LERAY-SCHAUDER AND FURI-PERA TYPE RESULTS BASED ON $\Phi\text{-}\mathrm{EPI}$ MAPS

DONAL O'REGAN

School of Mathematics, Statistics and Applied Mathematics National University of Ireland Galway Ireland donal.oregan@nuigalway.ie

ABSTRACT. In this paper using the notion of Φ -epi maps we present new and abstract Leray-Schauder and Furi-Pera type results.

AMS (MOS) Subject Classification. 47H04

Keywords: Φ -epi maps, Leray-Schauder type results, Furi-Pera type results.

1. INTRODUCTION

The 0-epi maps were introduced by Furi, Martelli and Vignoli in [1]. These maps were generalized by Gabor, Gorniewicz and Slosarski in [3]. More recently the general notion of Φ -epi maps for a general class of maps was presented by O'Regan in [6] (see also [4]) and these result allow us to study coincidence points (i.e. $F(x) \cap \Phi(x) \neq \emptyset$) of the maps F and Φ . In this paper using the theory in [6] we begin by presenting some new Leray-Schauder alternatives for a very general class of maps. Next we present a very general Furi-Pera type result (see [2, 5]) based on Leray-Schauder type alternatives.

2. LERAY-SCHAUDER AND FURI-PERA RESULTS

We begin this section by recalling the following definitions and results from the literature [6].

Let E be a Hausdorff topological space and U an open subset of E. We will consider classes **A** and **B** of maps.

Definition 2.1. We say $F \in A(\overline{U}, E)$ if $F \in \mathbf{A}(\overline{U}, E)$ and $F : \overline{U} \to K(E)$ is an upper semicontinuous map; here \overline{U} denotes the closure of U in E and K(E) denotes the family of nonempty compact subsets of E.

Definition 2.2. We say $F \in B(\overline{U}, E)$ if $F \in \mathbf{B}(\overline{U}, E)$ and $F : \overline{U} \to K(E)$ is an upper semicontinuous map.

Now we fix a $\Phi \in B(\overline{U}, E)$.

Definition 2.3. We say $F \in A_{\partial U}(\overline{U}, E)$ if $F \in A(\overline{U}, E)$ with $F(x) \cap \Phi(x) = \emptyset$ for $x \in \partial U$; here ∂U denotes the boundary of U in E.

Definition 2.4. We say $F \in B_{\Phi}(\overline{U}, E)$ if $F \in B(\overline{U}, E)$ and $F(x) \subseteq \Phi(x)$ for $x \in \partial U$.

Definition 2.5. A map $F \in A_{\partial U}(\overline{U}, E)$ is Φ -epi if for every map $G \in B_{\Phi}(\overline{U}, E)$ there exists $x \in U$ with $F(x) \cap G(x) \neq \emptyset$.

Remark 2.6. Suppose $F \in A_{\partial U}(\overline{U}, E)$ is Φ -epi. Then there exists $x \in U$ with $F(x) \cap \Phi(x) \neq \emptyset$ (take $G = \Phi$ in Definition 2.5).

In [6] we established the following Leray-Schauder alternative.

Theorem 2.7. Let E be a normal topological vector space and U an open subset of E. Suppose $F \in A_{\partial U}(\overline{U}, E)$ is Φ -epi and $G \in B(\overline{U}, E)$ and assume the following condition holds:

(2.1)
$$\begin{cases} \mu(.) G(.) + (1 - \mu(.)) \Phi(.) \in B(\overline{U}, E) \text{ for any} \\ \text{continuous map } \mu: \overline{U} \to [0, 1] \text{ with } \mu(\partial U) = 0. \end{cases}$$

Then either

(A1). there exists $x \in \overline{U}$ with $F(x) \cap G(x) \neq \emptyset$, or

(A2). there exists $x \in \partial U$ and $\lambda \in (0,1)$ with $F(x) \cap [\lambda G(x) + (1-\lambda)\Phi(x)] \neq \emptyset$, holds.

Remark 2.8. We can remove the assumption that E is normal in the statement of Theorem 2.7 provided we have that (so we need to put conditions on the maps)

$$D = \left\{ x \in \overline{U} : F(x) \cap [tG(x) + (1-t)\Phi(x)] \neq \emptyset \text{ for some } t \in [0,1] \right\}$$

is relatively compact. The existence of the map μ in [6] is then guaranteed since topological vector spaces are completely regular (i.e. in the proof in [6] there exists a map $\mu : \overline{U} \to [0, 1]$ with $\mu(\partial U) = 0$ and $\mu(D) = 0$).

A special case of Theorem 2.7 is the following applicable result of Leray-Schauder type.

Theorem 2.9. Let E be a normal topological vector space and U an open convex subset of E with $0 \in U$. Suppose $G \in B(\overline{U}, E)$ and (2.1) holds. In addition assume the following conditions hold:

(2.2)
$$i \in \mathbf{A}(\overline{U}, E)$$
 where *i* is the identity map

$$(2.3)\qquad \qquad \Phi(\partial U) \subseteq U$$

102

(2.4) \overline{U} is a retract of E i.e. there exists a retraction (continuous) $r: E \to \overline{U}$

(2.5) any map
$$\Psi \in A(E, E)$$
 has a fixed point

and

(2.6)
$$\begin{cases} \text{for any continuous map } \eta : E \to [0,1] \text{ with } \eta(E \setminus U) = 0\\ \text{and } H \in B_{\Phi}(\overline{U}, E) \text{ the map } J \in A(E, E)\\ \text{where } J(x) = \eta(x)H(r(x)). \end{cases}$$

Then either

(A1). there exists $x \in \overline{U}$ with $x \in G(x)$ or

(A2). there exists $x \in \partial U$ and $\lambda \in (0,1)$ with $x \in \lambda G(x) + (1-\lambda)\Phi(x)$ holds.

Proof. Let F(x) = i(x). Note $F \in A_{\partial U}(\overline{U}, E)$ since if $x \in \partial U$ we have $F(x) \cap \Phi(x) = \emptyset$ (note for $x \in \partial U$ we have $x \notin \Phi(x)$ from (2.3)). The result follows from Theorem 2.7 if we show F is Φ -epi. Let $H \in B_{\Phi}(\overline{U}, E)$ (i.e. $H \in B(\overline{U}, E)$ with $H(x) \subseteq \Phi(x)$ for $x \in \partial U$). We must show there exists $x \in U$ with $x \in H(x)$. Let

$$\Omega = \left\{ x \in \overline{U} : x \in \lambda H(x) \text{ for some } \lambda \in [0, 1] \right\}.$$

Now Ω is closed (since H is upper semicontinuous) and $\Omega \subset U$ since if there exists $x \in \partial U$ and $\lambda \in [0,1]$ with $x \in \lambda H(x)$ then since $H(y) \subseteq \Phi(y)$ for $y \in \partial U$ we have $x \in \lambda \Phi(x)$ and so $x \in U$ (recall $\Phi(\partial U) \subseteq U$, U is convex and $0 \in U$), a contradiction. Now Urysohn's Lemma guarantees that there exists a continuous map $\eta : E \to [0,1]$ with $\eta(\Omega) = 1$ and $\eta(E \setminus U) = 0$. Define a map J by $J(x) = \eta(x)H(r(x))$. Now (2.6) guarantees that $J \in A(E, E)$ and (2.5) guarantees that there exists $x \in E$ with $x \in \eta(x)H(r(x))$. If $x \in E \setminus U$ then $\eta(x) = 0$, a contradiction since $0 \in U$. Thus $x \in U$ and so $x \in \eta(x)H(x)$. As a result $x \in \Omega$ so $\eta(x) = 1$. Thus $x \in H(x)$.

Remark 2.10. We note from the proof above that we could replace U convex and (2.3) with the condition

(2.7)
$$x \notin \lambda \Phi(x) \text{ for } x \in \partial U \text{ and } \lambda \in (0, 1].$$

Note in (2.7) we have in fact $\lambda \in [0, 1]$ since $x \neq 0$ if $x \in \partial U$ (recall $0 \in U$).

Remark 2.11. We can remove the assumption that E is normal in the statement of Theorem 2.9 provided we have that (so we need to put conditions on the maps) D (see Remark 2.8) and Ω (see the proof of Theorem 2.9) are relatively compact (note the existence of the map η in Theorem 2.9 is then guaranteed since topological vector spaces are completely regular).

In our next result E will be a locally convex topological vector space. The more general case when E is a topological vector space will be presented in Remark 2.15.

Theorem 2.12. Let E be a normal locally convex Hausdorff topological vector space and U an open convex subset of E with $0 \in U$. Suppose $G \in B(\overline{U}, E)$ and (2.1), (2.2) and (2.3) hold. Let $r : E \to \overline{U}$ be given by

$$r(x) = \frac{x}{\max\{1, \mu(x)\}} \text{ for } x \in E,$$

where μ is the Minkowski functional on \overline{U} (i.e. $\mu(x) = \inf\{\alpha > 0 : x \in \alpha \overline{U}\}$). In addition assume the following conditions hold:

(2.8) for any map
$$H \in B_{\Phi}(\overline{U}, E)$$
 we have $rH \in A(\overline{U}, \overline{U})$

and

(2.9) any map
$$\Psi \in A(\overline{U}, \overline{U})$$
 has a fixed point

Then either

(A1). there exists $x \in \overline{U}$ with $x \in G(x)$

or

(A2). there exists $x \in \partial U$ and $\lambda \in (0,1)$ with $x \in \lambda G(x) + (1-\lambda)\Phi(x)$

holds.

Proof. Let F(x) = i(x). Note $F \in A_{\partial U}(\overline{U}, E)$ and the result follows from Theorem 2.7 if we show F is Φ -epi. Let $H \in B_{\Phi}(\overline{U}, E)$ (i.e. $H \in B(\overline{U}, E)$ with $H(x) \subseteq \Phi(x)$ for $x \in \partial U$). We must show there exists $x \in U$ with $x \in H(x)$. Let $\Psi = rH$. Then from (2.8) and (2.9) we see that $\Psi \in A(\overline{U}, \overline{U})$ and there exists $x \in \overline{U}$ with $x \in rH(x)$. Then x = r(y) where $y \in H(x)$; here $x \in \overline{U} = U \cup \partial U$. If we show

$$(2.10) x \in U \text{ and } r(y) = y$$

then x = y so $x \in H(x)$ and we are finished. It remains to show (2.10). Let $x \in \partial U$. Then $\mu(x) = 1$ so

$$1 = \mu(x) = \mu(r(y)) = \frac{\mu(y)}{\max\{1, \mu(y)\}},$$

so $\mu(y) \geq 1$. Thus $x = r(y) = \frac{y}{\mu(y)}$ so with $\lambda = \frac{1}{\mu(y)}$ we have $x \in \lambda H(x)$. Then since $H(w) \subseteq \Phi(w)$ for $w \in \partial U$ we have $x \in \lambda \Phi(x)$ and so $x \in U$ (recall $\Phi(\partial U) \subseteq U, U$ is convex and $0 \in U$), a contradiction. Thus $x \in U$. Then $\mu(x) < 1$ so

$$1 > \mu(x) = \mu(r(y)) = \frac{\mu(y)}{\max\{1, \mu(y)\}},$$

and as a result $\mu(y) < 1$. Thus r(y) = y, so (2.10) holds.

Remark 2.13. We can remove the assumption that E is normal in the statement of Theorem 2.12 provided we have that (so we need to put conditions on the maps) D (see Remark 2.8) is relatively compact.

Remark 2.14. We note from the proof above that we could replace (2.3) with (2.7).

Remark 2.15. Let *E* be a normal topological vector space and *U* an open subset of *E* with $0 \in U$. Suppose $G \in B(\overline{U}, E)$ and (2.1), (2.2) and (2.7) hold. Also assume

(2.11) there exists a retraction
$$r: E \to \overline{U}$$
 with $r(w) \in \partial U$ if $w \in E \setminus U$

and

(2.12) there is no
$$z \in \partial U$$
 with $z = r(y)$ and $y \in \Phi(z)$.

Finally suppose (2.8) (with r in (2.11)) and (2.9) hold. Then the conclusion in Theorem 2.12 holds. To see this let $H \in B_{\Phi}(\overline{U}, E)$ and exactly the same argument as in Theorem 2.12 guarantees that there exists $x \in \overline{U}$ with $x \in rH(x)$. Then

(2.13)
$$x = r(y) \text{ with } y \in H(x);$$

here $x \in \overline{U} = U \cup \partial U$. If we show

$$(2.14) x \in U \text{ and } r(y) = y$$

then (2.13) implies $x \in H(x)$ and we are finished. It remains to show (2.14). If $x \in \partial U$ then x = r(y) and $y \in H(x) \subseteq \Phi(x)$, so (2.12) yields a contradiction. Thus $x \in U$. As a result since $r(y)(=x) \in U$ we have from (2.11) that $y \in U$ and so r(y) = y.

We now present a very general abstract Furi-Pera type result based on Leray-Schauder type results (see (2.17)) below).

Theorem 2.16. Let E be a metrizable topological vector space and Q a closed subset of E. Let $F : Q \to K(E)$, $\Phi : Q \to K(E)$ and assume the following hold:

(2.15) there exists a retraction
$$r: E \to Q$$
 with $r(z) \in \partial Q$ for $z \in E \setminus Q$

and

(2.16)
$$Fr \in B(E, E)$$
 and Fr has a fixed point.

For $i \in \{1, 2, ...\}$ let $U_i = \{x \in E : d(x, Q) < \frac{1}{i}\}$; here *d* is the metric associated with *E*. Suppose for each $i \in \{1, 2, ...\}$ we have $Fr \in B(\overline{U_i}, E)$, $\Phi r \in B(\overline{U_i}, E)$ and assume the following conditions hold:

(2.17)
$$\begin{cases} either (A1). there exists $x \in \overline{U_i} \text{ with } x \in Fr(x) \text{ or } (A2). \text{ there exists} \\ x \in \partial U_i \text{ and } \lambda \in (0,1) \text{ with } x \in \lambda Fr(x) + (1-\lambda)\Phi r(x) \text{ hold} \end{cases}$$$

(2.18)
$$\begin{cases} \{x \in E : x \in \lambda Fr(x) + (1-\lambda)\Phi r(x) \text{ for some } \lambda \in [0,1]\} \\ \text{ is relatively compact.} \end{cases}$$

Finally suppose

(2.19)
$$\begin{cases} if \{(x_j, \lambda_j\}_{j=1}^{\infty} \text{ is a sequence in } \partial Q \times [0, 1] \text{ converging} \\ to (x, \lambda) \text{ with } x \in \lambda F(x) + (1 - \lambda) \Phi(x) \text{ and } 0 \leq \lambda < 1, \\ then \{\lambda_j F(x_j) + (1 - \lambda_j) \Phi(x_j)\} \subseteq Q \text{ for } j \text{ sufficiently large.} \end{cases}$$

Then F has a fixed point in Q.

Proof. Let

$$\Omega = \{ x \in E : x \in Fr(x) \}.$$

Now $\Omega \neq \emptyset$ (from (2.16)) and Ω is closed since Fr is upper semicontinuous. Now (2.18) guarantees that Ω is compact. We claim $\Omega \cap Q \neq \emptyset$. To do this we argue by contradiction. Suppose that $\Omega \cap Q = \emptyset$. Then since Ω is compact and Q is closed there exists $\delta > 0$ with $dist(\Omega, Q) > \delta$. Choose $m \in \{1, 2, ...\}$ with $1 < \delta m$ and let (as in the statement of the theorem) $U_i = \{x \in E : d(x, Q) < \frac{1}{i}\}$ for $i \in \{m, m+1, ...\}$.

Fix $i \in \{m, m+1, ...\}$. Since $dist(\Omega, Q) > \delta$ we see that $\Omega \cap \overline{U_i} = \emptyset$. Now (2.17) guarantees that there exists $\lambda_i \in (0, 1)$ and $y_i \in \partial U_i$ with $y_i \in \lambda_i Fr(y_i) + (1 - \lambda_i) \Phi r(y_i)$. Since $y_i \in \partial U_i$ we have

(2.20)
$$\{\lambda_i Fr(y_i) + (1 - \lambda_i)\Phi r(y_i)\} \not\subseteq Q \text{ for } i \in \{m, m + 1, \dots\}.$$

Now let

$$D = \{x \in E : x \in \lambda Fr(x) + (1 - \lambda)\Phi r(x) \text{ for some } \lambda \in [0, 1]\}$$

Now $D \neq \emptyset$ (from (2.16)) is closed so compact from (2.18). This together with

$$d(y_j, Q) = \frac{1}{j}$$
 and $|\lambda_j| \le 1$ for $j \in \{m, m+1, \dots\}$

implies that we may assume without loss of generality that $\lambda_j \to \lambda^*$ and $y_j \to y^* \in \partial Q$. In addition since Fr and Φr are upper semicontinuous and $y_j \in \lambda_j Fr(y_j) + (1 - \lambda_j)\Phi r(y_j)$ we have

$$y^{\star} \in \lambda^{\star} Fr(y^{\star}) + (1 - \lambda^{\star}) \Phi r(y^{\star})$$

i.e. $y^* \in \lambda^* F(y^*) + (1 - \lambda^*) \Phi(y^*)$ since $r(y^*) = y^*$. If $\lambda^* = 1$ then $y^* \in Fr(y^*)$ which contradicts $B \cap Q = \emptyset$. Thus $0 \le \lambda^* < 1$. Now (2.19) with $x_j = r(y_j)$ (note $y_j \in \partial U_j$ so $r(y_j) \in \partial Q$) and $x = y^* = r(y^*)$ implies

$$\{\lambda_j Fr(y_j) + (1 - \lambda_j)\Phi r(y_j)\} \subseteq Q$$
 for j sufficiently large.

This contradicts (2.20). Thus $\Omega \cap Q \neq \emptyset$ so there exists $x \in Q$ with $x \in Fr(x) = F(x)$.

Remark 2.17. If *E* is a locally convex Hausdorff topological vector space and *Q* is convex then Dugundji's extension theorem guarantees that there exists a retraction $r: E \to Q$. If say $0 \in intQ$ then we could take

$$r(x) = \frac{x}{\max\{1, \mu(x)\}} \text{ for } x \in E,$$

where μ is the Minkowski functional on Q and with this r we have $r(z) \in \partial Q$ for $z \in E \setminus Q$ i.e. (2.15) holds with this r. On the other hand if $intQ = \emptyset$ then $\partial Q = Q$ so (2.15) holds.

106

Remark 2.18. Note U_i for each $i \in \{1, 2, ...\}$ (in the statement of Theorem 2.16) is an open subset of E. Also note if $0 \in Q$ then $0 \in U_i$ for each $i \in \{1, 2, ...\}$.

Remark 2.19. Let *E* be a metrizable locally convex topological vector space and let Q be convex also. We may choose d to be a translational invariant metric associated with *E* (see [7 pg 29]) so we see that U_i for each $i \in \{1, 2, ...\}$ (in the statement of Theorem 2.16) is convex.

Remark 2.20. Let E be a metrizable locally convex topological vector space and Qa closed convex subset of E with $0 \in Q$. Let $r : E \to Q$ be the retraction as in (2.15) (guaranteed from Remark 2.17). For $i \in \{1, 2, ...\}$ let $U_i = \{x \in E : d(x, Q) < \frac{1}{i}\}$; here d is the translational invariant metric associated with E (as in Remark 2.19). Suppose for each $i \in \{1, 2, ...\}$ we have $Fr \in B(\overline{U_i}, E)$ and $\Phi r \in B(\overline{U_i}, E)$. Note for each $i \in \{1, 2, ...\}$ from Dugundji's extension theorem $\overline{U_i}$ is a retract of E i.e. there exists a retraction $r_i : E \to \overline{U_i}$ (we could take $r_i(x) = \frac{x}{\max\{1,\mu_i(x)\}}$ where μ_i is the Minkowski functional on $\overline{U_i}$).

(i). For each $i \in \{1, 2, ...\}$ assume the following conditions hold:

(2.21)
$$\begin{cases} \eta(.) Fr(.) + (1 - \eta(.))\Phi r(.) \in B(\overline{U_i}, E) \text{ for any} \\ \text{continuous map } \eta: \overline{U_i} \to [0, 1] \text{ with } \eta(\partial U_i) = 0 \end{cases}$$

(2.22)
$$i \in \mathbf{A}(\overline{U_i}, E)$$
 where *i* is the identity map

(2.23)
$$x \notin \lambda \Phi r(x) \text{ for } x \in \partial U_i \text{ and } \lambda \in (0,1]$$

(2.24) any map
$$\Psi \in A(E, E)$$
 has a fixed point

and

(2.25)
$$\begin{cases} \text{for any continuous map } \eta : E \to [0,1] \text{ with } \eta(E \setminus U_i) = 0 \\ \text{and } H \in B_{\Phi r}(\overline{U_i}, E) \text{ the map } J \in A(E, E) \\ \text{where } J(x) = \eta(x)H(r_i(x)). \end{cases}$$

Now Theorem 2.9 (with G being Fr, Φ being Φr and U being U_i) guarantees that (2.17) holds.

(ii). For each $i \in \{1, 2, ...\}$ assume (2.21), (2.22) and (2.23) hold and in addition assume the following conditions hold:

(2.26) for any map
$$H \in B_{\Phi r}(\overline{U_i}, E)$$
 we have $r_i H \in A(\overline{U_i}, \overline{U_i})$

and

(2.27) any map
$$\Psi \in A(\overline{U_i}, \overline{U_i})$$
 has a fixed point.

Now Theorem 2.12 (with G being Fr, Φ being Φr and U being U_i) guarantees that (2.17) holds.

REFERENCES

- M. Furi, M. Martelli and A. Vignoli, On the solvability of nonlinear operator equations in normed spaces, Ann. Math. Pura Appl. 124 (1980), 321–343.
- [2] M. Furi and P. Pera, A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Annales Polonici Mathematici 47 (1987), 331–346.
- [3] G. Gabor, L. Gorniewicz and M. Slosarski, Generalized topological essentiality and coincidence points of multivalued maps, Set-Valued Anal. 17 (2009), 1–19.
- [4] D. O'Regan, Coincidence methods based on essential and 0-epi maps, Acta Applicandae Mathematicae 54 (1998), 319–330.
- [5] D. O'Regan, Furi-Pera type theorems for the U^κ_c-admissible maps of Park, Math. Proc. R. Ir. Acad. 102A (2002), 163–173.
- [6] D. O'Regan, Coincidence points for multivalued maps based on Φ-epi and Φ-essential maps, Dynamic Systems and Applications 24 (2015), 143–154.
- [7] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991.