∼= G in

A∂U(U, E) then F ∼= G in A∂U(U, E).

We now show that the ideas in this section can be applied to other natural situ-

ations. Let E be a Hausdorff topological vector space (so automatically a completely

regular space), Y a topological vector space, and U an open subset of E. Also let

L : domL ⊆ E → Y be a linear single valued map; here domL is a vector subspace of

E. Finally T : E → Y will be a linear single valued map with L + T : domL → Y a

bijection; for convenience we say T ∈ HL(E, Y ).

Definition 2.10. We say F ∈ A(U, Y ; L, T ) (respectively F ∈ B(U, Y ; L, T )) if F :

U → 2Y and (L+T )−1(F +T ) ∈ A(U, E) (respectively (L+T )−1(F +T ) ∈ B(U, E)).

We now fix a Φ ∈ B(U, Y ; L, T ).

Definition 2.11. We say F ∈ A∂U(U, Y ; L, T ) if F ∈ A(U, Y ; L, T ) with (L +

T )−1(F + T )(x) ∩ (L + T )−1(Φ + T )(x) = ∅ for x ∈ ∂U .

Definition 2.12. Let F ∈ A∂U(U, Y ; L, T ). F is L-Φ-essential in A∂U(U, Y ; L, T )

if for every map J ∈ A∂U(U, Y ; L, T ) with J |∂U = F |∂U there exists x ∈ U with

(L + T )−1(J + T )(x) ∩ (L + T )−1(Φ + T )(x) 6= ∅.

Theorem 2.13. Let E be a topological vector space (so automatically completely

regular), Y a topological vector space, U an open subset of E, L : domL ⊆ E →

Y a linear single valued map and T ∈ HL(E, Y ). Let F ∈ A∂U(U, Y ; L, T ) and

let G ∈ A∂U(U, Y ; L, T ) be L-Φ-essential in A∂U(U, Y ; L, T ). For any map R ∈

A∂U(U, Y ; L, T ) with R|∂U = F |∂U assume there exists a map H : U × [0, 1] →
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2Y with (L + T )−1(H(·, η(·)) + T (·)) ∈ A(U, E) for any continuous function η :

U → [0, 1] with η(∂U) = 0, (L + T )−1(Ht + T )(x) ∩ (L + T )−1(Φ + T )(x) = ∅

for any x ∈ ∂U and t ∈ (0, 1), H0 = G, H1 = R (here Ht(x) = H(x, t)) and
{

x ∈ U : (L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ht + T )(x) 6= ∅ for some t ∈ [0, 1]
}

is com-

pact. Then F is L-Φ-essential in A∂U(U, Y ; L, T ).

Proof. Let R ∈ A∂U(U, Y ; L, T ) with R|∂U = F |∂U . We must show there exists

x ∈ U with (L + T )−1(R + T )(x) ∩ (L + T )−1(Φ + T )(x) 6= ∅. Choose the map

H : U × [0, 1] → 2Y as in the statement of Theorem 2.13. Let

D = {x ∈ U : (L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ht + T )(x) 6= ∅ for some t ∈ [0, 1]}.

Note D 6= ∅, D is compact, D∩∂U = ∅ so there exists a continuous map µ : U → [0, 1]

with µ(∂U) = 0 and µ(D) = 1. Define Jµ : U → 2Y by Jµ(x) = H(x, µ(x)). Note

Jµ ∈ A∂U(U, Y ; L, T ) and Jµ|∂U = H0|∂U . Now since H0(= G) is L-Φ-essential in

A∂U(U, Y ; L, T ) there exists x ∈ U with (L+T )−1(Jµ+T )(x)∩(L+T )−1(Φ+T )(x) 6= ∅

(i.e. (L+T )−1(Hµ(x) +T )(x)∩ (L+T )−1(Φ+T )(x) 6= ∅), and thus x ∈ D so µ(x) = 1

and we are finished.

Remark 2.14. If E is a normal topological vector space then the assumption that

D (in the proof of Theorem 2.13) is compact, can be replaced by D is closed, in the

statement (and proof) of Theorem 2.13.

It is possible to obtain an analogue result if we change Definition 2.12 as follows.

Definition 2.15. Let F, G ∈ A∂U(U, Y ; L, T ). We say F ∼= G in A∂U(U, Y ; L, T ) if

there exists a map H : U × [0, 1] → 2Y with (L + T )−1(H(·, η(·)) + T (·)) ∈ A(U, E)

for any continuous function η : U → [0, 1] with η(∂U) = 0, (L + T )−1(Ht + T )(x) ∩

(L + T )−1(Φ + T )(x) = ∅ for any x ∈ ∂U and t ∈ [0, 1], H1 = F , H0 = G and
{

x ∈ U : (L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ht + T )(x) 6= ∅ for some t ∈ [0, 1]
}

is compact; here Ht(x) = H(x, t).

Remark 2.16. If E is a normal topological vector space then the assumption that
{

x ∈ U : (L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ht + T )(x) 6= ∅ for some t ∈ [0, 1]
}

is compact, can be replaced by
{

x ∈ U : (L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ht + T )(x) 6= ∅ for some t ∈ [0, 1]
}

is closed, in Definition 2.15.

Definition 2.17. Let F ∈ A∂U(U, Y ; L, T ). F is L-Φ-essential in A∂U(U, Y ; L, T ) if

for every map J ∈ A∂U (U, Y ; L, T ) with J |∂U = F |∂U and J ∼= F in A∂U(U, Y ; L, T )

there exists x ∈ U with (L + T )−1(J + T )(x) ∩ (L + T )−1(Φ + T )(x) 6= ∅.
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Theorem 2.18. Let E be a topological vector space, Y a topological vector space,

U an open subset of E, L : domL ⊆ E → Y a linear single valued map and T ∈

HL(E, Y ). Let F ∈ A∂U(U, Y ; L, T ) and let G ∈ A∂U(U, Y ; L, T ) be L-Φ-essential

in A∂U(U, Y ; L, T ). For any map R ∈ A∂U(U, Y ; L, T ) with R|∂U = F |∂U and R ∼=

F in A∂U(U, Y ; L, T ) assume there exists a map H : U × [0, 1] → 2Y with (L +

T )−1(H(·, η(·)) + T (·)) ∈ A(U, E) for any continuous function η : U → [0, 1] with

η(∂U) = 0, (L + T )−1(Ht + T )(x) ∩ (L + T )−1(Φ + T )(x) = ∅ for any x ∈ ∂U and

t ∈ (0, 1), H0 = G, H1 = R (here Ht(x) = H(x, t)) and
{

x ∈ U : (L+T )−1(Φ+T )(x)∩

(L + T )−1(Ht + T )(x) 6= ∅ for some t ∈ [0, 1]
}

is compact and for any continuous

function µ : U → [0, 1] with µ(∂U) = 0 assume

{

x ∈ U : (L + T )−1(Φ + T )(x) ∩ (L + T )−1(Htµ(x) + T )(x) 6= ∅ for some t ∈ [0, 1]
}

is closed. Then F is L-Φ-essential in A∂U(U, Y ; L, T ).

Proof. Let R ∈ A∂U(U, Y ; L, T ) with R|∂U = F |∂U and R ∼= F in A∂U(U, Y ; L, T ).

Choose the map H : U × [0, 1] → 2Y as in the statement of Theorem 2.18. Let

D = {x ∈ U : (L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ht + T )(x) 6= ∅ for some t ∈ [0, 1]}.

Note D 6= ∅, D is compact, D∩∂U = ∅ so there exists a continuous map µ : U → [0, 1]

with µ(∂U) = 0 and µ(D) = 1. Define Jµ : U → 2Y by Jµ(x) = H(x, µ(x)). Note

Jµ ∈ A∂U(U, Y ; L, T ) and Jµ|∂U = H0|∂U . Also note Jµ
∼= H0 in A∂U (U, Y ; L, T ) (to

see this let Q : U × [0, 1] → 2Y be given by Q(x, t) = H(x, tµ(x))). Now since H0 is

L-Φ-essential in A∂U(U, Y ; L, T ) there exists x ∈ U with (L+T )−1(Jµ +T )(x)∩ (L+

T )−1(Φ + T )(x) 6= ∅, and thus x ∈ D so µ(x) = 1 and we are finished.

Remark 2.19. It is of interest to note if we consider maps R other than F in Theorem

2.18 and if we suppose

∼= is an equivalence relation in A∂U(U, Y ; L, T ),

then (see in the statement of Theorem 2.18) if R ∼= F in A∂U(U, Y ; L, T ) and R ∼= G

in A∂U(U, Y ; L, T ) then F ∼= G in A∂U(U, Y ; L, T ).

Remark 2.20. There is an analogue of Remark 2.14 (for normal topological vector

spaces) in the statement of Theorem 2.18.

3. d-Φ-ESSENTIAL MAPS

Let E be a completely regular topological space and U an open subset of E. We

will consider the classes A, B, A and B of maps as in Section 2.

In this section we fix a Φ ∈ B(U, E).
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For any map F ∈ A(U, E) let F ⋆ = I × F : U → 2U×E , with I : U → U given by

I(x) = x, and let

(3.1) d :
{

(F ⋆)−1 (B)
}

∪ {∅} → Ω

be any map with values in the nonempty set Ω; here B =
{

(x, Φ(x)) : x ∈ U
}

.

Definition 3.1. Let F ∈ A∂U(U, E) with F ⋆ = I × F . We say F ⋆ : U → 2U×E

is d-Φ-essential in A∂U(U, E) if for every map J ∈ A∂U (U, E) with J⋆ = I × J and

J |∂U = F |∂U we have that d
(

(F ⋆)−1 (B)
)

= d
(

(J⋆)−1 (B)
)

6= d(∅).

Remark 3.2. If F ⋆ is d-Φ-essential in A∂U(U, E) then

∅ 6= (F ⋆)−1 (B) = {x ∈ U : F ⋆(x) ∩ B 6= ∅}

= {x ∈ U : (x, F (x)) ∩ (x, Φ(x)) 6= ∅},

and this together with F (x) ∩ Φ(x) = ∅ for x ∈ ∂U implies that there exists x ∈ U

with (x, Φ(x)) ∩ F ⋆(x) 6= ∅ (i.e. Φ(x) ∩ F (x) 6= ∅).

Theorem 3.3. Let E be a completely regular (respectively normal) topological space,

U an open subset of E, B = {(x, Φ(x)) : x ∈ U}, d a map defined in (3.1) ,

F ∈ A∂U (U, E) with F ⋆ = I × F , G ∈ A∂U (U, E) and G⋆ is d-Φ-essential in

A∂U(U, E) (here G⋆ = I × G). For any map R ∈ A∂U(U, E) with R|∂U = F |∂U

assume there exists a map H : U × [0, 1] → 2E with H(·, η(·)) ∈ A(U, E) for any

continuous function η : U → [0, 1] with η(∂U) = 0, Φ(x) ∩ Ht(x) = ∅ for any

x ∈ ∂U and t ∈ (0, 1), and
{

x ∈ U : (x, Φ(x)) ∩ H⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact (respectively closed), H0 = G, H1 = R (here Ht(x) = H(x, t) and

H⋆(x, t) = (x, H(x, t))) and also suppose there exists a map Ψ : U × [0, 1] → 2E

with Ψ(·, η(·)) ∈ A(U, E) for any continuous function η : U → [0, 1] with η(∂U) =

0, Φ(x) ∩ Ψt(x) = ∅ for any x ∈ ∂U and t ∈ (0, 1), Ψ0 = H0(= G), Ψ1 =

F and
{

x ∈ U : (x, Φ(x)) ∩ Ψ⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact (respectively

closed); here Ψt(x) = Ψ(x, t) and Ψ⋆(x, t) = (x, Ψ(x, t)). Then F ⋆ is d-Φ-essential in

A∂U(U, E).

Proof. Let R ∈ A∂U(U, E) with R⋆ = I × R and R|∂U = F |∂U . We must show

d
(

(F ⋆)−1 (B)
)

= d
(

(R⋆)−1 (B)
)

6= d(∅). Choose the maps H : U × [0, 1] → 2E and

Ψ : U × [0, 1] → 2E as in the statement of Theorem 3.3. Let

D =
{

x ∈ U : (x, Φ(x)) ∩ H⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

where H⋆(x, t) = (x, H(x, t)). Notice D 6= ∅ since H⋆
0 is d-Φ-essential. Also D

is compact (respectively closed) if E is a completely regular (respectively normal)

topological space and D∩∂U = ∅. Thus there exists a continuous map µ : U → [0, 1]

with µ(∂U) = 0 and µ(D) = 1. Define Jµ : U → 2E by Jµ(x) = H(x, µ(x)) and let
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J⋆
µ = I×Jµ. Note Jµ ∈ A∂U(U, E) with Jµ|∂U = H0|∂U . Now since H⋆

0 is d-Φ-essential

in A∂U(U, E) then

(3.2) d
(

(

J⋆
µ

)

−1
(B)

)

= d
(

(H⋆
0 )−1 (B)

)

6= d(∅).

Next we note since µ(D) = 1 that
(

J⋆
µ

)

−1
(B) =

{

x ∈ U : (x, Φ(x)) ∩ (x, H(x, µ(x)) 6= ∅
}

=
{

x ∈ U : (x, Φ(x)) ∩ (x, H(x, 1) 6= ∅
}

= (R⋆)−1 (B),

so from (3.2) we have

(3.3) d
(

(R⋆)−1 (B)
)

= d
(

(H⋆
0 )−1 (B)

)

6= d(∅).

Let

D1 =
{

x ∈ U : (x, Φ(x)) ∩ Ψ⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

where Ψ⋆(x, t) = (x, Ψ(x, t)). Notice D1 6= ∅ since Ψ0 = H0 and H⋆
0 is d-Φ-essential.

Also D1 is compact (respectively closed) if E is a completely regular (respectively

normal) topological space and D1 ∩ ∂U = ∅. Thus there exists a continuous map

µ : U → [0, 1] with µ(∂U) = 0 and µ(D1) = 1. Define Gµ : U → 2E by Gµ(x) =

Ψ(x, µ(x)) and let G⋆
µ = I × Gµ. Note Gµ ∈ A∂U(U, E) with Gµ|∂U = H0|∂U . Now

since H⋆
0 is d-Φ-essential in A∂U(U, E) then

(3.4) d
(

(

G⋆
µ

)

−1
(B)

)

= d
(

(H⋆
0)

−1 (B)
)

6= d(∅).

Next we note since µ(D1) = 1 that
(

G⋆
µ

)

−1
(B) =

{

x ∈ U : (x, Φ(x)) ∩ (x, Ψ(x, µ(x)) 6= ∅
}

=
{

x ∈ U : (x, Φ(x)) ∩ (x, Ψ(x, 1) 6= ∅
}

= (F ⋆)−1 (B),

so from (3.4) we have

(3.5) d
(

(F ⋆)−1 (B)
)

= d
(

(H⋆
0 )−1 (B)

)

6= d(∅).

Now (3.3) and (3.5) yield d
(

(F ⋆)−1 (B)
)

= d
(

(R⋆)−1 (B)
)

6= d(∅).

It is possible to obtain an analogue result if we change Definition 3.1 as follows.

Definition 3.4. Let E be a completely regular (respectively normal) topological

space, and U an open subset of E. Let F, G ∈ A∂U(U, E). We say F ∼= G in A∂U(U, E)

if there exists a map H : U × [0, 1] → 2E with H(·, η(·)) ∈ A(U, E) for any continuous

function η : U → [0, 1] with η(∂U) = 0, Ht(x) ∩ Φ(x) = ∅ for any x ∈ ∂U and

t ∈ [0, 1], H1 = F , H0 = G and
{

x ∈ U : (x, Φ(x)) ∩ H⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact (respectively closed); here H⋆(x, t) = (x, H(x, t)) and Ht(x) = H(x, t).

Definition 3.5. Let F ∈ A∂U(U, E) with F ⋆ = I × F . We say F ⋆ : U → 2U×E is d-

Φ-essential in A∂U(U, E) if for every map J ∈ A∂U(U, E) with J⋆ = I ×J and J |∂U =

F |∂U and J ∼= F in A∂U(U, E) we have that d
(

(F ⋆)−1 (B)
)

= d
(

(J⋆)−1 (B)
)

6= d(∅).
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Theorem 3.6. Let E be a completely regular (respectively normal) topological space,

U an open subset of E, B = {(x, Φ(x)) : x ∈ U}, d a map defined in (3.1) , F ∈

A∂U(U, E) with F ⋆ = I × F , G ∈ A∂U(U, E) and G⋆ is d-Φ-essential in A∂U(U, E)

(here G⋆ = I × G). For any map R ∈ A∂U (U, E) with R|∂U = F |∂U and R ∼= F in

A∂U(U, E) assume there exists a map H : U × [0, 1] → 2E with H(·, η(·)) ∈ A(U, E)

for any continuous function η : U → [0, 1] with η(∂U) = 0, Φ(x) ∩Ht(x) = ∅ for any

x ∈ ∂U and t ∈ (0, 1), and

{

x ∈ U : (x, Φ(x)) ∩ H⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact (respectively closed), H0 = G, H1 = R (here Ht(x) = H(x, t) and

H⋆(x, t) = (x, H(x, t))) and for any continuous function µ : U → [0, 1] with µ(∂U) =

0 assume

{

x ∈ U : (x, Φ(x)) ∩ (x, H(x, tµ(x))) 6= ∅ for some t ∈ [0, 1]
}

is closed and also suppose there exists a map Ψ : U × [0, 1] → 2E with Ψ(·, η(·)) ∈

A(U, E) for any continuous function η : U → [0, 1] with η(∂U) = 0, Φ(x)∩Ψt(x) = ∅

for any x ∈ ∂U and t ∈ (0, 1), and

{

x ∈ U : (x, Φ(x)) ∩ Ψ⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact (respectively closed), Ψ0 = H0(= G), Ψ1 = F (here Ψt(x) = Ψ(x, t) and

Ψ⋆(x, t) = (x, Ψ(x, t))) and for any continuous function µ : U → [0, 1] with µ(∂U) = 0

assume
{

x ∈ U : (x, Φ(x)) ∩ (x, Ψ(x, tµ(x))) 6= ∅ for some t ∈ [0, 1]
}

is closed. Then F ⋆ is d-Φ-essential in A∂U(U, E).

Proof. Let R ∈ A∂U (U, E) with R⋆ = I × R and R|∂U = F |∂U and R ∼= F in

A∂U(U, E). We must show d
(

(F ⋆)−1 (B)
)

= d
(

(R⋆)−1 (B)
)

6= d(∅). Choose the

maps H : U × [0, 1] → 2E and Ψ : U × [0, 1] → 2E as in the statement of Theorem

3.6. Let

D =
{

x ∈ U : (x, Φ(x)) ∩ H⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

where H⋆(x, t) = (x, H(x, t)). Notice D 6= ∅. Also D is compact (respectively closed)

if E is a completely regular (respectively normal) topological space and D ∩ ∂U = ∅.

Thus there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(D) = 1.

Define Jµ : U → 2E by Jµ(x) = H(x, µ(x)) and let J⋆
µ = I×Jµ. Note Jµ ∈ A∂U(U, E)

with Jµ|∂U = H0|∂U . Also note Jµ
∼= H0 in A∂U(U, E) (to see this let Q : U × [0, 1] →

2E be given by Q(x, t) = H(x, tµ(x))). Now since H⋆
0 is d-Φ-essential in A∂U(U, E)

then

d
(

(

J⋆
µ

)

−1
(B)

)

= d
(

(H⋆
0 )−1 (B)

)

6= d(∅)
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and as in Theorem 3.3 (note µ(D) = 1) we have
(

J⋆
µ

)

−1
(B) = (R⋆)−1 (B), so

(3.6) d
(

(R⋆)−1 (B)
)

= d
(

(H⋆
0 )−1 (B)

)

6= d(∅).

Let

D1 =
{

x ∈ U : (x, Φ(x)) ∩ Ψ⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

where Ψ⋆(x, t) = (x, Ψ(x, t)). Notice D1 6= ∅. Also D1 is compact (respectively closed)

if E is a completely regular (respectively normal) topological space and D1 ∩∂U = ∅.

Thus there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(D1) = 1.

Define Gµ : U → 2E by Gµ(x) = Ψ(x, µ(x)) and let G⋆
µ = I × Gµ. Note Gµ ∈

A∂U(U, E) with Gµ|∂U = H0|∂U . Also note Gµ
∼= H0(= G) in A∂U(U, E) (to see

this let Q1 : U × [0, 1] → 2E be given by Q1(x, t) = Ψ(x, tµ(x))). Now since H⋆
0 is

d-Φ-essential in A∂U(U, E) then

d
(

(

G⋆
µ

)

−1
(B)

)

= d
(

(H⋆
0 )−1 (B)

)

6= d(∅)

and as in Theorem 3.3 (note µ(D) = 1) we have
(

G⋆
µ

)

−1
(B) = (F ⋆)−1 (B), so

(3.7) d
(

(F ⋆)−1 (B)
)

= d
(

(H⋆
0 )−1 (B)

)

6= d(∅).

Now (3.6) and (3.7) yield d
(

(F ⋆)−1 (B)
)

= d
(

(R⋆)−1 (B)
)

6= d(∅).

Remark 3.7. It is of interest to note if we consider maps R other than F in Theorem

3.6 and if we suppose

∼= is an equivalence relation in A∂U(U, E),

then (see in the statement of Theorem 3.6) if R ∼= F in A∂U (U, E) and R ∼= G in

A∂U(U, E) then (since F ∼= G in A∂U(U, E)) there exists a map Ψ : U × [0, 1] → 2E

with Ψ(·, η(·)) ∈ A(U, E) for any continuous function η : U → [0, 1] with η(∂U) = 0,

Φ(x)∩Ψt(x) = ∅ for any x ∈ ∂U and t ∈ (0, 1), and
{

x ∈ U : (x, Φ(x))∩Ψ⋆(x, t) 6= ∅

for some t ∈ [0, 1]
}

is compact (respectively closed), Ψ0 = G and Ψ1 = F (here

Ψt(x) = Ψ(x, t) and Ψ⋆(x, t) = (x, Ψ(x, t)))

Remark 3.8. Suppose the following conditions holds (which is common in the liter-

ature on topological degree):
{

if F, G ∈ A∂U(U, E) with F |∂U = G|∂Uand F ∼= G

in A∂U(U, E) then d
(

(F ⋆)−1 (B)
)

= d
(

(G⋆)−1 (B)
)

.

Then Definition 3.5 reduces to the following. Let F ∈ A∂U(U, E) with F ⋆ = I × F .

We say F ⋆ : U → 2U×E is d-Φ-essential in A∂U(U, E) if d
(

(F ⋆)−1 (B)
)

6= d(∅).

Let E be a topological vector space, Y a topological vector space, U an open

subset of E, L : domL ⊆ E → Y a linear single valued map and T ∈ HL(E, Y ).

We now fix a Φ ∈ B(U, Y ; L, T ).
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For any map F ∈ A(U, Y ; L, T ) let F ⋆ = I × (L+T )−1(F +T ) : U → 2U×E , with

I : U → U given by I(x) = x, and let

(3.8) d :
{

(F ⋆)−1 (B)
}

∪ {∅} → Ω

be any map with values in the nonempty set Ω; here

B =
{

(x, (L + T )−1(Φ + T )(x)) : x ∈ U
}

.

Definition 3.9. Let F ∈ A∂U(U, Y ; L, T ) with F ⋆ = I × (L + T )−1(F + T ). We

say F ⋆ : U → 2U×E is d-L-Φ-essential in A∂U(U, Y ; L, T ) if for every map J ∈

A∂U(U, Y ; L, T ) with J⋆ = I × (L + T )−1(J + T ) and J |∂U = F |∂U we have that

d
(

(F ⋆)−1 (B)
)

= d
(

(J⋆)−1 (B)
)

6= d(∅).

Theorem 3.10. Let E be a Hausdorff topological vector space, Y a topological vector

space, U an open subset of E, B =
{

(x, (L + T )−1(Φ + T )(x)) : x ∈ U
}

, L : domL ⊆

E → Y a linear single valued map, T ∈ HL(E, Y ), d a map defined in (3.8), F ∈

A∂U(U, Y ; L, T ) with F ⋆ = I×(L+T )−1(F +T ), G ∈ A∂U(U, Y ; L, T ) and G⋆ is d-L-

Φ-essential in A∂U (U, Y ; L, T ) (here G⋆ = I × (L + T )−1(G + T )). For any map R ∈

A∂U(U, Y ; L, T ) with R⋆ = I×(L+T )−1(R+T ) and R|∂U = F |∂U assume there exists a

map H : U×[0, 1] → 2Y with (L+T )−1(H(·, η(·))+T (·)) ∈ A(U, E) for any continuous

function η : U → [0, 1] with η(∂U) = 0, (L+T )−1(Ht+T )(x)∩(L+T )−1(Φ+T )(x) = ∅

for any x ∈ ∂U and t ∈ (0, 1), and

{

x ∈ U : (x, (L + T )−1(Φ + T )(x)) ∩ H⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact, H0 = G, H1 = R (here Ht(x) = H(x, t) and H⋆(x, λ) = (x, (L +

T )−1(H + T )(x, λ))) and also suppose there exists a map Ψ : U × [0, 1] → 2Y with

(L+T )−1(Ψ(·, η(·))+T (·)) ∈ A(U, E) for any continuous function η : U → [0, 1] with

η(∂U) = 0, (L + T )−1(Ψt + T )(x) ∩ (L + T )−1(Φ + T )(x) = ∅ for any x ∈ ∂U and

t ∈ (0, 1), and

{

x ∈ U : (x, (L + T )−1(Φ + T )(x)) ∩ Ψ⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact, Ψ0 = H0 and Ψ1 = F (here Ψt(x) = Ψ(x, t) and Ψ⋆(x, λ) = (x, (L +

T )−1(Ψ + T )(x, λ))). Then F ⋆ is d-L-Φ-essential in A∂U (U, Y ; L, T ).

Proof. Let R ∈ A∂U(U, Y ; L, T ) with R⋆ = I × (L + T )−1(R + T ) and R|∂U = F |∂U .

Choose the maps H : U × [0, 1] → 2Y and Ψ : U × [0, 1] → 2Y as in the statement of

Theorem 3.10. Let

D =
{

x ∈ U : (x, (L + T )−1(Φ + T )(x)) ∩ H⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

where H⋆(x, λ) = (x, (L + T )−1(H + T )(x, λ)). Notice D 6= ∅, D is compact and

D ∩ ∂U = ∅. Thus there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0

and µ(D) = 1. Define Jµ : U → 2Y by Jµ(x) = H(x, µ(x)) = Hµ(x)(x) and let
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J⋆
µ = I × (L + T )−1(Jµ + T ). Note Jµ ∈ A∂U(U, Y ; L, T ) with Jµ|∂U = H0|∂U . Also

since H⋆
0 is d-L-Φ-essential in A∂U(U, Y ; L, T ) we have

(3.9) d
(

(

J⋆
µ

)

−1
(B)

)

= d
(

(H⋆
0 )−1 (B)

)

6= d(∅).

Next we note since µ(D) = 1 that

(

J⋆
µ

)

−1
(B) = {x ∈ U : (x, (L + T )−1(Φ + T )(x))

∩(x, (L + T )−1(Hµ(x) + T )(x)) 6= ∅}

= {x ∈ U : (x, (L + T )−1(Φ + T )(x))

∩(x, (L + T )−1(H1 + T )(x)) 6= ∅}

= (R⋆)−1 (B),

so from (3.9) we have

(3.10) d
(

(R⋆)−1 (B)
)

= d
(

(H⋆
1 )−1 (B)

)

6= ∅.

Let

D1 =
{

x ∈ U : (x, (L + T )−1(Φ + T )(x)) ∩ Ψ⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

where Ψ⋆(x, λ) = (x, (L + T )−1(Ψ + T )(x, λ)). Notice D1 6= ∅, D1 is compact and

D1 ∩ ∂U = ∅. Thus there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0

and µ(D1) = 1. Define Gµ : U → 2Y by Gµ(x) = Ψ(x, µ(x)) and let G⋆
µ = I × (L +

T )−1(Gµ + T ). Note Gµ ∈ A∂U(U, Y ; L, T ) with Gµ|∂U = H0|∂U . Also since H⋆
0 is

d-L-Φ-essential in A∂U (U, Y ; L, T ) we have

(3.11) d
(

(

G⋆
µ

)

−1
(B)

)

= d
(

(H⋆
0)

−1 (B)
)

6= d(∅).

Next we note since µ(D1) = 1 that

(

G⋆
µ

)

−1
(B) = {x ∈ U : (x, (L + T )−1(Φ + T )(x))

∩(x, (L + T )−1(Ψµ(x) + T )(x)) 6= ∅}

= {x ∈ U : (x, (L + T )−1(Φ + T )(x))

∩(x, (L + T )−1(Ψ1 + T )(x)) 6= ∅}

= (F ⋆)−1 (B),

so from (3.11) we have

(3.12) d
(

(F ⋆)−1 (B)
)

= d
(

(H⋆
0 )−1 (B)

)

6= d(∅).

Now (3.10) and (3.12) yield d
(

(F ⋆)−1 (B)
)

= d
(

(R⋆)−1 (B)
)

6= ∅.

Remark 3.11. If E is a normal topological vector space then the assumption that

D (in the proof of Theorem 3.10) is compact, can be replaced by D is closed, in the

statement (and proof) of Theorem 3.10.
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It is possible to obtain an analogue result if we change Definition 3.9 as follows.

Definition 3.12. Let F, G ∈ A∂U(U, Y ; L, T ). We say F ∼= G in A∂U(U, Y ; L, T ) if

there exists a map H : U × [0, 1] → 2Y with (L + T )−1(H(·, η(·)) + T (·)) ∈ A(U, E)

for any continuous function η : U → [0, 1] with η(∂U) = 0, (L + T )−1(Ht + T )(x) ∩

(L + T )−1(Φ + T )(x) = ∅ for any x ∈ ∂U and t ∈ [0, 1], H1 = F , H0 = G and

{

x ∈ U : (x, (L + T )−1(Φ + T )(x)) ∩ H⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact; here Ht(x) = H(x, t) and H⋆(x, λ) = (x, (L + T )−1(H + T )(x, λ)).

Remark 3.13. If E is a normal topological vector space then the assumption that

{

x ∈ U : (x, (L + T )−1(Φ + T )(x)) ∩ H⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact, can be replaced by

{

x ∈ U : (x, (L + T )−1(Φ + T )(x)) ∩ H⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

is closed, in Definition 3.12; here H⋆(x, λ) = (x, (L + T )−1(H + T )(x, λ)).

Definition 3.14. Let F ∈ A∂U(U, Y ; L, T ) with F ⋆ = I × (L + T )−1(F + T ). We

say F ⋆ : U → 2U×E is d-L-Φ-essential in A∂U(U, Y ; L, T ) if for every map J ∈

A∂U(U, Y ; L, T ) with J⋆ = I × (L + T )−1(J + T ) and J |∂U = F |∂U and J ∼= F in

A∂U(U, Y ; L, T ) we have that d
(

(F ⋆)−1 (B)
)

= d
(

(J⋆)−1 (B)
)

6= d(∅).

Theorem 3.15. Let E be a Hausdorff topological vector space, Y a topological vector

space, U an open subset of E, B =
{

(x, (L + T )−1(Φ + T )(x)) : x ∈ U
}

, L : domL ⊆

E → Y a linear single valued map, T ∈ HL(E, Y ), d a map defined in (3.8), F ∈

A∂U(U, Y ; L, T ) with F ⋆ = I × (L + T )−1(F + T ), G ∈ A∂U (U, Y ; L, T ) and G⋆ is

d-L-Φ-essential in A∂U(U, Y ; L, T ) (here G⋆ = I × (L + T )−1(G + T )). For any

map R ∈ A∂U(U, Y ; L, T ) with R⋆ = I × (L + T )−1(R + T ) and R|∂U = F |∂U and

R ∼= F in A∂U(U, Y ; L, T ) assume there exists a map H : U × [0, 1] → 2Y with

(L + T )−1(H(·, η(·)) + T (·)) ∈ A(U, E) for any continuous function η : U → [0, 1]

with η(∂U) = 0, (L + T )−1(Ht + T )(x) ∩ (L + T )−1(Φ + T )(x) = ∅ for any x ∈ ∂U

and t ∈ (0, 1), and

{

x ∈ U : (x, (L + T )−1(Φ + T )(x)) ∩ H⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact, H0 = G, H1 = R (here Ht(x) = H(x, t) and H⋆(x, λ) = (x, (L+T )−1(H+

T )(x, λ))) and for any continuous function µ : U → [0, 1] with µ(∂U) = 0 assume

{x ∈ U :(x, (L + T )−1(Φ + T )(x))

∩ (x, (L + T )−1(Htµ(x) + T )(x)) 6= ∅ for some t ∈ [0, 1]}

is closed and also suppose there exists a map Ψ : U × [0, 1] → 2Y with (L + T )−1

·(Ψ(·, η(·))+T (·)) ∈ A(U, E) for any continuous function η : U → [0, 1] with η(∂U) =
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0, (L + T )−1(Ψt + T )(x) ∩ (L + T )−1(Φ + T )(x) = ∅ for any x ∈ ∂U and t ∈ (0, 1),

and
{

x ∈ U : (x, (L + T )−1(Φ + T )(x)) ∩ Ψ⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact, Ψ0 = H0 and Ψ1 = F (here Ψt(x) = Ψ(x, t) and Ψ⋆(x, λ) = (x, (L +

T )−1(Ψ + T )(x, λ))) and for any continuous function µ : U → [0, 1] with µ(∂U) = 0

assume

{x ∈ U :(x, (L + T )−1(Φ + T )(x))

∩ (x, (L + T )−1(Ψtµ(x) + T )(x)) 6= ∅ for some t ∈ [0, 1]}

is closed. Then F ⋆ is d-L-Φ-essential in A∂U(U, Y ; L, T ).

Proof. Let R ∈ A∂U (U, Y ; L, T ) with R⋆ = I×(L+T )−1(R+T ) and R|∂U = F |∂U and

R ∼= F in A∂U(U, Y ; L, T ). Choose the maps H : U × [0, 1] → 2Y and Ψ : U × [0, 1] →

2Y as in the statement of Theorem 3.15. Let

D =
{

x ∈ U : (x, (L + T )−1(Φ + T )(x)) ∩ H⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

where H⋆(x, λ) = (x, (L + T )−1(H + T )(x, λ)). Notice D 6= ∅, D is compact and

D ∩ ∂U = ∅. Thus there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0

and µ(D) = 1. Define Jµ : U → 2Y by Jµ(x) = H(x, µ(x)) = Hµ(x)(x) and let

J⋆
µ = I × (L + T )−1(Jµ + T ). Note Jµ ∈ A∂U(U, Y ; L, T ) with Jµ|∂U = H0|∂U . Also

note Jµ
∼= H0 in A∂U(U, Y ; L, T ) (to see this let Q : U × [0, 1] → 2Y be given by

Q(x, t) = H(x, tµ(x))). Also since H⋆
0 is d-L-Φ-essential in A∂U(U, Y ; L, T ) we have

d
(

(

J⋆
µ

)

−1
(B)

)

= d
(

(H⋆
0 )−1 (B)

)

6= d(∅),

and as in Theorem 3.10 (note µ(D) = 1) we have
(

J⋆
µ

)

−1
(B) = (R⋆)−1 (B), so

(3.13) d
(

(R⋆)−1 (B)
)

= d
(

(H⋆
1 )−1 (B)

)

6= ∅.

Let

D1 =
{

x ∈ U : (x, (L + T )−1(Φ + T )(x)) ∩ Ψ⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

where Ψ⋆(x, λ) = (x, (L + T )−1(Ψ + T )(x, λ)). Notice D1 6= ∅, D1 is compact and

D1 ∩ ∂U = ∅. Thus there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0

and µ(D1) = 1. Define Gµ : U → 2Y by Gµ(x) = Ψ(x, µ(x)) and let G⋆
µ = I ×

(L +T )−1(Gµ + T ). Note Gµ ∈ A∂U (U, Y ; L, T ) with Gµ|∂U = H0|∂U and Gµ
∼= H0 in

A∂U(U, Y ; L, T ) (to see this let Q1 : U×[0, 1] → 2Y be given by Q(x, t) = Ψ(x, tµ(x))).

Also since H⋆
0 is d-L-Φ-essential in A∂U(U, Y ; L, T ) we have

d
(

(

G⋆
µ

)

−1
(B)

)

= d
(

(H⋆
0)

−1 (B)
)

6= d(∅),

and as in Theorem 3.10 (note µ(D) = 1) we have
(

G⋆
µ

)

−1
(B) = (F ⋆)−1 (B), so

(3.14) d
(

(F ⋆)−1 (B)
)

= d
(

(H⋆
1)

−1 (B)
)

6= ∅.
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Now (3.13) and (3.14) yield d
(

(F ⋆)−1 (B)
)

= d
(

(R⋆)−1 (B)
)

6= ∅.

Remark 3.16. It is of interest to note if we consider maps R other than F in Theorem

3.15 and if we suppose

∼= is an equivalence relation in A∂U(U, Y ; L, T ),

then (see in the statement of Theorem 3.15) if R ∼= F in A∂U(U, Y ; L, T ) and R ∼=

G in A∂U(U, Y ; L, T ) then (since F ∼= G in A∂U(U, Y ; L, T )) there exists a map

Ψ : U × [0, 1] → 2Y with (L + T )−1(Ψ(·, η(·)) + T (·)) ∈ A(U, E) for any continuous

function η : U → [0, 1] with η(∂U) = 0, (L+T )−1(Ψt+T )(x)∩(L+T )−1(Φ+T )(x) = ∅

for any x ∈ ∂U and t ∈ (0, 1), and

{

x ∈ U : (x, (L + T )−1(Φ + T )(x)) ∩ Ψ⋆(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact, Ψ0 = G and Ψ1 = F (here Ψt(x) = Ψ(x, t) and Ψ⋆(x, λ) = (x, (L +

T )−1(Ψ + T )(x, λ))).

Remark 3.17. Suppose the following condition holds:
{

if F, G ∈ A∂U (U, Y ; L, T ) with F |∂U = G|∂Uand F ∼= G

in A∂U (U, Y ; L, T ) then d
(

(F ⋆)−1 (B)
)

= d
(

(G⋆)−1 (B)
)

.

Then Definition 3.14 reduces to the following. Let F ∈ A∂U(U, Y ; L, T ) with F ⋆ =

I × (L + T )−1(F + T ). We say F ⋆ : U → 2U×E is d-L-Φ-essential in A∂U(U, Y ; L, T )

if d
(

(F ⋆)−1 (B)
)

6= d(∅).

Remark 3.18. There is an analogue of Remark 3.11 (for normal topological vector

spaces) in the statement of Theorem 3.15.
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