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ABSTRACT. In this paper we consider a general class of controlled McKean-Vlasov mean-field

stochastic evolution equations on Hilbert spaces. We prove existence, uniqueness and regularity

properties of mild solutions of these equations. Relaxed controls, covering regular controls, adapted

to a current of sub-sigma algebras generated by observable processes and taking values from a Polish

space, are used. An appropriate metric topology, based on weak star convergence, is introduced.

We prove continuous dependence of solutions on controls with respect to this topology. These

results are then used to prove existence of optimal controls for Bolza problem. Then we develop the

necessary conditions of optimality using semi-martingale representation theory and show that the

adjoint processes arising from the necessary conditions can be constructed from the mild solution of

certain backward stochastic mean field evolution equation (BSMEE). The paper is concluded with

some applications to mean-field linear quadratic regulator problems.
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1. INTRODUCTION

It is well known that Stochastic differential equations of Itô type generate linear

diffusion. A more general class of stochastic systems is governed by McKean-Vlasov

equations in which the coefficients are not only functions of the state but also of

the probability measure induced by the state itself. This makes the corresponding

diffusion nonlinear. A special case of McKean-Vlasov equation is the mean-field

equation in which the coefficients depend not only on the state but also its mean.

This class of systems without control have been studied extensively in the literature

[12, 16, 17, 22, 23, 26] after McKean introduced this model in [23]. Since then control

problems involving this general model have been studied in [8, 9, 10] with control

appearing only in the drift. Here in this paper we consider more general system

model that admits mean-field and control in both the drift and diffusion operators.
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In recent years intensive research has been going on in the area of necessary

conditions of optimality for stochastic systems governed by Itô differential equations

defined on finite as well as infinite dimensional spaces along the line of the Pontryagin

minimum principle [1, 2, 3, 4, 6, 7, 11, 13, 18, 20, 21, 27]. See also the extensive refer-

ences given therein. Control of McKean-Vlasov type stochastic differential equations

were studied in [8, 9, 10, 22, 28]. However, necessary conditions of optimality were

not considered in these papers. In [20] Shen and Siu consider maximum principle for

jump-diffusion mean-field model on finite dimensional spaces giving some examples

from finance. Here in this paper we wish to study the question of existence of op-

timal controls as well as present necessary conditions of optimality for the class of

mean-field evolution equations on infinite dimensional Hilbert spaces.

In [2, 3, 7, 11] we considered semi-linear stochastic evolution equations (includ-

ing equations of neutral type) with controls in the drift and the diffusion operators

and presented necessary conditions of optimality. In [18] Duncan and Pasic-Duncan

considered linear stochastic differential equations on Hilbert spaces with exponential-

quadratic cost functionals giving differential operator Ricatti equations. They pre-

sented also several interesting examples from initial boundary value problems. Shen

and Siu [20] presented maximum principle for a class of finite dimensional jump-

diffusion stochastic differential equations. The cost functional is of Bolza type. In

[21] Hu and Peng developed some fundamental results on the question of existence

and uniqueness of solutions for a class of backward stochastic evolution equations

(BSDE) on Hilbert spaces. In [27] Zhou developed necessary conditions of optimal-

ity (maximum principle) for a class of linear non-degenerate (strictly elliptic) second

order partial differential equations on a d-dimensional space with all the coefficients

containing control. In [8] we considered control of McKean-Vlasov equations and pre-

sented existence of optimal controls where control appears only in the drift. In [10]

we considered McKean-Vlasov equations on finite dimensional spaces and developed

HJB equations. The author is not aware of any literature where stochastic necessary

conditions of optimality for McKean-Vlasov type or mean-field stochastic evolution

equations on infinite dimensional Hilbert spaces with control in the drift as well as

diffusion have been considered. This is what motivates us to consider optimal con-

trol of mean-field stochastic evolution equations on infinite dimensional spaces and

develop necessary conditions of optimality thereof. We present existence of optimal

controls and also necessary conditions of optimality. These are new results (including

the existence theorem 3.1) considered as major contributions of this paper. For recent

development on this topic involving more general McKean-Vlasov equation see [28].

The paper is organized as follows. In section 2, we present the mathematical

model of the system and state the optimal control problems. In section 3, after

basic assumptions are introduced, we prove the existence and regularity properties
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of mild solutions. Existence of optimal control is proved in section 4. In section 5,

we present the necessary conditions of optimality. For illustration of the abstract

results, section 6 is devoted to some examples of linear quadratic regulator problems

of meanfield type.

2. SYSTEM MODEL

Let E and H denote a pair of real separable Hilbert spaces and {Ω,F ,Ft, t ∈

I, P} a complete filtered probability space with Ft ⊂ F a family of nondecreasing

complete sub-sigma algebras of the sigma algebra F and I ≡ [0, T ], T < ∞. Let

W ≡ {W (t), t ∈ I}, denote an H-Wiener process with covariance operator R being

nuclear.

Since we are interested in controlled evolution equation we must now introduce

the class of feasible controls. Let U be a compact Polish space and M(U) the space

of finite Borel measures on the sigma algebra B(U) on U . Let M1(U) ⊂ M(U)

denote the space of probability measures on U , and Gt ⊂ Ft, t ≥ 0, denote a cur-

rent of nondecreasing family of sub-sigma algebras of the sigma-algebra Ft. We use

Lα
∞(I,M1(U)) to denote the class of weak star measurable Gt-adapted M1(U) valued

random processes. That is, for each u ∈ Lα
∞(I,M1(U)), and for every ϕ ∈ C(U), the

process t −→ ut(ϕ) is a measurable random process adapted to the current of sigma

algebras Gt.

Throughout the rest of the paper, the space of bounded linear operators L(E1, E2)

from Banach space E1 to a Banach space E2 will be assumed to be equipped with

the uniform operator topology τuo, unless otherwise stated. And functions defined on

I, with values in L(E1, E2), are assumed to be measurable in the uniform operator

topology (equivalently Bochner measurable) and the norm is Lebesgue integrable. By

Bochner measurability of T : I −→ L(E1, E2) one means that there exists a sequence

of simple functions {Tn} with values in L(E1, E2) such that Tn(t)
τuo−→ T (t) a.e on I.

Now we are prepared to introduce the system considered in this paper. It is

governed by the following mean-field controlled evolution equation on the Hilbert

space E driven by the H-Brownian motion W :

(2.1) dx = Axdt+ f(t, x, x, u)dt+ σ(t, x, x, u)dW, t ∈ I ≡ [0, T ], x(0) = x0,

where A is the infinitesimal generator of a C0-semigroup S(t), t ∈ I, on E and f is a

Borel measurable map from I×E×E×M1(U) to E and σ is also a Borel measurable

map from I×E×E×M1(U) to L(H,E), the space of bounded linear operators from

H to E equipped with the uniform operator topology, and x0 is the initial state. The

drift f and the diffusion σ are not only dependent on the state x but also its mean

x ≡
∫

E
zµ(dz) where µ is the measure induced by the E-valued random variable x.
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Here, by the notation f(t, x, x̄, u) and σ(t, x, x̄, u), we mean

f(t, x, x, u) ≡

∫

U

f(t, x, x, ξ)u(dξ), σ(t, x, x, u) ≡

∫

U

σ(t, x, x, ξ)u(dξ)

for any u ∈ M1(U) where f and σ are Borel measurable maps from I×E×E×U to

E and L(H,E) respectively. In case both E and H are finite dimensional, this class

of models arise naturally in finance where the objective functional is of mean-variance

type maximizing terminal wealth while minimizing variance. Also such models are

known to arise in biological population process.

3. BASIC ASSUMPTIONS AND EXISTENCE OF SOLUTIONS

Now we are prepared to introduce the basic assumptions. In order to study

control problems involving the system (2.1) we must now define the drift and the

diffusion operators {f, σ} including the semigroup generator.

Basic Assumptions:

(A1): The operator A is the infinitesimal generator of a C0-semigroup S(t),

t ≥ 0, on the Hilbert space E satisfying

sup{‖ S(t) ‖L(E), t ∈ I} ≤ M <∞.

(A2): The function f : I×E×E×U −→ E is measurable in the first argument

and continuous with respect to the rest of the arguments. Further, there exists a

constant K 6= 0 such that

|f(t, x, y, ξ)|2E ≤ K2{1 + |x|2E + |y|2E}, ∀ x, y ∈ E

|f(t, x1, y1, ξ) − f(t, x2, y2, ξ)|
2
E ≤ K2{|x1 − x2|

2
E + |y1 − y2|

2
E}, ∀ x1, x2, y1, y2 ∈ E,

uniformly with respect to t ∈ I, ξ ∈ U .

(A3): The incremental covariance of the Brownian motion W denoted by R ∈

L(H) (is positive nuclear). The diffusion σ : I×E×E×U −→ L(H,E) is measurable

(in the uniform operator topology) in the first argument and continuous with respect

to the rest of the variables and there exists a constant KR 6= 0 such that

|σ(t, x, y, ξ)|2R ≤ K2
R{1 + |x|2E + |y|2E}, ∀ x, y ∈ E

|σ(t, x1, y1, ξ) − σ(t, x2, y2, ξ)|
2
R ≤ K2

R{|x1 − x2|
2
E + |y1 − y2|

2
E} ∀ x1, x2, y1, y2 ∈ E

uniformly with respect to (t, ξ) ∈ I × U , where |σ|2R = tr(σRσ∗).

Let LR(H,E) denote the completion of the space of linear operators from H

to E with respect to the inner product 〈K,L〉 ≡ Tr(KRL∗) and norm |K|R ≡
√

Tr(KRK∗). Clearly this is a Hilbert space.

For proof of existence, uniqueness and regularity properties of solutions of equa-

tion (2.1), we must introduce the appropriate function spaces where they may reside.
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Let L2(Ω, E) denote the Hilbert space of second order random variables with values

in E equipped with the standard norm topology. For 1 ≤ p ≤ ∞, let LF
p (I, L2(Ω, E))

denote the Banach space of Ft-adapted second order random processes with values

in E furnished with the norm topology

‖ y ‖LF
p (I,L2(Ω,E))≡

(
∫

I

(
∫

Ω

|y(t, ω)|2EP (dω)

)p/2

dt

)1/p

for y ∈ LF
p (I, L2(Ω, E)). For p = ∞, as usual, the norm is given by

‖ y ‖LF
∞(I,L2(Ω,E))≡ ess− sup{(E|y(t)|2E)1/2, t ∈ I}.

For convenience of notation we shall denote these spaces by La
p(I, L2(Ω, E)), 1 ≤ p ≤

∞.

Let Ba
∞(I, E) denote the vector space of E valued Ft-adapted random processes

having square integrable norms (with respect to the measure P ) which are bounded

on I. Furnished with the norm topology,

‖ x ‖Ba
∞(I,E)≡ (sup{E|x(t)|2E, t ∈ I})1/2,

Ba
∞(I, E) is a closed subspace of the Banach space La

∞(I, L2(Ω, E)) and hence it

is a Banach space. For admissible controls, let Gt, t ≥ 0, denote a nondecreasing

family of sub-sigma algebras of the current of sigma algebras Ft, t ≥ 0. Let U be a

compact Polish space and M1(U) the space of probability measures on U . In general,

for admissible controls we may choose any closed subset Uad ⊆ Lα
∞(I,M1(U)) ⊂

Lα
∞(I,M(U)) which consist of Gt-adapted M1(U)-valued random processes, endowed

with the weak star topology. More precise characterization of admissible controls is

given in section 4. With this preparation we prove the following existence result.

Theorem 3.1. Consider the system (2.1) and suppose the assumptions (A1)–(A3)

hold. Further, suppose thatW is theH Brownian motion with incremental covariance

operator R ∈ L+
1 (H). Then, for every F0 measurable E valued random variable

x0 ∈ L2(Ω, E), and control u ∈ Uad, the stochastic evolution equation has a unique

mild solution x ∈ Ba
∞(I, E) in the sense that it satisfies the following stochastic

integral equation:

x(t) ≡ S(t)x0 +

∫ t

0

S(t− τ)f(τ, x(τ), x̄(τ), uτ)dτ(3.1)

+

∫ t

0

S(t− τ)σ(τ, x(τ), x̄(τ), uτ )dW (τ) t ∈ I.

Further the solution has a continuous modification.

Proof. Take any z ∈ Ba
∞(I, E) and consider the evolution equation

(3.2) dx = Axdt+ f(t, x, z̄(t), ut)dt+ σ(t, x, z̄(t), ut)dW (t), x(0) = x0, t ∈ I,
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where z̄(t) ≡ Ez(t). First we show that this equation has a unique mild solution

x ∈ Ba
∞(I, E) corresponding to the given z ∈ Ba

∞(I, E). Let Ψ denote the map

z −→ x ≡ Ψ(z). It suffices to prove that Ψ has a unique fixed point in the Banach

space Ba
∞(I, E). First we must show that equation (3.2) has a unique mild solution

for the given z. Clearly this solution is given by the solution of the integral equation

x(t) = S(t)x0 +

∫ t

0

S(t− r)f(r, x(r), z̄(r), ur)dr(3.3)

+

∫ t

0

S(t− r)σ(r, x(r), z̄(r), ur)dW (r), t ∈ I.

For the fixed but arbitrary initial state x0 and control u, define the integral operator

Fz by

(Fzx)(t) ≡ S(t)x0 +

∫ t

0

S(t− r)f(r, x(r), z̄(r), ur)dr(3.4)

+

∫ t

0

S(t− r)σ(r, x(r), z̄(r), ur)dW (r), t ∈ I.

Thus the question of existence of a solution of the integral equation (3.3) is equivalent

to the question of existence of a fixed point of the operator Fz, that is an x ∈ Ba
∞(I, E)

so that x = Fz(x). Since W (t) is Ft-adapted and x(t), z(t) are Ft -adapted and ut

is Gt(⊂ Ft)-adapted in the weak star sense, we conclude that (Fzx)(t) is Ft-adapted.

Then, by use of the growth assumptions in (A1) and (A2), it is easy to verify that

Fz : Ba
∞(I, E) −→ Ba

∞(I, E). Now we verify that Fz has a unique fixed point in

Ba
∞(I, E). Let x1, x2 ∈ Ba

∞(I, E) and compute

Fz(x1)(t) − Fz(x2)(t)(3.5)

=

∫ t

0

S(t− r)
(

f(r, x1(r), z̄(r), ur) − f(r, x2(r), z̄(r), ur)
)

dr

+

∫ t

0

S(t− r)
(

σ(r, x1(r), z̄(r), ur) − σ(r, x2(r), z̄(r), ur)
)

dW (r).

By straightforward computation using the Lipschitz assumptions (A2) and (A3), we

arrive at the following inequality,

E|Fz(x1)(t) − Fz(x2)(t)|
2
E ≤ 2tM2K2

∫ t

0

E|x1(r) − x2(r)|
2
Edr(3.6)

+ 2M2K2
R

∫ t

0

E|x1(r) − x2(r)|
2
Edr t ∈ I.

For any τ ∈ I, let Iτ ≡ [0, τ ]. Clearly, it follows from the above inequality that

sup{E|Fz(x1)(t) − Fz(x2)(t)|
2
E, t ∈ Iτ}(3.7)

≤ α(τ) sup{E|x1(s) − x2(s)|
2
E, s ∈ Iτ},
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where α(τ) ≡ 2M2τ(K2τ +K2
R). Hence

‖ Fz(x1) − Fz(x2) ‖Ba
∞(Iτ ,E)≤

√

α(τ) ‖ x1 − x2 ‖Ba
∞(Iτ ,E) .(3.8)

Thus for τ = τ1 ∈ I, sufficiently small, α(τ1) < 1 and therefore the operator Fz

is a contraction on the Banach space Ba
∞(Iτ1 , E) and hence by Banach fixed point

theorem it has a unique fixed point, say x1 ∈ Ba
∞(Iτ1 , E). Then it follows from the

well known factorization technique due to Da Prato and Zabczyk [15] that it has a

continuous modification which is also denoted by x1. Clearly x1(τ1) is Fτ1 measurable

and belongs to L2(Ω, E). Taking this as the initial state for the evolution equation

dx = Axdt+ f(t, x, z̄(t), ut)dt+ σ(t, x, z̄(t), ut)dW (t),(3.9)

x(τ1) = x1(τ1), t ∈ [τ1, T ],

the associated integral equation is given by

x(t) = S(t− τ1)x
1(τ1) +

∫ t

τ1

S(t− r)f(r, x(r), z̄(r), ur)dr(3.10)

+

∫ t

τ1

S(t− r)σ(r, x(r), z̄(r), ur)dW (r), t ∈ [τ1, T ].

Thus, following the same procedure as given above one can verify that there exists a

τ2 ∈ (τ1, T ] such that α(τ2 − τ1) < 1 and the operator Fz (restricted to the interval

[τ1, τ2]) has a unique fixed point x2 ∈ Ba
∞([τ1, τ2], E) satisfying x2(τ1) = x1(τ1). Since

I is a compact interval it can be covered by a finite number of such intervals. Hence

the mild solution of the evolution equation (3.2) can be constructed by concatenation

of this finite sequence of solutions {x1, x2, . . . } as shown above. Thus we conclude

that for every given z ∈ Ba
∞(I, E) the evolution equation (3.2) has a unique mild

solution x ∈ Ba
∞(I, E). Let Ψ denote the map z −→ x from Ba

∞(I, E) to Ba
∞(I, E)

written as x = Ψ(z). It is clear that if Ψ has a fixed point x∗ ∈ Ba
∞(I, E) then x∗

itself is the mild solution of the evolution equation (2.1). Thus it suffices to prove that

Ψ has a unique fixed point in the Banach space Ba
∞(I, E). For the fixed initial state

x0 and control u, let x1 ≡ Ψ(z1) ∈ Ba
∞(I, E) be the mild solution of the evolution

equation (3.2) corresponding to z1 ∈ Ba
∞(I, E) and x2 ≡ Ψ(z2) ∈ Ba

∞(I, E) the mild

solution corresponding to z2 ∈ Ba
∞(I, E). Then

x1(t) − x2(t) =

∫ t

0

S(t− r)[f(r, x1(r), z̄1(r), ur) − f(r, x2(r), z̄2(r), ur)]dr

(3.11)

+

∫ t

0

S(t− r)[σ(r, x1(r), z̄1(r), ur) − σ(r, x2(r), z̄2(r), ur)]dW (r), t ∈ I.

Recall that |z̄1(t) − z̄2(t)|
2
E ≤ E|z1(t) − z2(t)|

2
E for t ∈ I. Hence, using the equation

(3.11) and the assumptions (A1)–(A3) and repeating the same procedure, it is easy
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to verify that

E|x1(t) − x2(t)|
2
E(3.12)

≤ 2M2(tK2 +K2
R)

{
∫ t

0

E|x1(r) − x2(r)|
2
Edr +

∫ t

0

E|z1(r) − z2(r)|
2
Edr

}

.

Thus for any τ ∈ I, we have

(3.13) sup
t∈Iτ

E|x1(t) − x2(t)|
2
E ≤ α(τ)

{

sup
t∈Iτ

E|x1(t) − x2(t)|
2
E + sup

t∈Iτ

E|z1(t) − z2(t)|
2
E

}

.

In other words,

(3.14) ‖ x1 − x2 ‖
2
Ba

∞(Iτ ,E)≤ α(τ)

{

‖ x1 − x2 ‖
2
Ba

∞(Iτ ,E) + ‖ z1 − z2 ‖
2
Ba

∞(Iτ ,E)

}

.

Since α(τ) is a continuous and increasing function of its argument starting from

α(0) = 0, we can choose a τ1 ∈ I such that α(τ1) ≤ (1/3). For this choice, it is

evident that

‖ x1 − x2 ‖Ba
∞(Iτ1

,E)≤
√

(1/2) ‖ z1 − z2 ‖Ba
∞(Iτ1

,E)(3.15)

and hence we have proved that

‖ Ψ(z1) − Ψ(z2) ‖Ba
∞(Iτ1

,E)≤
√

(1/2) ‖ z1 − z2 ‖Ba
∞(Iτ1

,E) .(3.16)

Thus the map Ψ is a contraction on the Banach space Ba
∞(Iτ1 , E) and hence, again by

Banach fixed point theorem, it has a unique fixed point say x∗ ∈ Ba
∞(Iτ1 , E). Since

I is a compact interval, it can be covered by a finite number of such intervals and

therefore by concatenation we can construct the solution for the entire interval I.

Thus we conclude that Ψ has a unique fixed point x ∈ Ba
∞(I, E). This proves that for

any given F0 measurable initial state x0 ∈ L2(Ω, E) and any u ∈ Lα
∞(I,M1(U)) the

evolution equation (2.1) has a unique mild solution having continuous modification.

This completes the proof. �

For any fixed F0 measurable random variable x0 ∈ L2(Ω, E), let x(u) ∈ Ba
∞(I, E)

denote the solution of the integral equation (3.1) corresponding to the control u ∈ Uad.

Then we have the following result as a corollary of Theorem 3.1.

Corollary 3.2. Suppose the assumptions of Theorem 3.1 hold with the admissible

controls Uad. Then the solution set Ξ ≡ {x(u), u ∈ Uad} is a bounded subset of

Ba
∞(I, E).

Proof. We present a brief outline. Let x(u) ∈ Ba
∞(I, E) denote the solution of the

integral equation (3.1) corresponding to the control u ∈ Uad. For any fixed x, y ∈ E,

it follows from the first part of the assumptions (A2)–(A3) that both f and σ are

uniformly bounded with respect to controls. Hence, using the integral equation (3.1),
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it is easy to verify that for every u ∈ Uad we have

E|x(u)(t)|2E ≤ b2 + c2
∫ t

0

E|x(u)(s)|2Eds, t ∈ I,(3.17)

where

b2 ≡ 3M2E|x0|
2
E + 3M2T (TK2 +K2

R) and c2 ≡ 6M2(TK2 +K2
R).

Since the constants b, c are independent of control, the conclusion follows from Gron-

wall inequality applied to the expression (3.17). This completes the proof. �

Remark 3.3. In the proof of existence we have used the quadratic function α(∆τ) ≡

a(∆τ)2 + b∆τ, with a = 2M2K2 and b = 2M2K2
R. For the first part of the proof,

based on contraction principle, we required that 0 < α(∆τ) < 1. This puts an upper

bound on the length of the subintervals used in the partition. Since I is a compact

interval, it can be covered by a finite number of such intervals of positive length. For

the second part of the proof, we used 0 < α(∆τ) ≤ 1/3 and this demands a smaller

upper limit on the length of the partition interval. In any case one can choose a

partition of uniform size for all the subintervals satisfying the second inequality.

Remark 3.4. In Theorem 3.1, we assumed that {f, σ} satisfy uniform Lipschitz

condition. In fact this uniform Lipschitz condition is not essential. By using stopping

time arguments this can be relaxed to local Lipschitz condition.

4. EXISTENCE OF OPTIMAL CONTROLS

For study of optimal controls we use the continuity of the map u −→ x, that

is, the control to solution map. This is crucial for the proof of existence of optimal

controls. Since continuity is critically dependent on the topology, we must mention

the topologies used for the control space and the solution space. For the solution space

we have the norm topology on Ba
∞(I, E) as seen in section 3. So we must consider an

admissible topology for the control space. In sections 2 and 3, we introduced formally

the set Lα
∞(I,M1(U)), or any closed subset thereof, as the candidate for the space

of admissible controls. This is the class of weak star measurable Gt-adapted random

processes with values in M1(U). To be more precise, let λ×P denote the product of

Lebesgue measure and the probability measure on the Cartesian product I × Ω, and

let P denote the sigma algebra of Gt-predictable subsets of the set I×Ω and µ denote

the restriction of the measure λ × P on to P. We consider the finite measure space

(I×Ω,P, µ) to be complete and separable. Let L1(µ,C(U)) ≡ L1((I×Ω,P, µ), C(U))

denote the space of µ-measurable Bochner integrable functions on I×Ω with values in

the Banach space C(U). Since the dual M(U) of the space C(U) does not satisfy the

Radon-Nikodym property the topological dual of the space L1(µ,C(U)) is not given

by L∞(µ,M(U)). However, by virtue of the theory of “lifting” [24, Theorems 7,
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9, pp. 94–97], its topological dual is given by Lw∗

∞ (µ,M(U)) which consists of w∗-

µ-measurable M(U) valued functions defined on I × Ω. We denote this space by

Lα
∞(µ,M(U)). By measurability here we mean the function

(t, ω) −→ ut,ω(ϕ) ≡

∫

U

ϕ(ξ)ut,ω(dξ)

is µ-measurable for each ϕ ∈ C(U). Equivalently, one may consider the measura-

bility with respect to the Borel sigma algebra generated by the weak star open (or

closed) subsets of M(U). Thus, for any continuous linear functional ℓ on the space

L1(µ,C(U)), there exists a unique ν ∈ Lα
∞(µ,M(U)) (determined solely by ℓ) such

that

ℓ(ϕ) =

∫

I×Ω

νt,ω(ϕ(t, ω))dµ ≡

∫

I×Ω×U

ϕ(t, ω, ξ) νt,ω(dξ)µ(dt, dω).

This is the natural duality pairing. Occasionally, for convenience of notation we may

also write this as

ℓ(ϕ) = E

∫

I×U

ϕ(t, ξ)νt(dξ)dt.

For admissible controls, it is possible to choose any closed bounded convex subset of

Lα
∞(µ,M(U)) since, by Alaoglu’s theorem, such a set is weak star compact. However,

for reasons of compatibility with the popular view of controls as measurable functions

with values in U , it is more appropriate to choose Lα
∞(µ,M1(U)) as the set of ad-

missible controls. By virtue of Alaoglu’s theorem the set Lα
∞(µ,M1(U)) is weak star

compact. Since the measure space (I × Ω,P, µ) is separable and, by compactness of

the Polish space U , C(U) is also separable, the Lebesgue-Bochner space L1(µ,C(U))

is separable. Thus it follows from a well known theorem [see Dunford-Schwartz, 19,

Theorem V.5.1, p. 426 ] that Lα
∞(µ,M1(U)) is metrizable. Let {gn} be a dense subset

of L1(µ,C(U)) and u, v ∈ Lα
∞(µ,M1(U)). Define

d(u, v) ≡

∞
∑

n=1

1

2n
min

{

1, |

∫

I×Ω

[ut,ω(gn) − vt,ω(gn)]dµ|

}

,

where ut,ω(gn) ≡
∫

U
gn(t, ω, ξ)ut,ω(dξ) ≡ gn(t, ω, ut,ω). The reader can easily verify

that d defines a metric on Lα
∞(µ,M1(U)) and that, with respect to this metric topol-

ogy, it is a compact metric space and this metric topology is equivalent to its original

weak star topology. We denote this metric space by Ud and for admissible controls

we choose Uad = Ud.

Now we present a result on continuity of the control to solution map.

Theorem 4.1. Consider the control system (2.1) (or equivalently (3.1)) with admissi-

ble controls Uad ≡ Ud equipped with the metric topology d. Suppose the assumptions

of Theorem 3.1 hold and that the semigroup S(t), t > 0, is compact. Then, the

control to solution map u −→ x is continuous with respect to the metric topology d

on Uad and the strong (norm) topology on Ba
∞(I, E).
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Proof. Let {un, uo} ∈ Uad be any sequence and suppose un d
−→ uo. Let {xn, xo} ∈

Ba
∞(I, E), with xn(0) = xo(0) = x0, denote the solutions of the integral equation

(3.1) corresponding to the controls {un, uo} respectively. We show that xn s
−→ xo

in Ba
∞(I, E). Clearly, it follows from equation (3.1) corresponding to the controls

{un, uo} that

xn(t) − xo(t) =

∫ t

0

S(t− s)
(

f(s, xn(s), xn(s), un
s ) − f(s, xo(s), xo(s), uo

s)
)

ds(4.1)

+

∫ t

0

S(t− s)
(

σ(s, xn(s), xn(s), un
s ) − σ(s, xo, xo(s), uo

s)
)

dW (s), t ∈ I.

Following similar computations as in the proof of Theorem 3.1, it follows from (4.1)

that

E|xo(t) − xn(t)|2E ≤ 4M2K2t

∫ t

0

{

E|xo(s) − xn(s)|2E + |xo(s) − xn(s)|2E
}

ds(4.2)

+ 4M2K2
R

∫ t

0

{

E|xo(s) − xn(s)|2E + |xo(s) − xn(s)|2E
}

ds

+ 4E|en
1(t)|

2
E + 4E|en

2(t)|
2
E , t ∈ I,

where

en
1 (t) =

∫ t

0

S(t− s)f(s, xo(s), xo(s), uo
s − un

s )ds, t ∈ I,

(4.3)

en
2 (t) =

∫ t

0

S(t− s)σ(s, xo(s), xo(s), uo
s − un

s )dW (s)

(4.4)

Recalling that

|xo(s) − xn(s)|2E ≤ E|xo(s) − xn(s)|2, s ∈ I,

it follows from the expression (4.2) that

E|xo(t) − xn(t)|2E ≤ C

∫ t

0

E|xo(s) − xn(s)|2Eds+ hn(t), t ∈ I,(4.5)

where C ≡ C(T ) = 8M2K2T + 8M2K2
R, and the function hn is given by

hn(t) ≡ 4E|en
1(t)|

2
E + 4E|en

2(t)|
2
E, t ∈ I.

Then, by virtue of Gronwall inequality, it follows from (4.5) that

E|xo(t) − xn(t)|2E ≤ hn(t) + CeCT

∫ T

0

hn(s)ds.(4.6)

We prove that the expression on the righthand side of the above inequality converges

to zero uniformly on I. Consider the expressions given by (4.3) and (4.4). Since the

semigroup is compact, and the integrands are dominated by an integrable process

(due to Corollary 3.2 and growth properties (A2)-(A3)), and un d
−→ uo it is clear
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that for each fixed t ∈ I, both en
1 (t) and en

2 (t) converge strongly in E to zero P-as.

Moreover, computing the expected value of the square of the norm and using the

conditional expectation with respect to the current of sigma algebras Gt, t ≥ 0, we

obtain the following inequalities:

E|en
1 (t)|2E ≤ tE

∫ t

0

E
{

|S(t− s)f(s, xo(s), xo(s), uo
s − un

s )|2E|Gs

}

ds(4.7)

≤ T

∫

I×Ω

χt(s)E
{

|S(t− s)f(s, xo(s), xo(s), uo
s − un

s )|
2
E|Gs

}

dµ

E|en
2(t)|

2
E = E

∫ t

0

E
{

|S(t− s)σ(s, xo(s), xo(s), uo
s − un

s )|2R|Gs

}

ds(4.8)

≤

∫

I×Ω

χt(s)E
{

|S(t− s)σ(s, xo(s), xo(s), uo
s − un

s )|2R|Gs

}

dµ,

where χt(·) denotes the characteristic function of the interval [0, t]. It follows from the

assumption (A1) and the growth properties in assumptions (A2) and (A3) that the

integrands in (4.7) and (4.8), are dominated by the following µ-integrable processes

{ζ1, ζ2} given by the conditional expectations (with respect to the current of sigma

algebras Gs ⊂ Fs, s ∈ I) as shown below,

ζ1(s) ≡M2K2sE
{(

1 + |xo(s)|2E + |xo(s)|2E
)

|Gs

}

, s ∈ I,(4.9)

ζ2(s) ≡M2K2
RE

{(

1 + |xo(s)|2E + |xo(s)|2E
)

|Gs

}

, s ∈ I.(4.10)

Since the semigroup S(t), t > 0, is compact and the integrands in (4.7) and (4.8)

are dominated by the µ-integrable processes given by (4.9)–(4.10), and un d
−→ uo, it

follows from the inequalities (4.7)–(4.8) that for each t ∈ I, both E|en
1 (t)|2E −→ 0 and

E|en
2(t)|

2
E −→ 0 as n → ∞. Since by Corollary 3.2 these functions are also bounded

above, it follows from Lebesgue bounded (dominated) convergence theorem that, as

n → ∞, both the integrals
∫

I
E|e1n(t)|2Edt → 0,

∫

I
E|e2n(t)|

2
Edt → 0. This shows

that the integral
∫

I
hn(t)dt, as defined above, converges to zero. Further, by virtue

of continuity of the semigroup (in the strong operator topology) and the fact that

the integrand is dominated by an integrable function, we conclude that t −→ en
1 (t)

is continuous P-a.s. Again, using Da Prato-Zabczyk factorization technique [18],

one can verify that t −→ en
2 (t) is also continuous (more precisely has continuous

modification). Thus both E|en
1(t)|

2
E and E|en

2 (t)|2E are continuous and bounded and

converge to zero for all t ∈ I. Hence hn(t) −→ 0 uniformly on I and therefore, the

expression on the righthand side of the inequality (4.6) converges to zero uniformly

on I. Clearly, it follows from these facts that xn −→ xo in the norm topology of

Ba
∞(I, E) proving continuity as stated. �
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Now we are prepared to consider control problems. Consider the system (2.1)

with the cost functional given by

J(u) ≡ E

{
∫ T

0

ℓ(t, x(t), x(t), ut)dt+ Φ(x(T ), x(T ))

}

(4.11)

and admissible controls Uad as described at the beginning of this section. Our objec-

tive is to find a control from the admissible class that minimizes the cost functional

(4.11). In the following theorem we prove the existence of optimal control.

Theorem 4.2. Consider the system (2.1) with admissible controls Uad and the cost

functional (4.11). Suppose the assumptions of Theorem 4.1 hold and that ℓ and Φ are

Borel measurable real valued functions on I×E×E×M1(U) and E×E respectively

and satisfy the following growth conditions:

(H1) : |ℓ(t, x, y, u)| ≤ C1(1 + |x|2E + |y|2E) ∀ u ∈ M1(U)

(H2) : |Φ(x, y)| ≤ C2(1 + |x|2E + |y|2E))

for some constants C1, C2 > 0. Further, suppose Φ is lower semicontinuous on E×E

and ℓ is lower semicontinuous in the second and third argument in the norm topology

of E×E; and in the fourth argument with respect to the w∗ (weak star) topology on

M1(U). Then there exists an optimal control uo ∈ Uad.

Proof. Since Uad is compact with respect to the metric topology d it suffices to prove

that J is lower semicontinuous on Uad with respect to this (metric) topology. Let

{un} ⊂ Uad be a sequence such that un d
−→ uo ∈ Uad. Let {xn} and xo denote the

mild solutions of the evolution equation (2.1) corresponding to the controls {un} and

uo respectively. Then it follows from theorem 4.1 that xn s
−→ xo in Ba

∞(I, E). This

implies that, for each t ∈ I, there exists a subsequence of {xn(t)} that converges

to xo(t) P-a.s strongly in E. However, since the Lebesgue measure λ(I) < ∞, it is

clear that the embedding Ba
∞(I, E) →֒ La

2(I, E) ≡ LF
2 (I × Ω, E) is continuous. Thus

whenever xn s
−→ xo in Ba

∞(I, E), it is clear that xn s
−→ xo in La

2(I, E) also and hence

xn converges to xo in measure and therefore there exists a subsequence {xnk} ⊂ {xn},

independent of (t, ω) ∈ I × Ω, such that xnk(t, ω)
s

−→ xo(t, ω) in E, λ× P − a.e. It

is evident that ‖ xnk − xo ‖Ba
∞(I,E)−→ 0 as k → ∞. For convenience of notation we

continue to relabel the subsequence as the original sequence. it is easy to verify that

there exists a subsequence of the sequence {xn} (independent of (t, ω)), relabeled as

{xn}, that converges strongly in LF
2 (I×Ω, E) to the same limit xo. This follows from

the fact that the norm topology of Ba
∞(I, E) is stronger than that of the Hilbert space

LF
2 (I × Ω, E). Clearly,

|xn(t) − xo(t)|E = |Exn(t) −Exo(t)|E ≤
√

E|xn(t) − xo(t)|2E.



74 N. U. AHMED

Hence xn(t)
s

−→ xo(t) in E for each t ∈ I. Recalling that {xn, xo} have continuous

modifications, it follows from lower semicontinuity assumption of ℓ and Φ that

ℓ(t, xo(t), xo(t), uo
t ) ≤ lim inf ℓ(t, xn(t), xn(t), un

t ), t ∈ I,

Φ(xo(T ), xo(T )) ≤ lim inf Φ(xn(T ), xn(T ))

P -a.s. By virtue of the hypothesis (H1) and (H2) and Corollary 3.2, it is easy to

see that the processes {ℓ(t, xn(t), xn(t), un
t )} and {Φ(xn(T ), xn(T ))} are dominated

by integrable processes. Hence it follows from generalized Fatou’s Lemma that

E

∫ T

0

ℓ(t, xo(t), xo(t), uo
t ) dt ≤ lim inf E

∫ T

0

ℓ(t, xn(t), xn(t), un
t ) dt(4.12)

E{Φ(xo(T ), xo(T ))} ≤ lim inf E{Φ(xn(T ), xn(T ))}.(4.13)

Since the sum of lower semicontinuous functionals is lower semicontinuous we conclude

that J is lower semicontinuous on Uad in the metric topology d. That is,

J(uo) ≤ lim inf J(un).

Thus there exists a control u∗ ∈ Uad at which J attains its minimum. This proves the

existence of an optimal control. �

Remark 4.3. It is well known that the class of regular controls (denoted by) U r,

consisting of bounded measurable Gt adapted U -valued random processes (furnished

with the topology of convergence in µ measure), is a subclass of relaxed controls Uad.

This follows from the fact that, for every u ∈ U r, the Dirac measure δu(t), u ∈ U r,

concentrated along the path process u, is a relaxed control. In other words, for any

test function ϕ ∈ L1(µ,C(U)) the duality product is given by

E

∫

I×U

ϕ(t, ξ)ut(dξ)dt = E

∫

I×U

ϕ(t, ξ)δu(t)(dξ)dt = E

∫

I

ϕ(t, u(t))dt.

Clearly, the embedding U r →֒ Uad is continuous. The advantage of using relaxed

controls is that the set U need not be convex, can be even a discrete set of points,

where as, if one uses regular controls, one can show that in the absence of convexity

no optimal control exists. This is a well known fact even for deterministic systems

with measurable controls [Ahmed, [29], example 6.2.22, p. 276].

Remark 4.4. Practical realization of relaxed controls is difficult. However, it follows

from Krien-Millman theorem that clco{ext(M1(U))} = M1(U) where ext(M1(U))

denotes the set of extreme points of the set M1(U). The set of extreme points,

ext(M1(U)), is just the set of Dirac measures {δu, u ∈ U}. And hence regular controls

under the embedding is dense in the relaxed controls. Thus relaxed controls can be

approximated by regular controls as closely as necessary.
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5. NECESSARY CONDITIONS OF OPTIMALITY

In this section we develop the necessary (and possibly sufficient) conditions of op-

timality whereby one can develop computational algorithm to determine the optimal

control. To construct necessary conditions of optimality one requires more regularity

properties for the drift and the diffusion operators. For this reason we introduce the

following additional assumptions:

(A4): The drift f = f(t, x, y, u) and the diffusion operator σ = σ(t, x, y, u) are

continuously once Fréchet differentiable in their second and third argument and the

Fréchet derivatives are uniformly bounded on I ×E ×E ×M1(U).

(A5): The cost integrand ℓ = ℓ(t, x, y, u) and Φ = Φ(x, y) are continuously

Gâteaux differentiable with respect to the arguments x, y ∈ E, and there exist con-

stants C1, C2 > 0 so that their Gâteaux derivatives satisfy the following growth

conditions:

|ℓx(t, x, y, u)|E ≤ C1(1 + |x|E + |y|E) ∀ (t, x, y, u) ∈ I × E × E ×M1(U);

|ℓy(t, x, y, u)|E ≤ C1(1 + |x|E + |y|E) ∀ (t, x, y, u) ∈ I × E × E ×M1(U)

|Φx(x, y)|E ≤ C2(1 + |x|E + |y|E) ∀ (x, y) ∈ E ×E

|Φy(x, y)|E ≤ C2(1 + |x|E + |y|E) ∀ (x, y) ∈ E ×E.

In order to develop the necessary conditions of optimality we need the so-called

variational equation. This equation characterizes the Gâteaux differential of the so-

lution of the state equation (2.1) with respect to controls u ∈ Uad. We present this

in the following lemma.

Lemma 5.1. Suppose the assumptions (A1)–(A4) and those of Theorem 4.1 hold.

Then for any pair {uo, u} ∈ Uad, there exists a z ∈ Ba
∞(I, E) ⊂ La

2(I, E) which is the

unique mild solution of the following variational equation

dz = Azdt+ fx(t, x
o(t), xo(t), uo

t )zdt+ f y(t, x
o(t), xo(t), uo

t )zdt(5.1)

+ σx(t, x
o(t), xo(t), uo

t ; z)dW (t) + σy(t, x
o(t), xo(t), uo

t ; z)dW (t) + dΛu−uo

t ,

z(0) = 0, t ∈ I,

where Λ is the semi-martingale given by

dΛu−uo

t = f(t, xo(t), xo(t), ut − uo
t )dt+ σ(t, xo(t), xo(t), ut − uo

t )dW (t),

starting from Λu−uo

0 = 0. The solution z = s − limε↓0 {zε ≡ (1/ε)(xε − xo)} where

{xε, xo} ⊂ Ba
∞(I, E) are the solutions of the integral equation (3.1) corresponding to

the controls {uε, uo} ∈ Uad respectively for uε ≡ uo + ε(u− uo), ε ∈ (0, 1).

Proof. For simplicity of notation let us denote by F1(t), F2(t), σ1(t; ·), σ2(t; ·) the

operators {fx, fy, σx, σy} respectively all evaluated at (t, xo(t), xo(t), uo
t ). Using this
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notation, equation (5.1) can be compactly written as

dz = Azdt+ F1(t)zdt+ F2(t)zdt+ σ1(t; z)dW (t) + σ2(t; z)dW (t) + dΛu−uo

t ,(5.2)

z(0) = 0, t ∈ I.

It follows from the assumption (A4) that {F1, F2} and {σ1, σ2} are uniformly bounded

Ft-adapted operator valued functions with values in L(E) and L(E,L(H,E)) respec-

tively. This is a linear stochastic evolution equation on E and it is a special case of

the nonlinear equation (2.1). Thus it follows from Theorem 3.1 that this equation

has a unique mild solution z ∈ Ba
∞(I, E) having continuous modification. We must

verify that this is given by the limit

lim
ε→0

zε(t) ≡ lim
ε→0

(1/ε){xε(t) − xo(t)} = z(t)(5.3)

in the norm topology of Ba
∞(I, E), where xε and xo are the unique mild solutions

of the SDE (2.1) corresponding to controls uε ≡ uo + ε(u − uo) and uo respectively.

Recall that the set of relaxed controls is naturally convex and hence uε ∈ Uad. It

is tedious but straightforward to verify (5.3). For the sake of the reader we present

a broad outline. We use Lagrange formula. Let X, Y be any pair of real Banach

spaces and F : X −→ Y once continuously Gâteaux differentiable. Then for any pair

{xo, x} ∈ X one has

F (x) = F (xo) +

∫ 1

0

dθ Fx(x
o + θ(x− xo)) · [x− xo]

where Fx denotes the Gâteaux differential of F evaluated along the line segment

xo + θ(x− xo), θ ∈ (0, 1), as shown and it is an operator valued function with values

in L(X, Y ). In case Y = R, this reduces to

F (x) = F (xo) +

∫ 1

0

dθ〈Fx(x
o + θ(x− xo)), [x− xo]〉X∗,X

where now Fx ∈ X∗, the dual of X. Define the following operator valued functions:

Gε
1(s)(5.4)

≡

∫ 1

0

dθfx(s, x
o(s) + θ(xε(s) − xo(s)), xo(s) + θ(xε(s) − xo(s)), uo

s), s ∈ I;

Gε
2(s)(5.5)

≡

∫ 1

0

dθ

{

fx(s, x
o(s) + θ(xε(s) − xo(s)), xo(s) + θ(xε(s) − xo(s)), uo

s)

− fx(s, x
o(s), xo(s), uo

s)

}

, s ∈ I;
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Gε
3(s; e)(5.6)

≡

∫ 1

0

dθ σx(s, x
o(s) + θ(xε(s) − xo(s)), xo(s) + θ(xε(s) − xo(s)), uo

s; e),

e ∈ E, s ∈ I;

Gε
4(s; e)(5.7)

≡

∫ 1

0

dθ

{

σx(s, x
o(s) + θ(xε(s) − xo(s)), xo(s) + θ(xε(s) − xo(s)), uo

s; e)

σx(s, x
o(s), xo(s), uo

s; e)

}

, e ∈ E, s ∈ I.

It is clear that {Gε
1(t), G

ε
2(t)} and {Gε

3(t; ·), G
ε
4(t; ·)} are Ft-adapted random processes

taking values in L(E) and L(E,L(H,E)) respectively and by assumption (A4) are

uniformly norm bounded on I. Let these bounds be denoted by b for {Gε
1, G

ε
2} and

bR for {Gε
3, G

ε
4}. Further, since by Theorem 4.1, xε −→ xo in Ba

∞(I, E), it follows

from continuity of the Frèchet derivatives {fx, σx} that

(5.8) lim
ε→0

Gε
2(t) −→ 0 and lim

ε→0
Gε

4(t; e) −→ 0 for a.e t ∈ I, P.a.s ∀e ∈ E.

Defining ηε(t) ≡ zε(t) − z(t) and using the operators introduced above one obtains

the following integral equation for ηε

ηε(t) =

∫ t

0

S(t− r)Gε
1(r)η

ε(r)dr +

∫ t

0

S(t− r)Gε
1(r) η

ε(r)dr

(5.9)

+

∫ t

0

S(t− r)Gε
3(r; η

ε(r))dW (r) +

∫ t

0

S(t− r)Gε
3(r; η

ε(r))dW (r) + hε(t),

where hε(t) ≡
∑6

i=1 e
ε
i (t) with {eε

i , i = 1, . . . , 6} given by the following expressions:

eε
1(t) =

∫ t

0

S(t− r)Gε
2(r)z(r)dr, eε

2(t) =

∫ t

0

S(t− r)Gε
2(r)z(r)dr(5.10)

eε
3(t) =

∫ t

0

S(t− r)Gε
4(r; z(r))dW (r), eε

4(t) =

∫ t

0

S(t− r)Gε
4(r; z(r))dW (r)(5.11)

eε
5(t) =

∫ t

0

S(t− r)
[

f(r, xε(r), xε(r), ur − uo
r) − f(r, xo(r), xo(r), ur − uo

r)
]

dr(5.12)

eε
6(t) =

∫ t

0

S(t− r)
[

σ(r, xε, xε, ur − uo
r) − σ(r, xo, xo, ur − uo

r)
]

dW (r).(5.13)

Using the expression (5.9), computing the expected value of norm-square, and using

Gronwall inequality and the fact that the operatorsGε
1 and Gε

3 are uniformly bounded,

one can easily verify that there exists a constant C = C(M, b, bR, T ), dependent on

the parameters displayed, such that

sup
t∈I

E|ηε(t)|2E ≤ C sup
t∈I

E|hε(t)|2E + CeCT

∫ T

0

E|hε(t)|2E dt.(5.14)
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It remains to verify that the righthand side of (5.14) converges to zero as ε → 0.

Using the properties (5.8) and the fact that z ∈ Ba
∞(I, E) ⊂ La

2(I, E), and Lebesgue

dominated convergence theorem, one can easily verify that

lim
ε→0

{

sup
t∈I

E|eε
i (t)|

2
E

}

= 0

for all i = 1, 2, 3, 4. Similarly, using the continuity and the growth assumptions in

(A2) and (A3) and the fact that xε(t)
s

−→ xo(t) in E, P-a.s, once again it follows

from Lebesgue dominated convergence theorem that

lim
ε→0

{

sup
t∈I

E|eε
i (t)|

2
E

}

= 0

for i = 5, 6. From these results it follows that the expression on the righthand side of

the inequality (5.14) converges to zero as ε→ 0. Hence

lim
ε→0

sup
t∈I

E|ηε(t)|2E = 0,(5.15)

and we conclude that ηε → 0 in Ba
∞(I, E). Thus we have proved that zε → z in the

norm topology of Ba
∞(I, E). This completes the proof. �

Now we are prepared to develop the necessary conditions of optimality. In order

to do so we recall some basic properties of semimartingales. An E-valued norm-square

integrable continuous Ft-semimartingale with intensity parameters {m0, φ,Σ} has the

standard representation

m(t) ≡ m0 +

∫ t

0

φ(s)ds+

∫ t

0

Σ(s)dW (s), t ∈ I,

wherem0 is F0 measurable belonging to L2(Ω, E), φ ∈ La
2(I, E) and Σ ∈ La

2(I,LR(H,E)).

The scalar product of any two such semimartingales is given by

E(m1, m2)E ≡ E(m1,0, m2,0)E + E

∫ T

0

(φ1(s), φ2(s))Eds+ E

∫ T

0

Tr(Σ1(s)RΣ∗
2(s))ds.

Completion of this space with respect to the above scalar product is a Hilbert space

which we denote by SM 2(I, E). It is well known that any such semimartingale is

uniquely determined by its intensity parameters and conversely. In the sequel, we

need the space SM 2
0(I, E) ⊂ SM 2(I, E) of semi-martingales starting from zero.

For convenience of notation we set La
2(I,LR(H,E)) ≡ La

2,R(I,L(H,E)). From

Lemma 5.1 we obtain the following corollary.

Corollary 5.2. Suppose the assumptions of Lemma 5.1 hold. Then the map Λ −→ z

is a continuous linear (hence bounded) operator from SM 2
0(I, E) to Ba

∞(I, E).

Proof. Using the semigroup and writing the integral equation corresponding to the

variational equation (5.2) and using the fact that all the associated operators are

uniformly bounded on I one can use Gronwall lemma to arrive at the inequality

‖ z ‖Ba
∞(I,E)≤ C ‖ Λ ‖SM2

0
(I,E) for some constant C > 0. This concludes the proof. �
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We present below the necessary conditions of optimality.

Theorem 5.3. Consider the control system (2.1) with the admissible controls Uad

and the cost functional (4.11). Suppose the assumptions of Theorem 4.2 and Lemma

5.1 hold and that ℓ and Φ satisfy the assumption (A5). Then, for a control uo ∈ Uad to

be optimal, it is necessary that there exists a pair (ψ,Q) ∈ La
2(I, E)×La

2,R(I,L(H,E))

such that the following inequality holds

E

∫

I

〈ψ(t), f(t, xo(t), xo(t), ut − uo
t 〉Edt(5.16)

+ E

∫

I

Tr
(

Q(t)Rσ∗(t, xo(t), xo(t), ut − uo
t )

)

dt

+ E

∫

I

ℓ(t, xo(t), xo(t), ut − uo
t ) dt ≥ 0, ∀ u ∈ Uad,

where xo ∈ Ba
∞(I, E) is the (mild) solution of the evolution equation (2.1) corre-

sponding to the control uo ∈ Uad.

Proof. Let uo ∈ Uad be an optimal control (minimizing the cost functional (4.11))

and u ∈ Uad any other control. For any ε ∈ (0, 1), it follows from the convexity of

relaxed controls that uε ≡ uo + ε(u− uo) ∈ Uad. Thus J(uo) ≤ J(uε) for all ε ∈ (0, 1)

and hence

(1/ε)(J(uε − J(uo)) ≥ 0 ∀ ε ∈ (0, 1).

Letting ε ↓ 0 and using the assumption (A5), it follows from the above expression

that the Gâteaux differential of J at uo in the direction u− uo must satisfy

dJ(uo; u− uo) = L(z) + E

∫ T

0

ℓ(t, xo(t), xo(t), ut − uo
t )dt ≥ 0, ∀ u ∈ Uad,(5.17)

where L(z) is given by

L(z) ≡ E

∫ T

0

{

〈lx(t, x
o(t), xo(t), uo

t ), z(t)〉E

+ 〈ly(t, x
o(t), xo(t), uo

t ), z(t)〉E

}

dt

+ E
{

〈Φx(x
o(T ), xo(T )), z(T )〉E + 〈Φy(x

o(T ), xo(T )), z(T )〉E
}

with z being the mild solution of the variational evolution equation (5.2). Clearly, for

any two E-valued square integrable random variables {X, Y } we have E(X, Y )E =

E(X, Y )E . Using this fact it follows from the above expression that

L(z) ≡ E

∫ T

0

{

〈[lx(t, x
o(t), xo(t), uo

t ) + Ely(t, x
o(t), xo(t), uo

t )], z(t)〉E

}

dt(5.18)

+ E
{

〈[Φx(x
o(T ), xo(T )) + EΦy(x

o(T ), xo(T ))], z(T )〉E
}

.

Further, it follows from the assumption (A5) and Theorem 3.1 that the Gâteaux

derivatives of ℓ with respect to x, y along the arguments indicated, are Ft-adapted and
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that ℓx, ℓy ∈ La
2(I, E). Due to the existence of continuous modification and assump-

tion (A5), it follows from identical arguments that Φx(x
o(T ), xo(T )),Φy(x

o(T ), xo(T ))

are well defined and FT measurable and belong to L2(Ω, E). Thus it follows from the

expression (5.18) that L is a continuous linear functional of z ∈ Ba
∞(I, E) ⊂ La

2(I, E).

It follows from Corollary 5.2 that the mild solution z of the variational equation

(5.1/5.2) is continuously dependent on the semi-martingale Λ ∈ SM2
0(I, E). In fact,

Λ −→ z is a continuous linear (hence bounded) operator from SM 2
0(I, E) to Ba

∞(I, E).

Thus, we conclude that the composition map L̃, as defined below

Λ −→ z −→ L(z) ≡ L̃(Λ),(5.19)

is a continuous linear functional on SM2
0(I, E). Hence, by the semi-martingale rep-

resentation theory on Hilbert spaces as discussed above, we conclude that there exists

a pair (ψ,Q) ∈ La
2(I, E) × La

2,R(I,L(H,E)) such that

L(z) = L̃(Λ) = E

∫ T

0

〈ψ(t), f(t, xo(t), xo(t), ut − uo
t )〉Edt(5.20)

+ E

∫ T

0

Tr(QRσ∗(t, xo(t), xo(t), ut − uo
t ))dt.

In view of (5.19), using the expression (5.20) in (5.17) we obtain the necessary con-

dition (5.16). This proves the necessary conditions of optimality. �

The question that arises now is how to find this pair

(ψ,Q) ∈ La
2(I, E) × La

2,R(I,L(H,E)) = La
2(I, E) × La

2(I,LR(H,E)).

Under an additional assumption, we show in the following theorem that this is given

by the mild solution of a backward stochastic differential equation. For economy of

notations we write

ℓox(t) ≡ ℓx(t, x
o(t), xo(t), uo

t ), ℓoy(t) ≡ ℓy(t, x
o(t), xo(t), uo

t ),

F1(t) ≡ fx(t, x
o(t), xo(t), uo

t ), F2(t) ≡ f y(t, x
o(t), xo(t), uo

t ),

σ1(t; ·) ≡ σx(t, x
o(t), xo(t), uo

t ; ·), σ2(t; ·) ≡ σy(t, x
o(t), xo(t), uo

t ; ·).

Theorem 5.4. Suppose the assumptions of Theorem 5.3 hold and that the initial

state x0 of the system (2.1) is F0 measurable and belongs to L4(Ω, E). Then the pair

(ψ,Q) is given by the mild solution of the following BSDE:

−dϕ =A∗ϕdt+ F ∗
1 (t)ϕdt+ Γ1(t)ϕdt+

(

E(F ∗
2 (t)ϕ) + E(Γ2(t)ϕ)

)

dt(5.21)

+ (ℓox(t) + Eℓoy(t))dt+ σ̂1(t;ϕ)dW

ϕ(T ) = Φx(x
o(T ), xo(T )) + EΦy(x

o(T ), xo(T )),(5.22)
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with ψ(t) = ϕ(t), t ∈ I, and Q(t) = σ̂1(t;ϕ(t)), t ∈ I, where the operator valued

processes {σ̂1(t; ·),Γ1(t),Γ2(t)} are derived from the following multilinear forms:

(e2, σ1(t; e1)h)E ≡ (e1, σ̂1(t; e2)h)E , e1, e2 ∈ E and h ∈ H,

Tr(−σ̂1(t; e2)Rσ
∗
1(t; e1)) ≡ (Γ1(t)e2, e1), e1, e2 ∈ E,

Tr(−σ̂1(t; e2)Rσ
∗
2(t; e1)) ≡ (Γ2(t)e2, e1), e1, e2 ∈ E.

Proof. The proof follows from similar arguments as in [2, Theorem 4.2, p. 72], [7,

Theorem 6.3, p. 119]. We present a brief outline. Let Σ1 ∈ La
2(I,LR(H,E)) which is

identified later as Q = σ̂1(t;ϕ). Consider the stochastic system of the form

dϕ = −A∗ϕdt+ (B.V )dt+ Σ1(t)dW(5.23)

where “(B.V )” denotes all the bounded variation terms which are also identified in

the body of the detailed proof. Recall the variational evolution equation given by

(5.2) as reproduced below:

dz = Azdt+ F1(t)zdt+ F2(t)zdt+ σ1(t; z)dW (t) + σ2(t; z)dW (t) + dΛu−uo

t ,(5.24)

z(0) = 0, t ∈ I.

Since it is the mild solution that matters, one can formally compute the Itô differential

of the scalar product (ϕ(t), z(t))E giving

d(ϕ, z)E = (dϕ, z) + (ϕ, dz)+ ≪ dϕ, dz ≫,

where the last term denotes the quadratic variation. Integrating this over the time

interval I and computing the expected values and using the variational equation

(5.24) one arrives at the same cost functional as given by (5.18) while identifying

the adjoint evolution equation (5.21) along with the terminal condition (5.22). The

formal computations are then justified by use of Yosida approximation of A and taking

the limit. A direct proof of existence of an Ft-adapted (mild) solution for equation

(5.21)–(5.22) can be carried out using similar approach as given in Hu and Peng [21,

Theorem 3.1, p. 455] slightly modified for the mean field components. This completes

the brief outline of our proof. �

Remark 5.5. The preceding theorem is proved under the assumption that the initial

state has fourth order moment. Clearly, if x0 is deterministic, this assumption is

automatically satisfied since in that case it has moments of all orders. This assumption

can be replaced by an alternate assumption on the diffusion operator σ requiring that

it is uniformly bounded.

Remark 5.6. Recently [28] we have also considered a more general class of controlled

McKean-Vlasov equations where both the drift and the diffusion operators contain

the state and the measure induced by it.
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6. SOME EXAMPLES ON LQGR PROBLEMS

For illustration of the results presented above we consider several versions of linear

quadratic control problems for a system governed by the following linear mean-field

evolution equation,

dx = Axdt+ F (t)x(t)dt+B(t)u(t)dt+ σ(t)dW(6.1)

x(0) = x0, t ∈ I,

on the Hilbert space E. The operator A is the infinitesimal generator of a C0-

semigroup S(t), t ≥ 0, on E, F is a strongly measurable (in the strong operator

topology) and uniformly bounded operator valued function with values in L(E) and

B is also a strongly measurable uniformly bounded operator valued function with

values in L(U,E) where U is any separable Hilbert space (so a Polish space) and σ

is a strongly measurable operator valued function taking values in LR(H,E) with W

being an H-Brownian motion with nuclear covariance R. In view of Remark 5.5, if σ

is a Bochner measurable uniformly bounded L(H,E) valued function, the restriction

(see Theorem 5.4) requiring the initial state to have fourth order moment, can be

removed. Since here the system is linear and the cost functionals are quadratic, the

problem is convex, and hence optimal controls exist in the class of regular controls

contained in relaxed controls. Further, the necessary conditions of optimality proved

in the preceding section are also sufficient. For LQR and LQGR problems in finite

dimensional spaces, the reader can refer to any graduate text on control theory, for

example, [29, 30].

Example 1. Consider the cost functional of the form

J(u) ≡ (1/2)E

{
∫ T

0

[

(Q1(t)x, x)E + (Q2(t)x, x)E) + (R(t)u, u)U

]

dt(6.2)

+ (1/2)(M1x(T ), x(T ))E + (M2x(T ), x(T ))E

}

where Q1, Q2 are strongly measurable operator valued functions taking values in the

space of positive selfadjoint operators L+
s (E), and R taking values from L+

s (U) having

continuous inverse. The operators M1,M2 ∈ L+
s (E). Using Theorem 5.4 of the

preceding section we observe that ℓx = Q1x, Eℓy = Q2x, σ̂1(t;ϕ) = 0. Hence the

adjoint evolution equation is given by

dϕ = A∗ϕdt+ F ∗(t)ϕdt+Q1xdt+Q2xdt(6.3)

ϕ(T ) = M1x(T ) +M2x(T ).

Note that it is an ordinary differential equation on the Hilbert space E with stochastic

inputs and random boundary (terminal) condition. Clearly, ϕ is linear in x and x
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and hence it has the form

ϕ(t) = K1(t)x(t) +K2(t)x(t) + r(t), t ∈ I ≡ [0, T ](6.4)

where K1, K2 are suitable operator valued functions taking values in L(E) satisfying

the boundary conditions K1(T ) = M1 and K2(T ) = M2 and r(T ) = 0 with r being

an E-valued stochastic process identified below. Using the inequality (5.16) arising

from the necessary condition, one can easily verify that the optimal control is given

by

uo(t) = −R−1(t)B∗(t)ϕ(t)(6.5)

= −R−1(t)B∗(t)K1(t)x(t) − R−1(t)B∗(t)K2(t)x(t) − R−1(t)B∗(t)r(t),

for t ∈ I. Following similar procedure as in the classical regulator problems, the

reader can easily verify that the operators {K1, K2} must satisfy the following system

of coupled operator-Ricatti equations,

(d/dt)K17 + (K1A+ A∗K1) −K1BR
−1B∗K1 +Q1 = 0, K1(T ) = M1,(6.6)

(d/dt)K2 +K2(A+ F − BR−1B∗K1) + (A + F − BR−1B∗K1)
∗K2(6.7)

+ (K1F + F ∗K1) −K2BR
−1B∗K2 +Q2 = 0, K2(T ) = M2,

on the Banach space L(E), and the process r satisfies the following BSDE on E,

dr + (A+ F − BR−1B∗K1)
∗rdt+K1σdW = 0, r(T ) = 0.(6.8)

These operator-Ricatti equations are solved in the weak sense. For example,

considering equation (6.6), for any complete ortho-normal set {ei} ⊂ D(A) ⊂ E, one

solves the following system of equations

(K̇1ei, ej) + (Aei, K1ej) + (K1ei, Aej) − (BR−1B∗K1ei, K1ej) + (Q1ei, ej) = 0,(6.9)

(K1(T )ei, ej) = (M1ei, ej), i, j ∈ N.

Remark 6.1. If the mean field terms are omitted by setting F (t) ≡ 0, Q2(t) ≡ 0,

M2 = 0, we find that the operator equation (6.7) reduces to

K̇2 +K2(A− BR−1B∗K1) + (A− BR−1B∗K1)
∗K2 −K2BR

−1B∗K2 = 0,(6.10)

K2(T ) = 0.

This is a homogeneous equation in K2 with terminal condition zero. Hence it can have

only the trivial solution K2(t) ≡ 0 and we are left with the equations (6.6) and (6.8)

(with F ≡ 0). Thus we have recovered the well known results for classical stochastic

regulator problems. Further, in the absence of noise with σ ≡ 0, equation (6.8) turns

into a homogeneous equation with r(T ) = 0. In this case r(t) ≡ 0, t ∈ I, and we

recover the classical results for deterministic linear quadratic regulator problems.
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Example 2. Consider the evolution equation (6.1) with the cost functional

J(u) ≡ (1/2)E

{
∫ T

0

{(Q(x− x), x− x)E + (Ru, u)U}dt(6.11)

+ (M(x(T ) − x(T )), x(T ) − x(T ))E

}

,

where Q(t) ∈ L+
s (E), R(t) ∈ L+

s (U) for all t ∈ I, with R−1(t) continuous and bounded

for all t ∈ I, and M ∈ L+
s (E). Here the objective is to minimize the volatility

or fluctuation around the mean. Following the necessary conditions of optimality,

Theorem 5.3 and Theorem 5.4, one can verify that the adjoint evolution equation is

given by

−dϕ = A∗ϕ dt+ F ∗(t)ϕ dt+Q(x− x) dt, ϕ(T ) = M(x(T ) − x(T )).(6.12)

Again, this is an ordinary (meanfield) linear differential equation on the Hilbert space

E with stochastic input. Thus the solution is given by

ϕ(t) = K(t)(x(t) − x(t)) + r(t)

for suitable operator valued function K and a process r. Following similar steps as

in the first example, it is easy to verify that K satisfies the following operator Ricatti

equation on L(E)

(d/dt)K + (KA+ A∗K) − (KBR−1B∗K) +Q = 0(6.13)

K(T ) = M

in the weak sense and the process r is given by the (mild) solution of the following

BSDE

dr + (A− BR−1B∗K)∗rdt+ (F +BR−1B∗K)∗rdt+KσdW = 0, r(T ) = 0.

Using the above equation one can verify that r(t) ≡ 0 and therefore it reduces to the

following BSDE

dr + (A− BR−1B∗K)∗rdt+KσdW = 0, r(T ) = 0.(6.14)

In this case the optimal feedback control is given by

uo(t) = −R−1(t)B∗(t)[K(t)(x(t) − x(t)) + r(t)], t ∈ I.(6.15)

Example 3. Consider the evolution equation 6.1 with the cost functional given by

J(u) ≡ (1/2)E

{
∫ T

0

(Q(x− x), x− x)E − (Cx, x)E + (Ru, u)Udt(6.16)

+(M(x(T ) − x(T )), x(T ) − x(T ))E − (Nx(T ), x(T ))E

}

,

where Q(t), C(t) ∈ L+
s (E), R(t) ∈ L+

s (U) are bounded for all t ∈ I, with R−1(t)

continuous and bounded for all t ∈ I, and M,N ∈ L+
s (E). The objective here is
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to maximize the average yield as reflected in the quadratic forms (C(t)x(t), x(t))E

and (Nx(T ), x(T ))E, and minimize fluctuation around the average yield. Following

the necessary conditions of optimality (Theorem 5.3 and Theorem 5.4) one can verify

that the adjoint evolution equation is given by

−dϕ = A∗ϕdt+ F ∗(t)ϕdt+Q(t)(x− x) − C(t)x,(6.17)

ϕ(T ) = M(x(T ) − x(T )) −Nx(T ).

Again following similar procedure as in examples 1 and 2, the optimal feedback control

law is given by

uo = −R−1B∗[K1(x− x) +K2x+ r](6.18)

where the operator valued functions {K1, K2} and the process r are, respectively, the

weak and mild solutions of the following system of evolution equations

(d/dt)K1 + (K1A+ A∗K1) −K1BR
−1B∗K1 +Q = 0, K1(T ) = M(6.19)

(d/dt)K2 +K2(A+ F ) + (A+ F )∗K2 −K2BR
−1B∗K2 − C = 0,(6.20)

K2(T ) = −N

dr + (A−BR−1B∗K1)
∗rdt+K1σdW = 0, r(T ) = 0,(6.21)

on L(E) and E respectively. Note that if C ≡ 0 and N = 0, the operator equation

(6.20) reduces to a homogeneous equation with only the trivial solution K2(t) ≡

0. Under these conditions equation (6.20) disappears and we obtain the results of

Example 2.
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