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ABSTRACT. In this paper, we give necessary conditions for the existence and asymptotic stability

of a mild solution for the impulsive stochastic differential equation. It is shown that the impulsive

stochastic differential equation has a mild solution and the solution is asymptotically stable in the

p-th moment.
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1. INTRODUCTION

Stochastic differential equations have been widely applied in science, engineering,

biology, mathematical finance and in almost all sciences. In the current literature,

there are many papers on the existence and uniqueness of solutions to stochastic

differential equations see [9,5,6] and references therein. More recently, Fu and Liu [4]

discussed the existence and uniqueness of square-mean almost automorphic solutions

to some linear and nonlinear stochastic differential equations, the asymptotic stability

of the unique square-mean almost automorphic solution was established in the square-

mean sense.

Impulsive differential equations model problem with impulsive effects which are

due to instantaneous perturbations at certain moments. The vast applications of the

theory of impulsive differential equations and inclusions have attracted many authors

to considering both deterministic and stochastic cases. The theory of impulsive dif-

ferential equations were extensively studied in [6] and [2] for instance, while Pan [10]

considered the existence of mild solution for impulsive stochastic differential equations

with nonlocal conditions in PC-norm.

Correspondingly, a lot of stability results of impulsive differential equations have

been obtain [1,12,13,7]. In particular, Liu [8] established comparison principles of

existence and uniqueness and stability of solutions for impulsive differential systems

by means of Lyapunov function method and Ito’s formula. Peng and Jia [11] obtained

some criteria on p-th moment stability and p-th moment asymptotical stability of

impulsive stochastic functional differential equations by using Lyapunov-Razumikhin
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method. In [3], several criteria on the global exponential stability and instability of

impulsive stochastic functional differential systems are obtained by Cheng and Deng.

Inspired by [10] and [11], we extend the result to mild solutions of impulsive stochastic

differential equations with local conditions and study its asymptotic stability in the

p-th moment. In the sequel, preliminaries necessary for the result shall be stated in

section 2 and the main result will be proved in section 3.

2. PRELIMINARIES

Let (Ω,Γ, P ) be a complete probability space with probability measure P on

Ω and a normal filtration {Γt}t≥0. Let X, Y be two real separable Hilbert spaces

with norms ‖ · ‖X , ‖ · ‖Y and Q-Wiener process on (Ω,Γ, P ) with covariance operator

Q ∈ BL(Y ) such that trQ <∞. Let L(X, Y ) be the space of bounded linear operators

mapping X into Y equipped with the usual norm ‖ · ‖. We assume that there exist

a complete orthonormal system eii≥1 in Y , a bounded sequence of nonnegative real

numbers λi such that Qei = λiei, i = 1, 2, . . . , and a sequence βi i ≥ 1 of independent

Brownian motions such that 〈w(t), e〉 =
∑√

λi 〈ei, e〉βi(t), e ∈ Y , and Γt = Γw
t ,

where Γw
t is the sigma algebra generated by w(s) : 0 ≤ s ≤ t. Let L0

2 = L2(Q
1/2Y ;X)

be the space of all Hilbert-Schmidt operators from Q1/2Y to X with the inner product

〈µ, ξ〉L0

2

= tr[µQξ].

We consider the existence of mild solution for the following impulsive stochastic

differential equations in a Hilbert space

(2.1)


















dx(t) = [Ax(t) + F (t, x(t))]dt+G(t, x(t))dW (t), t ≥ 0, t 6= tk

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, . . . , m,

x(0) = x0

.

where A : D(A) ⊆ X → X is the infinitesimal generator of strongly continuous

semigroup of bounded linear operators T (t), t > 0.

X is a real Banach space. x(0) = x0 ∈ X, G : [0, b] → X. F : [0, b] × X → X;

let 0 < t1 < · · · < tm < tm+1 = b. Ik : X → X, where k = 1, . . . , m are impulsive

functions, ∆x(tk) = x(t+k ) − x(t−k ) which is the right and left limit of x at tk. F and

G are predictable processes with Bochner integrable trajectories on arbitrary finite

interval [0, b].

Definition 2.1. The stochastic process x(t), t ∈ [0, b] → X is called the mild solution

for the impulsive SDE (2.1) if

(i) x(t) is adapted to Γt, t ≥ 0.

(ii) x(t) ∈ X has cadlag paths on t ∈ [0, b] a.s and for each t ∈ [0, b].

(iii) For an arbitrary t ∈ [0, b].
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(2.2)















x(t) = T (t)x0 +

∫ t

0

T (t− s)F (s, x(s))ds+

∫ t

0

T (t− s)G(s, x(s))dW (s)

+
∑

0<tk<t

T (t− tk)Ik(x(tk)).

3. MAIN RESULTS

The following important theorem and assumptions are used to obtain the exis-

tence of (2.1)

Theorem 3.1. Let F : [0, b] × X → X be an L1-Caratheodory function and G :

[0, b] ×X → X satisfying the following conditions:

(a) For each t ∈ [a, b], G(t, ·) : X → X is continuous for all x0 ∈ X, G(·, x) :

[0, b] → X is measurable.

(b) The function G : [0, b] × X → X satisfies (i) and there exist LG > 0 such that

for 0 ≤ s1, s2 ≤ T , xi, yi ∈ X, i = 0, 1, 2 . . . . ‖G(s1, x0) − G(s2, y0)‖p

L0

2

≤
LG(‖s1 − s2‖p + max‖xi − yi‖p).

(c) For any l > 0 there exist a function ρl ∈ L1(0, b) such that supE ‖G(t, x)‖p

L0

2

≤
ρl(t) ‖x‖p ≤ l and lim inf l→+∞

1
l
[
∫ T

0
ρl(s)

2

pds]
p

2 = η <∞.

Also assume that

(i) there exist constant Ck such that ‖Ik(x)‖ ≤ Ck, k = 1, 2, . . . , m for each x ∈ X,

(ii) there exist a constant M such that ‖T (t)‖B(E) ≤M for each t ≥ 0,

(iii) there exist a continuous nondecreasing function Ψ : [0,∞) → [0,∞) and p ∈
L1(0, b;ℜ+) such that |F (t, x)| ≤ p(t)Ψ(|x|), for a.e t ∈ [0, b] and each x ∈ X,

with
∫ b

0

m(s)ds <

∫ ∞

C

dx

x+ Ψ(x)
,

where

m(s) = max
{

M‖B‖B(E),Mp(s)
}

, c = M

[

‖x0‖ +

m
∑

k=1

ck

]

,

(iv) For each bounded B ⊆ PC(0, b;X) and t ∈ [0, b], the set
{

T (t)x0 +

∫ t

0

T (t− s)F (s, x(s))ds+

∫ t

0

T (t− s)G(s, x(s))dW

+
∑

0<tk<t

T (t− tk)Ik(x(t
−
k )) : x ∈ B

}

is relatively compact in X, then the impulsive SDE (2.1) has at least one mild

solution.
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Proof. Transforming the problem (2.2) into a fixed point problem. Consider the

operator Φ : PC(0, b;X) → PC(0, b;X) defined by

(3.1)



















Φ(x)(t) = T (t)x0 +

∫ t

0

T (t− s)F (s, x(s))ds

+

∫ t

0

T (t− s)G(s, x(s))dW (s) +
∑

0<tk<t

T (t− tk)Ik(x(t
−
k )) .

Clearly, the fixed point of Φ are mild solutions to the SDE (2.1) Subsequently, we

will prove that Φ has a fixed point by Schaefer’s fixed point theorem.

The proof will be given in several steps.

Step 1: Φ is continuous

Let {xn}∞n=1 be a sequence in PC(0, b;X) such that xn → x. We will show that

Φ(xn) → Φ(x). For each t ∈ [0, b], we have

Φ(xn)(t) = T (t)x0 +

∫ t

0

T (t− s)F (s, xn(s))ds+

∫ t

0

T (t− s)G(s, xn(s))dW (s)

+
∑

0<tk<t

T (t− tk)Ik(xn(tk)) .

Then,

E‖Φ(xn)(t) − Φ(x)(t)‖ ≤ sup
t∈[0,b]

E

∥

∥

∥

∥

∫ t

0

T (t− s)[F (s, xn(s)) − F (s, x(s))]ds

∥

∥

∥

∥

+ sup
t∈[0,b]

E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

T (t− s)[G(s, xn(s)) −G(s, x(s))]dW

∣

∣

∣

∣

∣

∣

∣

∣

+ sup
t∈[0,b]

E

∥

∥

∥

∥

∥

∑

0<tk<t

T (t− tk)Ikxn(tk) − Ikx(tk)

∥

∥

∥

∥

∥

≤ M

∫ t

0

‖F (s, xn(s)) − F (s, x(s))‖ ds

+M

∫ t

0

‖G(s, xn(s)) −G(s, x(s))‖ dW

+M
∑

0<tk<t

sup
t∈[0,b]

E ‖Ikxn(tk) − Ikx(tk)‖

Since Ik, where k = 1, 2, . . .m are continuous, and limn→∞E ‖Φxn − Φx‖ → 0 this

implies that Φ is continuous.

Step 2: Φ maps bounded sets into bounded sets in PC(0, b;X).

It is enough to show that for any q > 0, there exists a δ > 0 such that for each

x ∈ Bq = {y ∈ PC(0, b;X) : ‖x‖
PC

≤ q} , one has ‖Φ(x)‖PC ≤ δ.
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By assumptions (i)–(ii) and the fact that F is L1-Caratheodory function, we have,

for each t ∈ [0, b],

E ‖Φ(x)(t)‖ ≤M ‖x0‖ +M

∫ t

0

‖ϕq(s)‖ ds+M

m
∑

k=1

Ck

≤M ‖x0‖ +M‖ϕq‖L1 +M
m
∑

k=1

Ck := δ

Step 3: Φ maps bounded sets into equicontinuous sets of PC(0, b;X).

Let x ∈ PC(0, b;X), t1 ≥ 0 and ǫ be sufficiently small, then

E ‖Φ(x)(t1 + ǫ) − Φ(x)(t1)‖ ≤ ‖T (t1 + ǫ) − T (t1)‖ ‖x0‖

+

∫ t1

0

E ‖T (t1 + ǫ− s) − T (t1 − s)F (s, x(s))‖ ds

+

∫ t1+ǫ

t1

E ‖T (t1 + ǫ− s)F (s, x(s))‖ds

+

∫ t1

0

E ‖T (t1 + ǫ− s) − T (t1 − s)G(s, x(s))‖ dW (s)

+

∫ t1+ǫ

t1

E ‖T (t1 + ǫ− s)G(s, x(s))‖ dW (s)

+
∑

t1<t<t1+ǫ

Ck|T (t1 + ǫ− tk) − T (t1 − tk)Ikx(tk)|

and E ‖Φ(x)(t1 + ǫ) − Φ(x)(t1)‖ → 0 as ǫ→ 0.

As a consequence of Steps 1 to 3 and asumption (iv) of Theorem 3.1 together

with the Arzela-Ascoli theorem, we can deduce that Φ : PC(0, b;X) → PC(0, b;X) is

a completely continuous operator.

Step 4: Now we show that the set ξ(Φ) := {x ∈ PC(0, b;X) : x = λΦ(x), 0 < λ < 1}
is bounded.

Let x ∈ ξ(Φ), then x = λΦ(x), for some 0 < λ < 1. Thus, for each t ∈ [0, b],

x(t) = λ

[

T (t)x0 +

∫ t

0

T (t− s)f(s, x(s))ds+

∫ t

0

T (t− s)g(s, x(s))dW

+
∑

0<tk<t

T (t− tk)Ik(y(t
−
k ))

]

.

This implies by assumption (i) to (iii) that for each t ∈ [0, b],

‖x(t)‖ ≤M ‖x0‖ +

∫ t

0

[m(‖x(s)‖)]ds+

∫ t

0

[ψ(‖x(s)‖)]dW +M

m
∑

k=1

Ck.

Let us denote the right hand side of the above inequality by v(t), then we have

|x(t)| ≤ v(t) for every t ∈ [0, b]
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v(0) = M [|x0|] +
m
∑

k=1

Ck

v′(t) = ψ(‖x(t)‖) +m(‖x(t)‖), for a.e t ∈ [0, b].

Using the increasing character of ψ, we get v′(t) = ψ(v(t)) + M(v(t)) for a.e

t ∈ [0, b]. This shows that ǫ(Φ)is bounded.

As a consequence of Schaefer’s fixed point theorem [14], we deduce that Φ has a

fixed point which is a mild solution of eqn (2.1), hence proved.

Asymptotic Stability of the Impulsive Stochastic Differential Equations.

Lemma 3.2. For any r ≥ 1 and for arbitrary L0
2-valued predictable process Φ(·)

sups∈[0,t]E
∥

∥

∫ s

0
Φ(u)dW (u)

∥

∥

2r

X
≤ (r(2r − 1))r

(

∫ t

0
(E ‖Φ(s)‖2r

L0

2

)
1

r ds
)r

t ∈ [0, b).

Definition 3.3. Let p ≥ 2 be an integer. Eqn (2.2) is said to be stable in p-

th moment if for arbitrarily given ǫ > 0 there exist a δ > 0 such that whenever

‖x0‖X < δ, E{supt≥0 ‖x(t)‖p
X} < ǫ.

Definition 3.4. Let p ≥ 2 be an integer. Eqn (2.2) is said to be asymptoti-

cally stable in p-th moment if it is stable in p-th moment and for any x0 ∈ X,

limT→∞E{supt≥T ‖x(t)‖p
X} = 0.

Using the definitions and lemma given above, we consider the asymptotic stability

in p-th moment of mild solutions of eqn (2.1) by using the contraction mapping

principle. Imposing some Lipschitz and linear growth conditions on the function F

and G, assume that F (t, 0) = 0, G(t, 0) = 0 and Ik(0) = 0 (k = 1, 2, . . . ). Then eqn

(2.1) has a trival solution when x0 = 0. Let X be the space of all Γ0-adapted process

φ(t, w) : [0,∞) × Ω → R which is almost certainly continuous in t for fixed w ∈ Ω.

Moreover, φ(0, w) = x0 and E‖Φ(t, w)‖p
X → 0 as t → ∞. Also X is a Banach space

when it is equipped with a norm defined by

‖φ‖X = sup
t≥0

E‖φ(t)‖p
X .

We impose the following conditions:

1. A is the infinitesimal generator of a semigroup of bounded linear operators S(t),

t ≥ 0 on a Banach space X with ‖S(t)‖X ≥ Me−at, t ≥ 0 for some constants

M ≥ 1 and 0 < a ∈ R+.

2. The functions F and G satisfy the Lipschitz conditions and there exists a con-

stant K for every t ≥ 0 and x, y ∈ X such that

‖F (t, x) − F (t, y)‖X ≤ K‖x− y‖X ,

‖G(t, x) −G(t, y)‖X ≤ K‖x− y‖X.
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3. Ik ∈ C(X,X) and there exist a constant qk such that ‖Ik(x)−Ik(y)‖ ≤ qk‖x−y‖
for each x, y ∈ X (k = 1, . . .m).

Theorem 3.5. Assume the conditions (1–3) hold. Let p ≥ 2 be an integer. If the

inequality 3p−1Mp(Kpa−p + Kpcp(2a)
−p/2 + L) < 1 is satisfied, then the impulsive

stochastic differential equation (2.1) is asymptotically stable in p-th moment: where

cp = (p(p− 1)/2)p/2, L = e−apTE(
∑m

k=1 ‖qk‖p
x).

Proof. Define a nonlinear operator ψ : X → X by

psix(t) = T (t)x0 +

∫ t

0

T (t− s)F (s, x(s))ds+

∫ t

0

T (t− s)G(s, x(s))dW (s)

+
∑

0<tk<t

T (t− tk)Ik(x(tk)) =

4
∑

i=1

Fi(t)t ≥ 0

To prove the asymptotic stability, it is enough to show that the operator ψ has a

fixed point in X. To prove this result, we use the contraction mapping principle.

To apply the contraction mapping principle, we first verify the mean square

continuity of ψ on [0,∞). Let x ∈ X, t1 ≥ 0 and |r| be sufficiently small then

E ‖ψ(x)(t1 + r) − ψ(x)(t1)‖p
X ≤ 4p−1

4
∑

i=1

E‖Fi(t1 + r) − Fi(t1)‖p
X .

We see that E‖Fi(t1 + r) − Fi(t1)‖p
X → 0, i = 1, 2, 4 as r → 0. Moreover, by using

Holder’s inequality and Lemma 3.2, we obtain

E‖F3(t1 + r) − F3(t1)‖p
X ≤ 2p−1cp

×
[
∫ t1

0

(E‖(T (t1 + r − s) − T (t1 − s))G(s, x(s))‖p
X)

2

pds

](p

2
)

+ 2p−1cp

[
∫ t1+r

t1

(E‖(T (t1 + r − s)G(s, x(s))‖p
X)

2

pds

](p

2
)

→ 0

as r → 0 where cp = (p(p− 1)/2)
p

2 . Thus ψ is continuous in p-th moment on [0,∞).

Next we show that ψ(X) ⊂ X, and obtain

E‖(ψx)(t)‖p
X ≤ 4p−1E‖T (t)x0‖p

X

+ 4p−1E

∥

∥

∥

∥

∫ t

0

T (t− s)F (s, x(s))ds

∥

∥

∥

∥

p

X

+ 4p−1E

∥

∥

∥

∥

∫ t

0

T (t− s)G(s, x(s))dW (s)

∥

∥

∥

∥

p

X

+ 4p−1
∑

0<tk<t

E ‖T (t− tk)Ik(x(tk))‖p
X .
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Using conditions (1) and (3) we obtain 4p−1E ‖T (t)x0‖p
X ≤ 4p−1Mpe−pat‖x0‖p

X →
0 as t→ ∞.

Now, from conditions (1) and (2) and Holder’s inequality, we have

4p−1E

∥

∥

∥

∥

∫ t

0

T (t− s)F (s, x(s))d(s)

∥

∥

∥

∥

p

X

≤ 4p−1Mpkp

[
∫

e−a(t−s)ds

]p−1

+

∫

e−a(t−s)E‖x(s)‖p
xds

≤ 4p−1MpKpa1−p

∫ t

0

e−a(t−s)E‖x(s)‖p
Xds.

For any x(t) ∈ X and any ǫ > 0 there exist a t1 > 0 such that E‖x(s)‖p
X < ǫ for

t ≥ t1. Thus we obtain

4p−1E

∥

∥

∥

∥

∫ t

0

T (t− s)F (s, x(s))ds

∥

∥

∥

∥

p

x

≤ 4p−1MpKpa1−pe−at

∫ t1

0

easE‖x(s)‖p
xds

+ 4p−1MpKpa−pǫ.

As e−at → 0 as t → ∞ and by assumption in Theorem 3.5, there exist t2 ≥ t1

such that for any t > t2 we have

4p−1MpKpa1−pe−at

∫ t1

0

easE‖x(s)‖p
xds ≤ ǫ− 4p−1MpKpa−pǫ.

we obtain for any t ≥ t2

4p−1E

∥

∥

∥

∥

∫ t

0

T (t− s)F (s, x(s))ds

∥

∥

∥

∥

p

X

< ǫ

that is to say,

4p−1E

∥

∥

∥

∥

∫ t

0

T (t− s)F (s, x(s))ds

∥

∥

∥

∥

p

X

→ 0 as t→ ∞.

Now for any x(t) ∈ X, t ∈ [0,∞), we obtain

4p−1E

∥

∥

∥

∥

∫ t

0

T (t− s)G(s, x(s))dW (s)

∥

∥

∥

∥

p

X

≤ 4p−1cpM
pKp

[
∫ t

0

e−2a(t−s)(E‖x(s)‖p
X)2/pds

]p/2

Further, we have

4p−1E

∥

∥

∥

∥

∫ t

0

T (t− s)G(s, x(s))dW (s)

∥

∥

∥

∥

p

X

→ 0 as t→ ∞

E‖(ψx)(t)‖p
X → 0 as t→ ∞. In conclusion, ψ(X) ⊂ X.
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Finally, we prove that ψ is a contraction mapping. To see this, let x, y ∈ X,

s ∈ [0, T ]. Then,

sup
s∈[0,T ]

E‖(ψx)(t) − (ψy)(t)‖p
X

≤ 3p−1 sup
s∈[0,T )

E

∥

∥

∥

∥

∫ t

0

T (t− s)(F (s, x(s)) − F (s, y(s)))ds

∥

∥

∥

∥

p

X

+ 3p−1 sup
s∈[0,T ]

E

∥

∥

∥

∥

∫ t

0

T (t− s)(G(s, x(s)) −G(s, y(s)))dW (s)

∥

∥

∥

∥

p

X

+ 3p−1 sup
s∈[0,T ]

E

∥

∥

∥

∥

∥

∑

0≤tk<t

T (t− tk)(Ik(x(tk)) − Ik(y(tk))

∥

∥

∥

∥

∥

p

X

≤
[

3p−1Mp(Kpa−p +Kpcp(2a)
p/2 + L)

]

×
(

sup
s∈[0,T ]

E‖x(t) − y(t)‖p
X

)

,

where L = e−apTE(
∑m

k=1 ‖qk‖
p
X).

Therefore, ψ is a contraction mapping and hence there exist a unique fixed point

x(·) in X which is the solution of eqn (2.1) with x(0) = x0 and E‖x(t)‖p
x → 0 as

t→ ∞.
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