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ABSTRACT. In this article, we establish some new criteria for the oscillation of fourth order

nonlinear delay differential equations of the form

x(4)(t) + p(t)x(2)(t) + q(t)f(x(g(t))) = 0

provided that the second order equation

z(2)(t) + p(t)z(t) = 0

is nonoscillatiory or oscillatory. This equation with g(t) = t is considered in [8] and some oscillation

criteria for this equation via certain energy functions are established. Here, we continue the study

on the oscillatory behavior of this equation via some inequalities.

Key words. oscillation, differential equations, higher order, delay.

AMS (MOS) Subject Classification. 34C10, 39A10.

1. INTRODUCTION

In this article, we consider nonlinear fourth order functional differential equations

of the form

(1.1) x(4)(t) + p(t)x(2)(t) + q(t)f(x(g(t))) = 0, t ≥ t0 > 0

together with the associated second order equation

(1.2) z(2)(t) + p(t)z(t) = 0.

We assume that

1. p, q ∈ C([t0,∞), R+);

2. g ∈ C1([t0,∞), R+) such that g(t) < t, g′(t) ≥ 0 and lim
t→∞

g(t) = ∞;

3. f ∈ C(R, R) such that xf(x) > 0 and
f(x)

xβ
≥ k > 0 for x 6= 0, where k is a

constant and β is the ratio of positive odd integers.
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We restrict our attention to those solutions of equation (1.1) which exist on

I = [t0,∞) and satisfy the condition

sup{|x(t)| : t1 ≤ t < ∞} > 0 for t1 ∈ [t0,∞).

Such a solution is called oscillatory if it has arbitrarily large zeros, otherwise it is

called nonoscillatory. Equation (1.1) is said to be oscillatory if it has an oscillatory

solution. The oscillatory behavior of fourth order differential equations with middle

term enjoys a great deal of interest, see [1]-[4] and [6]-[17] references contained therein.

The important role in the investigation of equation (1.1) is played by the fact whether

the associated second order linear equation (1.2) is oscillatory or nonoscillatory.

In [8], they considered (1.1) with g(t) = t and employed an approach based on

a suitable energy function for equation (1.1) and a comparison method for equation

(1.1) and obtained the following result, see [[8], Theorem 3.1].

Theorem 1.1. Assume that β = 1, equation (1.2) is nonoscillatory,

lim
t→∞

q(t)

p(t)
= ∞, p2(t) ≤ 4q(t) for all large t

and
∫

∞

s2q(s)ds = ∞.

Then (1.1) with g(t) = t is oscillatory.

If β < 1 and equation (1.2) is oscillatory, the following oscillation criterion for

equation (1.1) has been proved in [8, Theorem 3.4].

Theorem 1.2. Let β < 1 and equation (1.2) be oscillatory. Assume that p(t) ≥ p >

0, p′(t) ≤ 0 and p′′(t) > 0 and

lim
t→∞

t2(β−1)q(t) = ∞.

Then (1.1) with g(t) = t is oscillatory.

Motivated by these results in [8] which are applicable to equation (1.1) with

g(t) = t, we study the oscillation of equation (1.1) with delay. We allow that the

function p can tend to a real number or to infinity as t → ∞ and both cases that the

corresponding second order equation (1.2) is nonoscillatory (oscillatory) are consid-

ered.

2. MAIN RESULTS

To obtain our results, we need the following lemmas.

Lemma 2.1 ([1, 2]). Every eventually positive solution x(t) of equation (1.1) is one

of the following types:
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• Type (a). x(t) > 0, x′(t) > 0 and x(2)(t) < 0 for large t,

• Type (b). x(t) > 0, x′(t) > 0, x(2)(t) > 0 and x(3)(t) > 0 for large t,

• Type (c). x(2)(t) changes sign eventually.

Moreover, if equation (1.2) is nonoscillatory, then x is of Type (a) or Type (b) and if

equation (1.2) is oscillatory, then x is of Type (a) or Type (c).

Lemma 2.2. Let β ≤ 1 and equation (1.2) be nonoscillatory. If

(2.1)

∫

∞

(p(s) + g2β(s)q(s))ds = ∞,

then equation (1.1) has no solution of Type (b), i.e., every eventually positive solution

of (1.1) is of Type (a).

Proof. Let x be an eventually positive solution of equation (1.1) of Type (b). There

exist two positive constants c1 and c2 and t1 ≥ t0 such that x(2)(t) ≥ c1 and so we get

x(g(t)) ≥ c2g
2(t) for all t ≥ t1. Integrating equation (1.1) from t1 to t, we have

∞ > −x(3)(t) + x(3)(t1)

≥

∫ t

t1

(c1p(s) + kc
β
2g2β(s)q(s))ds

≥ C

∫ t

t1

(p(s) + g2β(s)q(s))ds → ∞ as t → ∞,

where C = max{c1, kc
β
2} which contradicts the fact that x(3)(t) is bounded. This

completes the proof.

Lemma 2.3. Let β ≤ 1 and equation (1.2) be nonoscillatory. If for every positive

constant c, the first order delay equation

(2.2) y′(t) + ckq(t)g3β(t)yβ(g(t)) = 0,

is oscillatory, then equation (1.1) has no solution of Type (b), i.e., every eventually

positive solution of (1.1) is of Type (a).

Proof. Let x be an eventually positive solution of equation (1.1) of Type (b). It is

easy to see that there exist a constant c∗, 0 < c∗ < 1 and t1 ≥ t0 such that

(2.3) x(2)(t) ≥ c∗x(3)(t) for t ≥ t1.

Integrating (2.3) twice from t1 to t, we see that there exist a constant c > 0 and a

t2 ≥ t1 such that

(2.4) x(t) ≥ ct3x(3)(t) for t ≥ t2.

Using the inequalities (2.3) and (2.4) in equation (1.1), we get

y′(t) + c∗p(t)ty(t) + kcβq(t)g3β(t)yβ(g(t)) ≤ 0
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or

y′(t) + kcβq(t)g3β(t)yβ(g(t)) ≤ 0,

where y(t) = x(3)(t) > 0 for t ≥ t2. It follows from Theorem 1 in [3] that the corre-

sponding equation (2.2) also has a positive solution. This gives us a contradiction.

The following corollary is an immediate consequence of Lemma 2.3.

Corollary 2.4. Let β ≤ 1 and equation (1.2) be nonoscillatory. If for every positive

constant c,

(2.5) lim inf
t→∞

∫ t

g(t)

q(s)g3β(s)ds >
1

cβke
,

then equation (1.1) has no solution of Type (b).

Lemma 2.5. Let β ≤ 1 and equation (1.2) be (non)oscillatory. If there exist a

function h ∈ C1(I, R) such that g(t) ≤ h(t) ≤ t, h′(t) ≥ 0 for t ≥ t0 such that the

second order inequality

(2.6) w′′(t) ≥ P (t)w(h(t)),

where P (t) = cq(t)gβ(t)(h(t) − g(t))β − p(t) > 0 for some constant c > 0, has no

positive bounded solutions, then equation (1.1) has no solution of Type (a).

Proof. Let x be an eventually positive solution of equation (1.1) of Type (a). It is

easy to see that there exist a constant c∗ such that 0 < c∗ < 1 and t1 ≥ t0 such that

(2.7) x(t) ≥ c∗tx′(t) for t ≥ t1.

Using (2.7) in equation (1.1), one can easily find that

(2.8) y(3)(t) + p(t)y′(t) + (c∗)βkq(t)gβ(t)yβ(g(t)) ≤ 0 for t ≥ t1,

where y(t) = x′(t). Clearly, we see that y(t) > 0, y′(t) < 0 and y′′(t) > 0 for t ≥ t1.

Now for v ≥ u ≥ t1 we have

(2.9) y(u) ≥ y(u) − y(v) = −

∫ v

u

y′(s)ds ≥ (v − u)(−y′(v)).

For t ≥ t1 setting u = g(t) and v = h(t) in (2.9), we get

(2.10) y(g(t)) ≥ (h(t) − g(t))(−y′(h(t)))).

Using (2.10) in (2.8), we get

w′′(t) + p(t)w(t) ≥ k(c∗)βq(t)gβ(t)(h(t) − g(t))βwβ(h(t))(2.11)

= k(c∗)βq(t)gβ(t)(h(t) − g(t))βwβ−1(h(t))w(h(t)),(2.12)

where w(t) = −y′(t) > 0 for t ≥ t1. Using the fact that g(t) ≤ h(t) ≤ t, β ≤ 1 and

w(t) is decreasing, we obtain

w′′(t) + p(t)w(h(t)) ≥ (c∗)βCq(t)gβ(t) (h(t) − g(t))β
w(h(t))(2.13)
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for some constant C > 0. It is easy to see that inequality (2.13) has a positive

bounded solution, which is a contradiction.

The following two lemmas are concerned with the bounded solutions of second

order delay differential inequality (2.6).

Lemma 2.6. If

lim sup
t→∞

∫ t

h(t)

(h(t) − h(s))P (s)ds > 1,(2.14)

for positive P , then inequality (2.6) has no positive bounded solutions.

Proof. Let w(t) be a bounded nonoscillatory solution of inequality (2.6), say w(t) > 0

and w(h(t)) > 0 for t ≥ t1 ≥ t0. Then we obtain

(2.15) w(t) > 0, w′(t) < 0 and w′′(t) ≥ 0 for t ≥ t1 ≥ t0.

Now, for v ≥ u ≥ t1 we have

(2.16) w(u) ≥ w(u) − w(v) = −

∫ v

u

w′(s)ds ≥ (v − u)(−w′(v)).

For t ≥ s ≥ t1 setting u = h(s) and v = h(t) in (2.16), we get

(2.17) w(h(s)) ≥ (h(t) − h(s))(−w′(h(t))).

Integrating equation (2.6) from h(t) ≥ t2 to t, we have

(2.18) −w′(h(t)) ≥ w′(t) − w′(h(t)) ≥

∫ t

h(t)

P (s)w(h(s))ds.

Using (2.17) in (2.18), we have

−w′(h(t)) ≥

(
∫ t

h(t)

(h(t) − h(s))P (s)ds

)

(−w′(h(t)))

or

1 ≥

∫ t

h(t)

(h(t) − h(s))P (s)ds.(2.19)

We take limsup as t → ∞ of both sides of (2.19), we have a contradiction to condition

(2.14) and completes the proof of the lemma.

Lemma 2.7. If

(2.20) lim sup
t→∞

∫ t

h(t)

(
∫ t

u

P (s)

)

du > 1,

then inequality (2.6) has no positive bounded solutions.
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Proof. Let x be a bounded nonoscillatory solution of inequality (2.6), say x(t) > 0

and x(h(t)) > 0 for t ≥ t1 ≥ t0. As in Lemma 2.6, we obtain (2.15). Integrating (2.6)

from u to t

w′(t) − w′(u) ≥

∫ t

u

P (s)w(h(s))ds

or

−w′(u) ≥

(
∫ t

u

P (s)ds

)

w(h(t)).

Integrating this inequality from h(t) to t, we get

w(h(t)) ≥

[
∫ t

h(t)

(
∫ t

u

P (s)ds

)

du

]

w(h(t))

or

1 ≥

[
∫ t

h(t)

(
∫ t

u

P (s)ds

)

du

]

.

The rest of the proof is similar to that of Lemma 2.6 and hence is omitted. This

completes the proof.

Theorem 2.8. Let β ≤ 1 and equation (1.2) be nonoscillatory. If condition (2.1) (or

for every constant c > 0, then equation (2.2) is oscillatory) holds and either condition

(2.14) or (2.20) hold, then equation (1.1) is oscillatory.

Proof. Let x be an eventually positive solution of equation (1.1). Since equation (1.2)

is nonoscillatory, then x is of Type (a) or of Type (b) by Lemma 2.1. It follows from

Lemma 2.2 or 2.3 that equation (1.1) has no solution of Type (b) and by Lemmas

2.5–2.7 equation (1.1) has no solution of Type (a). This completes the proof.

Theorem 2.9. Let β ≤ 1 and equation (1.2) be oscillatory. If condition (2.14)

(or (2.20)) holds, then every solution x of equation (1.1) is oscillatory or x′′(t) is

oscillatory.

Proof. Let x be an eventually positive solution of equation (1.1). Since equation (1.2)

is oscillatory, then x is of Type (a) or of Type (c) by Lemma 2.1. By Lemmas 2.5–2.7

equation (1.1) has no solution of Type (a). This completes the proof.

Example 2.10. Consider the fourth order delay equation

(2.21) x(4)(t) +
1

4t2
x(2)(t) +

(

1 −
1

4t2

)

x(t − π) = 0.

Here we let g(t) = t − π and h(t) = t − π
2
. All conditions of Theorem 2.8 are

satisfied and hence all solutions of equation (2.21) are oscillatory. One such solution

is x(t) = sin t. We also note that Theorem 1.1 is applicable to this equation with

g(t) = t.
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Example 2.11. Consider the fourth order delay equation

(2.22) x(4)(t) + 2x(2)(t) + x(t − 2π) = 0.

Here we let g(t) = t − 2π and h(t) = t − π. All conditions of Theorem 2.9 are

satisfied and hence all solutions of equation (2.22) are oscillatory. One such solution

is x(t) = sin t. We note that Theorem 1.2 is applicable to this equation with g(t) = t,

i.e.,

x(4)(t) + 2x(2)(t) + x(t) = 0,

where its solution set is {sin t, cos t, t sin t, t cos t} while

x(4)(t) − 2x(2)(t) + x(t) = 0

has solution set {e−t, et, te−t, tet}. Clearly, the associated second order equation

x(2)(t) − 2x(t) = 0

is nonoscillatory and Theorem 2.8 fails to apply to this equation because p(t) = −2 <

0.

3. GENERAL REMARKS

1. The results of this article are presented in a form which is essentially new and

of high degree of generality.

2. It will be of interest to extend the results of this paper to higher order (> 4)

equations.

3. It is also of interest to study equation (1.1) with f(x) = xγ, γ is the ratio of

positive odd integers and 1 < γ.
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