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1. INTRODUCTION

The problems of stability of time-delay systems of neutral type have received

considerable attention in the last two decades, see [12, 13, 20, 21, 24, 25]. Practical

examples of such systems include distributed networks containing lossless transmis-

sion lines [1], and population ecology [18], vibration of masses attached to an elastic

bar [23].

Lyapunov functions have been the main tool used to obtain boundedness, sta-

bility and the existence of periodic solutions of differential equations, differential

equations with functional delays and functional differential equations (see [2, 5, 26]).

As an example, in the study of differential equations with functional delays by using

Lyapunov functionals, many difficulties arise if the delay is unbounded (see [14, 22]).

Even more difficult it is to obtain necessary and sufficient conditions. Many authors

have examined particular problems which have offered great difficulties for that the-

ory and have presented solutions by means of various fixed point theorems for the last

ten years. Burton [3, 4, 6], Burton and Furumochi [7, 8, 9] have shown that many of

these problems can be solved using fixed point theory.
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In the current paper, motivated by [4, 15, 16, 17] we study the stability results

of the zero solution of the nonlinear neutral system of differential equations

(1.1)
d

dt
x (t) = A (t) x (t) +

d

dt
Q (t, x (t− τ (t))) +G (t, x (t) , x (t− τ (t))) ,

with an assumed initial function

x (t) = ψ (t) , t ∈ [m0, t0] ,

where ψ ∈ C ([m0, t0] ,R
n), m0 = inf {t− τ(t) : t ≥ t0} and A (·) is nonsingular n ×

n matrix with continuous real-valued functions as its elements, τ(t) being scalar,

continuous, and τ (t) ≥ τ ∗ > 0. The functionsQ : R×R
n → R

n andG : R×R
n×R

n →

R
n are continuous in their respective arguments.

In the analysis we use the fundamental matrix solution of

(1.2) x′ (t) = A (t) x (t) ,

to invert the system (1.1) into an integral system which we derive a fixed point

mapping. After then, we define prudently a suitable complete space, depending on

the initial condition, so that the mapping is a contraction. Using Banach’s contraction

mapping principle, we obtain a solution for this mapping, and hence a solution for

(1.1), which is asymptotically stable.

The organization of this paper is as follows. In Section 2, we present some

definitions, remarks and the inversion of (1.1). In Section 3, we present our main

results. Application to the second-order model is given with an example in Section 4.

2. PRELIMINARIES

Let C (R,Rn) is the space of all n-vector continuous functions endowed with the

supremum norm

‖x (·) ‖ = sup
t∈[0,∞)

|x (t) |,

where |·| denotes the infinity norm for x ∈ R
n. Also, if A is an n × n real matrix,

then we define the norm of A by

|A| = sup
t∈[0,∞)

max
1≤i≤n

n
∑

j=1

|aij (t)| .

Let ψ ∈ C ([m0, t0] ,R
n) be a given continuous bounded initial function. We

denote such a solution by x(t) = x(t, t0, ψ). From the existence theory we can conclude

that for each ψ ∈ C ([m0, t0] ,R
n), there exists a unique solution x(t) = x(t, t0, ψ) of

(1.1) defined on [t0,∞). We define ‖ψ‖ = sup{|ψ(t)| : m0 ≤ t ≤ t0}.

We recall now some definition for fundamental matrix, see also [10].
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Definition 2.1. An n × n matrix function t → Φ (t), defined on an open interval

J , is called a matrix solution of the homogeneous linear system (1.2) if each of its

columns is a (vector) solution.

Definition 2.2. A set of n solutions of the homogeneous linear differential equation

(1.2), all defined on the same open interval J , is called a fundamental set of solutions

on J if the solutions are linearly independent functions on J .

Definition 2.3. A matrix solution is called a fundamental matrix solution if its

columns form a fundamental set of solutions. In addition, a fundamental matrix

solution t → Φ (t) is called the principal fundamental matrix solution at t0 ∈ J if

Φ (t0) = I, where I denotes the n× n identity matrix.

Definition 2.4. The state transition matrix for the homogeneous linear system (1.2)

on the open interval J is the family of fundamental matrix solutions t → Φ (t, r)

parametrized by r ∈ J such that Φ (r, r) = I.

Proposition 2.1 ([10, Proposition 2.14]). If t → Φ (t) is a fundamental matrix

solution for the system (1.2) on J , then Φ (t, r) := Φ (t) Φ−1 (r) is the state transition

matrix. Also, the state transition matrix satisfies the Chapman-Kolmogorov identities

Φ(r, r) = I, Φ (t, s) Φ (s, r) = Φ (t, r) ,

and the identities

Φ (t, s)−1 = Φ (s, t) ,
∂Φ (t, s)

∂s
= −Φ (t, s)A (s) .

Throughout this paper, Φ (t) will denote a fundamental matrix solution of the

homogeneous (unperturbed) linear problem (1.2). First, we have to transform (1.1)

into an equivalent equation that possesses the same basic structure and properties to

define a fixed point mapping.

Lemma 2.5. x (·) is a solution of the equation (1.1)if and only if

x (t) = Q (t, x (t− τ (t))) + Φ (t, t0) [x (t0) −Q (t0, x (t0 − τ (t0)))]

+

∫ t

t0

Φ (t, s) [A (s)Q (s, x (s− τ (s))) +G (s, x (s) , x (s− τ (s)))] ds.(2.1)

Proof. Let x be a solution of (1.1) and Φ (t) is a fundamental system of solutions of

(1.2). Rewrite the equation (1.1) as

d

dt
[x (t) −Q (t, x (t− τ (t)))] = A (t) x (t) +G (t, x (t) , x (t− τ (t))) .

Define a new function z by z(t) = Φ−1 (t) [x (t) −Q (t, x (t− τ (t)))]. We have

d

dt
z(t) =

d

dt
Φ−1 (t) [x (t) −Q (t, x (t− τ (t)))]

+ Φ−1 (t)
d

dt
[x (t) −Q (t, x (t− τ (t)))] .
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By the Proposition 2.1 , it follows that

d

dt
Φ−1 (t) = −Φ−1 (t)A (t) .

Then

d

dt
[x (t) −Q (t, x (t− τ (t)))]

= A (t) [x (t) −Q (t, x (t− τ (t)))] + Φ (t)
d

dt
z(t).

Thus,

A (t) x (t) +G (t, x (t) , x (t− τ (t)))

= A (t) [x (t) −Q (t, x (t− τ (t)))] + Φ (t)
d

dt
z(t),

and

(2.2)
d

dt
z(t) = Φ−1 (t) [A (t)Q (t, x (t− τ (t))) +G (t, x (t) , x (t− τ (t)))] .

Also note that z(t0) = Φ−1 (t0) [x (t0) −Q (t0, x (t0 − τ (t0)))].

An integration of the equation (2.2) from t0 to t yields

z(t) − z(t0) =

∫ t

t0

Φ−1 (s) [A (s)Q (s, x (s− τ (s))) +G (s, x (s) , x (s− τ (s)))] ds.

Or, in other words,

Φ−1 (t) [x (t) −Q (t, x (t− τ (t)))]

= Φ−1 (t0) [x (t0) −Q (t0, x (t0 − τ (t0)))]

+

∫ t

t0

Φ−1 (s) [A (s)Q (s, x (s− τ (s))) +G (s, x (s) , x (s− τ (s)))] ds.(2.3)

By the Definition 2.4, (2.3) can be expressed by

x (t) = Q (t, x (t− τ (t))) + Φ (t, t0) (x (t0) −Q (t0, x (t0 − τ (t0))))

+

∫ t

t0

Φ (t, s) [A (s)Q (s, x (s− τ (s))) +G (s, x (s) , x (s− τ (s)))] ds.

The converse implication is easily obtained and the proof is complete.

If x : [t0,∞) → R
n is a given solution of (1.1), then discussing the behavior

of another solution y of this equation relative to the solution x, i.e. discussing the

behavior of the difference y− x is equivalent to studying the behavior of the solution

z = y − x of the equation

z′ (t) = A (t) [y (t) − x (t)]

+
d

dt
[Q (t, z (t− τ (t)) + x (t− τ (t))) −Q (t, x (t− τ (t)))]

+G (t, z (t) + x (t) , z (t− τ (t)) + x (t− τ (t))) −G (t, x (t) , x (t− τ (t))) ,



STABILITY FOR A NONLINEAR SYSTEM 257

relative to the trivial solution z ≡ 0. Thus we may, without loss in generality, assume

that (1.1) has the trivial solution as a reference solution, i.e.

Q (t, 0) = G (t, 0, 0) ≡ 0,

an assumption we shall henceforth make.

In this paper we assume that, for t ∈ R, x, y, z, w ∈ R
n, the functions Q (t, x)

and G (t, x, y) are globally Lipschitz continuous in x and in x and y, respectively.

That, there are positive constants k1, k2, k3 such that

(2.4) |Q (t, x) −Q (t, y)| ≤ k1 ‖x− y‖ ,

(2.5) |G (t, x, y) −G (t, z, w)| ≤ k2 ‖x− z‖ + k3 ‖y − w‖ .

3. MAIN RESULTS

Our aim here is to give a necessary and sufficient condition for asymptotic stability

of the zero solution of (1.1). Stability definitions may be found in [4], for example.

By the Lemma 2.5, let a mapping H given by (Hϕ) (t) = ψ (t) for t ∈ [m0, t0] and for

t ≥ t0

(Hϕ) (t)

= Q (t, ϕ (t− τ (t))) + Φ (t, t0) [ψ (t0) −Q (t0, ψ (t0 − τ (t0)))]

+

∫ t

t0

Φ (t, s) [G (s, ϕ (s) , ϕ (s− τ (s))) + A (s)Q (s, ϕ (s− τ (s)))] ds,(3.1)

and define the space Sψ by

Sψ = {ϕ : R → R
n, ϕ (t) = ψ (t) if m0 ≤ t ≤ t0, ϕ (t) → 0 as t→ ∞,

ϕ ∈ C is bounded} .(3.2)

Then, (Sψ, ‖·‖) is a complete metric space where ‖·‖ is the supremum norm.

Theorem 3.1. Assume (2.4) and (2.5) hold. Further assume that

(3.3) Φ (t) → 0 as t→ ∞,

(3.4) t− τ (t) → ∞ as t→ ∞,

and there is α > 0 such that

(3.5) k1 +

∫ t

t0

|Φ (t, s)| (k2 + k3 + |A| k1) ds ≤ α < 1, t ≥ t0,

hold. Then every solution x (t, t0, ψ) of (1.1) with small continuous initial function

ψ, is bounded and asymptotically stable. Moreover, the zero solution is stable at t0.
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Proof. Let the mapping H defined by (3.1). Since Q, G are continuous, it is easy

to show that H is. Let ψ be a small given continuous initial function with ‖ψ‖ < δ

(δ > 0). Since ϕ ∈ Sψ then there exist a positive constant K, such that ‖ϕ‖ ≤ K,

this and the condition (3.5) imply

|(Hϕ) (t)|

≤ |Q (t, ϕ (t− τ (t)))| + |Φ (t, t0)| [|ψ (t0)| + |Q (t0, ψ (t0 − τ (t0)))|]

+

∫ t

t0

|Φ (t, s)| [|G (s, ϕ (s) , ϕ (s− τ (s)))| + |A (s)| |Q (s, ϕ (s− τ (s)))|] ds

≤ k1K + |Φ| δ (1 + k1) +K

∫ t

t0

|Φ (t, s)| (k2 + k3 + |A| k1) ds

≤ |Φ| δ (1 + k1) + αK,

which implies Hϕ is bounded, for the right δ. Next we show that (Hϕ) (t) → 0 as

t → ∞. The first term on the right side of (3.1) tends to zero, by condition (3.4).

Also, the second term on the right side tends to zero, because of (3.3) and the fact

that ϕ ∈ Sψ. Let ǫ > 0 be given, then there exists a t1 > t0 such that for t > t1,

|ϕ (t− τ (t))| < ǫ. By the condition (3.3), there exists a t2 > t1 such that for t > t2

implies that

|Φ (t, t2)| <
ǫ

αK
.

Thus for t > t2, we have
∫ t

t0

|Φ (t, s)| (k2 |ϕ (s)| + k3 |ϕ (s− τ (s))| + |A| k1 |ϕ (s− τ (s))|) ds

≤ K

∫ t1

t0

|Φ (t, s)| (k2 + k3 + |A| k1) ds

+ ǫ

∫ t

t1

|Φ (t, s)| (k2 + k3 + |A| k1) ds

≤ K |Φ (t, t2)|

∫ t1

t0

|Φ (t2, s)| (k2 + k3 + |A| k1) ds+ αǫ

≤ αK |Φ (t, t2)| + αǫ < αǫ+ ǫ.

Hence, (Hϕ) (t) → 0 as t → ∞. It is natural now to prove that H is contraction

under the supremum norm. Let, ϕ1, ϕ2 ∈ Sψ. Then

|(Hϕ1) (t) − (Hϕ2) (t)|

≤ |Q (t, ϕ1 (t− τ (t))) −Q (t, ϕ2 (t− τ (t)))|

+

∫ t

t0

|Φ (t, s)| (k2 ‖ϕ1 − ϕ2‖ + k3 ‖ϕ1 − ϕ2‖ + k1 |A| ‖ϕ1 − ϕ2‖) ds

≤ α ‖ϕ1 − ϕ2‖ .
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Hence, the contraction mapping principle implies, H has a unique fixed point in Sψ

which solves (1.1), bounded and asymptotically stable. The stability of the zero

solution of (1.1) follows simply by replacing K by ǫ.

4. APPLICATION TO SECOND-ORDER MODE

Consider the second-order nonlinear neutral differential equation

(4.1)
d2

dt2
x(t) + p(t)

d

dt
x(t) + q(t)x(t) =

d

dt
V (t, x(t− τ(t))) +W (t, x(t), x(t− τ(t))),

where p and q are continuous real-valued functions. The function V : R × R → R

is differentiable and W : R × R × R → R continuous in their respective arguments.

They are also globally Lipschitz continuous in x and in x and y, respectively. That

is, there are positive constants l1, l2, l3 such that

(4.2) |V (t, x) − V (t, y)| ≤ l1‖x− y‖,

and

(4.3) |V (t, x, y) − V (t, z, w)| ≤ l2‖x− z‖ + l3‖y − w‖.

To show the stability solutions, we transform (4.1) by letting
{

x1 = x,

x2 = x′,

into a following system
(

x1 (t)

x2 (t)

)′

=

(

0 1

−q (t) −p (t)

)(

x1(t)

x2(t)

)

+
d

dt

(

0

V (t, x1(t− τ(t)))

)

+

(

0

W (t, x1(t), x1(t− τ(t)))

)

,(4.4)

where

A (·) =

(

0 1

−q (·) −p (·)

)

, Q(t, x(t− τ(t))) =

(

0

V (t, x1(t− τ(t)))

)

,

G (t, x (t) , x (t− g (t))) =

(

0

W (t, x1(t), x1(t− τ(t)))

)

.

and ψ be a small continuous initial function, ψ ∈ C ([m0, t0] ,R
2) with ‖ψ‖ < δ

(δ > 0).

Example 4.1. Let q (t) = 4, p (t) = 5, τ (t) = t
2
, V (t, w) = λ1 sin (t)w2, W (t, z, w) =

λ2 cos (t) z − λ3w. Consider the Banach space

Sψ =
{

ϕ : R → R
2, ϕ (t) = ψ (t) if −∞ ≤ t ≤ t0, ϕ (t) → 0 as t→ ∞,

ϕ ∈ C is bounded} .(4.5)
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Let ϕ = (ϕ1, ϕ2)
t, φ = (φ1, φ2)

t. Then, we have

‖G (·, ϕ (·) , ϕ (· − g (·))) −G (·, φ (·) , φ (· − g (·)))‖

≤ λ2 ‖ϕ− φ‖ + λ3 ‖ϕ− φ‖ .

Hence k2 = λ2, k3 = λ3, in the same way k1 = 2λ1K, and

Φ (t, t0) = e(t−t0)A = Pe(t−t0)DP−1,

where

D =

(

−1 0

0 −4

)

, e(t−t0)D =

(

e−1(t−t0) 0

0 e−4(t−t0)

)

, P =

(

−1 1

1 −4

)

.

Consequently, Φ (t, t0) → 0 as t→ ∞, t− t
2

= t
2
→ ∞ as t→ ∞ and

2λ1K +

∫ t

t0

∣

∣Pe(t−s)DP−1
∣

∣ (λ2 + λ3 + |A| 2λ1K) ds < 1,

is satisfied for λi, 1 ≤ i ≤ 3 small enough. Then (2.4), (2.5) and (3.3)–(3.5) of the

Theorem 3.1 are satisfied, which imply the zero solution of (4.1) is asymptotically

stable.
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