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ABSTRACT. In this paper, we consider a non-instantaneous impulsive system represented by the

second order nonlinear differential equations in a Banach space. We use the strongly continuous

cosine family of linear operators along with Schauder and Banach fixed point theorems to study

the existence and uniqueness of the periodic solutions of the non-instantaneous impulsive system.

Moreover, we construct a Poincaré operator, which is a composition of the maps and we apply

the techniques of a priori estimate for this operator. Finally, we give an example to illustrate the

application of these obtained abstract results.
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1. INTRODUCTION

Periodic motion plays a very significant role not only in natural science but also

in social science such as climate, food supplement, insecticide population, sustainable

development. Somolinos (1978) has considered the equation

x′′ + (a/r)x′ + (b/r) sin x(t − r) = 0

and has obtained interesting results on the existence of periodic solutions. The study

of this problem goes back to the early 1800s and has attracted much attention. It

involves the motion of a sunflower plant. The tip of the plant is observed to move

from side to side in a periodic fashion.

The dynamics of many evolving processes are subject to abrupt changes, such

as shocks, harvesting and natural disaster. In the literature of impulsive differential
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equations there are mainly two types of impulses, one is instantaneous and other is

non-instantaneous. In the instantaneous impulses, the duration of abrupt changes is

negligible in comparison with the duration of an entire evolution. Sometimes time

abrupt changes may stay for time intervals such impulses are called non-instantaneous

impulses. The importance of the study of non-instantaneous impulsive differential

equations lies in its diverse fields of applications such as in the theory of stage by

stage rocket combustion, maintaining hemodynamical equilibrium etc. A very well

known application of non-instantaneous impulses is the introduction of insulin in the

bloodstream which is abrupt change and the consequent absorption which is a grad-

ual process as it remains active for a finite interval of time. The theory of impulsive

differential equations has found enormous applications in realistic mathematical mod-

eling of a wide range of practical situations. It has emerged as an important area

of research such as modeling of impulsive problems in physics, population dynamics,

ecology, biological systems, biotechnology and so forth.

Recently, Hernández and O’Regan [9] studied mild and classical solutions for the

impulsive differential equation with non-instantaneous impulses which is of the form

x′(t) = Ax(t) + f(t, x(t)), t ∈ (si, ti+1] i = 0, 1, . . . , m,

x(t) = gi(t, x(t)), t ∈ (ti, si], i = 1, 2, . . . , m,(1.1)

x(0) = x0 ∈ X

for a Banach space X with a norm ‖ · ‖. Wang and Fečkan [16] have generalized the

conditions x(t) = gi(t, x(t)) in (1.1) as follows

x(t) = gi(t, x(t−i )), t ∈ (ti, si], i = 1, 2, . . . , m.

Of course then x(t+i ) = gi(ti, x(t−i )), i = 1, 2, . . . , m, in general. The symbols x(t+i ) :=

limǫ→0+ x(ti + ǫ) and x(t−i ) := limǫ→0− x(ti + ǫ) represent the right and left limits of

x(t) at t = ti, respectively. Motivated by above remark, Wang and Fečkan [16]

have shown existence, uniqueness and stability of solutions of such general class of

impulsive differential equations.

In this paper, we continue in this direction like in [11]. But now we study the

existence of periodic mild solutions of the second order nonlinear differential equation

with non-instantaneous impulses in a Banach space X of the form

x′′(t) = Ax(t) + f(t, x(t)), t ∈ (si, ti+1], i ∈ N0,

x(t) = J1
i (t, x(t−i )), t ∈ (ti, si], i ∈ N,(1.2)

x′(t) = J2
i (t, x(t−i )), t ∈ (ti, si], i ∈ N,

where x(t) is a state function, 0 = s0 < t1 < s1 < t2, . . . , tm < sm < tm+1 < . . .

with limi→∞ ti = ∞ and ti+m = ti + T , i ∈ N, si+m = si + T , i ∈ N0 for some

m ∈ N denoting the number of impulsive points between 0 and T > 0, and we set
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N0 = N ∪ {0}. We consider in (1.2) that x ∈ C((ti, ti+1], X), i ∈ N and there exist

x(t−i ) and x(t+i ), i ∈ N with x(t−i ) = x(ti). The functions J1
i (t, x(t−i )) and J2

i (t, x(t−i ))

represent noninstantaneous impulses during the intervals (ti, si], i ∈ N, so impulses

at t−i have some duration, namely on intervals (ti, si]. A is the infinitesimal generator

of a strongly continuous cosine family of bounded linear operators (C(t))t∈R on X.

J1
i , J2

i and f are suitable functions and they will be specified later. We construct a

Poincaré operator to (1.2) and study its fixed points and dynamics.

Second order differential equations play a very crucial role in the modeling of

physical phenomena, for example, modeling the position of the mass attached to

spring over time and modeling the motion of a simple pendulum etc. A useful tool

for the study of second-order abstract differential equations in the infinite dimensional

space is the theory of strongly continuous cosine families of operators. Existence and

uniqueness of the solution of second-order nonlinear systems and controllability of

these systems in Banach spaces have been studied thoroughly by many authors [1, 2,

4, 12, 13]. Related problems are studied also in [3, 6, 7, 8, 10].

The plan of the paper is as follows. In Section 2, we give some important nota-

tions, definitions and assumptions which are required for the establishment of main

results of the paper. In Section 3, we study the periodic solutions for the prob-

lem (1.2). In the last Section 4, an example is given to show the application of these

abstract results.

2. PRELIMINARIES AND ASSUMPTIONS

First, we briefly recall some definitions from the theory of cosine family [5, pp. 32–

33].

Definition 2.1. A one parameter family (C(t))t∈R of bounded linear operators map-

ping the Banach space X into itself is called a strongly continuous cosine family if

and only if

(i) C(s + t) + C(s − t) = 2C(s)C(t) for all s, t ∈ R,

(ii) C(0) is the identity operator,

(iii) C(t)x is continuous in t on R for each fixed point x ∈ X.

The sine function (S(t))t∈R associated to the strongly continuous cosine family

(C(t))t∈R is defined by

S(t)x =

∫ t

0

C(s)x ds, x ∈ X, t ∈ R.

The domain D(A) of the operator A is defined by

D(A) = {x ∈ X : C(t)x is twice continuously differentiable in t},
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which is a Banach space endowed with the graph norm ‖x‖A = ‖x‖ + ‖Ax‖ for all

x ∈ D(A). We define a set

E = {x ∈ X : C(t)x is once continuously differentiable in t},

which is a Banach space endowed with a suitable norm ‖ · ‖E (see [5, p. 46]). We also

note that if x : I → X, I = [0,∞) is a locally integrable function then

y(t) =

∫ t

0

S(t − s)x(s)ds

defines an E valued continuous function. We refer to Fattorini and Travis, Webb [5,

14, 15] for more details on the cosine family theory.

In order to prove the existence of the periodic solution for the problem (1.2), we

need the following assumptions:

(A1) A be the infinitesimal generator of a strongly continuous cosine family (C(t))t∈R

of bounded linear operators.

(A2) f : I0 × X → X, I0 =
⋃∞

i=0[si, ti+1] is a continuous function and there exists a

positive constant Kf such that

‖f(t, x1) − f(t, x2)‖ ≤ Kf‖x1 − x2‖

for every x1, x2 ∈ X, t ∈ I0.

(A3) There exist nonnegative constants Lf and Mf such that

‖f(t, x)‖ ≤ Lf‖x‖ + Mf , x ∈ X, t ∈ I0.

(A4) f(t, x) is T -periodic in t, i.e., f(t + T, x) = f(t, x), t ∈ I0.

(A5) J l
i ∈ C(Ii × X, X), Ii = [ti, si] and there are positive constants KJi

, i ∈ N, such

that

max
{

‖J1
i (t, x1) − J1

i (t, x2)‖, ‖J2
i (t, x1) − J2

i (t, x2)‖
}

≤ KJi
‖x1 − x2‖

for all t ∈ Ii and x1, x2 ∈ X.

(A6) There exist nonnegative constants LJi
and MJi

, i ∈ N such that

max
{

‖J1
i (t, x)‖, ‖J2

i (t, x)‖
}

≤ LJi
‖x‖ + MJi

, t ∈ Ii, x ∈ X.

(A7) The following periodicity conditions hold: J l
i+m(t + T, x) = J l

i(t, x), t ∈ Ii,

x ∈ X, where i ∈ N and l = 1, 2. Note Ii + T = Ii+m. So KJi+m
= KJi

,

LJi+m
= LJi

and MJi+m
= MJi

, i ∈ N.

Let us set PC(I, X) =
{

x : I → X : x ∈ C([0, t1], X), x ∈ C((tk, tk+1], X), k ∈ N

and there exist x(t−k ) and x(t+k ), k ∈ N with x(t−k ) = x(tk)
}

.

In the following definition, we introduce the concept of the mild solution and

mild dynamics for the problem (1.2).
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Definition 2.2. A function x ∈ PC(I, X) is called a mild solution of the impulsive

problem

x′′(t) = Ax(t) + f(t, x(t)), t ∈ (si, ti+1], i ∈ N0,

x(t) = J1
i (t, x(t−i )), t ∈ (ti, si], i ∈ N,(2.1)

x′(t) = J2
i (t, x(t−i )), t ∈ (ti, si], i ∈ N,

x(0) = x0, x′(0) = y0,

if it satisfies the following relations:

• the non-instantaneous impulse conditions

x(t) = J1
i (t, x(t−i )), x′(t) = J2

i (t, x(t−i )), t ∈ (ti, si], i ∈ N

• and x(t) is the solution of the following integral equations

x(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t − s)f(s, x(s))ds, t ∈ [0, t1],

x(t) = C(t − si)(J
1
i (si, x(t−i ))) + S(t − si)(J

2
i (si, x(t−i )))

+

∫ t

si

S(t − s)f(s, x(s))ds, t ∈ [si, ti+1], i ∈ N.

By the mild dynamics of (2.1) we consider the iteration

(2.2) (x0, y0) ∪ {
(

J1
i (si, x(t−i )), J2

i (si, x(t−i ))
)

}i∈N.

Definition 2.3. A function x ∈ PC(I, X) is said to be a T -periodic PC-mild solution

of the problem (1.2) if it is a PC-mild solution of the problem (2.1) for some initial

conditions x0, y0 and the corresponding iteration (2.2) is m-periodic, i.e., it holds

(x0, y0) =
(

J1
m(sm, x(t−m)), J2

m(sm, x(t−m))
)

=
(

J1
i+m(si+m, x(t−i+m)), J2

i+m(si+m, x(t−i+m))
)

, ∀i ∈ N.

We recall that sm = T in the above definition.

3. EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS

By [11, Theorem 3.1], we have

Theorem 3.1. If the assumptions (A1), (A2), (A3), (A5) and (A6) are satisfied, then

the second order problem (2.1) has a unique mild solution.

Remark 3.2. If x ∈ PC(I, X) is a T -periodic PC-mild solution of the problem (1.2)

then x(t + T ) = x(t), ∀ t ≥ 0 by the uniqueness result of Theorem 3.1. On the other

hand, if x0 ∈ E then x(t+T ) = x(t), ∀ t ≥ 0 implies the m-periodicity of (2.2), since

x(0) = x0, x′(0+) = y0, x(si) = J1
i (si, x(t−i )), i x′(s−i ) = J2

i (si, x(t−i )), i ∈ N.
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Moreover, if x0 ∈ E and J1
i (si, E) ⊂ E for any i ∈ N, then x ∈ C1((ti, ti+1), X),

i ∈ N and there exist x′(t−i ) and x′(t+i ), i ∈ N, so assuming x′(t−i ) = x′(ti), we get

x′(t + T ) = x′(t), ∀ t ≥ 0.

Now we define a Poincaré operator P : X × X → X × X, P = (P̃1, P̃2) by

P̃1(x0, y0) = J1
m(T, x(t−m, x0))

= J1
m

(

T, C(tm − sm−1)(J
1
m−1(sm−1, x(t−m−1, x0)))(3.1)

+S(tm − sm−1)(J
2
m−1(sm−1, x(t−m−1, x0)))

+

∫ tm

sm−1

S(tm − s)f(s, x(s))ds
)

and

P̃2(x0, y0) = J2
m(T, x(t−m, x0))

= J2
m

(

T, C(tm − sm−1)(J
1
m−1(sm−1, x(t−m−1, x0)))(3.2)

+S(tm − sm−1)(J
2
m−1(sm−1, x(t−m−1, x0)))

+

∫ tm

sm−1

S(tm − s)f(s, x(s))ds
)

.

It is easily to show that fixed points of P defined in (3.1) and (3.2) give rise to a

periodic solution to the problem (1.2), i.e., the following result holds.

Lemma 3.3. The problem (1.2) has a T -periodic PC-mild solution if and only if P

has a fixed point.

We see that P is a composition of the maps:

(3.3) P = Jm ◦ Pm−1 ◦ Jm−1 ◦ Pm−2 ◦ Jm−2 ◦ · · · ◦ J1 ◦ P0,

where

Ji : X → X × X, Ji(u) = (J1
i (si, u), J2

i (si, u)), i = 1, 2, . . . , m;

Pi(z) = x(ti+1, z), i = 0, 1, 2, . . . , m − 1,(3.4)

x(t, z) = C(t − si)u + S(t − si)v +

∫ t

si

S(t − s)f(s, x(s, z))ds, t ∈ [si, ti+1],

where we set z = (u, v) ∈ X × X and consider a norm ‖z‖ = max{‖u‖, ‖v‖}.
Next, from [5, Theorem 1.1], there is K ≥ 1 and ω > 0 such that ‖C(t)‖ ≤ Keωt

for any t ≥ 0. Then we derive ‖S(t)‖ ≤ K
ω
eωt. By assumption (A3), we have

‖x(t, z)‖ ≤ Keω(t−si)‖z‖ +
K

ω
eω(t−si)‖z‖(3.5)

+
KLf

ω

∫ t

si

eω(t−s)(1 + ‖x(s, z)‖)ds.
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Setting y(t, z) = e−ω(t−si)‖x(t, z)‖, (3.5) is reduced to

y(t, z) ≤ K

(

1 +
1

ω

)

‖z‖ +
KLf

ω

∫ t

si

[e−ω(s−si) + y(s, z)]ds

≤ K

(

1 +
1

ω

)

‖z‖ +
KLf

ω2
+

KLf

ω

∫ t

si

y(s, z)ds.

Applying Gronwall inequality, we get

y(t, u) ≤ K

[ (

1 +
1

ω

)

‖z‖ +
Lf

ω2

]

e
KLf (t−si)

ω .

Hence

(3.6) ‖Pi(z)‖ = ‖x(ti+1, z)‖ ≤ K

[(

1 +
1

ω

)

‖z‖ +
Lf

ω2

]

e

“

KLf

ω
+ω

”

(ti+1−si).

By assumption (A6) and inequality (3.6), we have

‖(Ji ◦ Pi−1)(z)‖ ≤ a + LJi
K

(

1 +
1

ω

)

e(
KLf

ω
+ω)(ti−si−1)‖z‖, i = 1, 2, . . . , m,

where

a = max
i=1,2,...,m

[

MJi
+

LJi
KLf

ω2
e

“

KLf
ω

+ω
”

(ti−si−1)

]

Setting

b = K

(

1 +
1

ω

)

max
i=1,2,...,m

LJi
e(

KLf

ω
+ω)(ti−si−1),

A = a
m−1
∑

i=0

bi,

θ = Km

(

1 +
1

ω

)m m
∏

i=1

LJi
e(

KLf

ω
+ω)

Pm
i=1(ti−si−1),

by an elementary computation, we have

‖P (z)‖ = ‖(Jm ◦ Pm−1 ◦ Jm−1 ◦ Pm−2 ◦ Jm−2 ◦ · · · ◦ J1 ◦ P0)(z)‖
≤ a(1 + b + · · ·+ bm−1)

+ Km

(

1 +
1

ω

)m m
∏

i=1

LJi
e(

KLf

ω
+ω)

Pm
i=1(ti−si−1)‖z‖

≤ A + θ‖z‖.(3.7)

By (3.7), we have the following result.

Lemma 3.4. All PC-mild solutions of the problem (2.1) corresponding to initial

conditions in a bounded subset of X are uniformly bounded.

Next, we verify that P defined by (3.3) is a continuous and compact operator

under our assumptions. If we can show Pi, i = 0, 1, . . . , m − 1 are continuous and
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compact, then we can use the continuity of Ji, i = 1, 2, . . . , m to derive that P is

continuous and compact.

Lemma 3.5. If (C(t))t≥0 is a compact cosine family, then P is a continuous and

compact operator.

Proof. Suppose x(·, z1) and z(·, z2) are the PC-mild solutions defined in (3.4) corre-

sponding to the initial conditions zi = (ui, vi) ∈ X × X, i = 1, 2, respectively. By

assumption (A2), we have

‖x(t, z1) − x(t, z2)‖ ≤ Keω(t−si)‖z1 − z2‖ +
K

ω
eω(t−si)‖z1 − z2‖

+
KKf

ω

∫ t

si

eω(t−s)‖x(s, z1) − x(s, z2)‖ds

≤ KeωT

(

1 +
1

ω

)

‖z1 − z2‖

+
KKfe

ωT

ω

∫ t

si

‖x(s, z1) − x(s, z2)‖ds

t ∈ [si, ti+1], i = 0, 1, . . . , m.

By applying Gronwall inequality, we have

‖x(ti+1, z1) − x(ti+1, z2)‖ ≤ KeωT

(

1 +
1

ω

)

e
TKKf eωT

ω ‖z1 − z2‖,(3.8)

i = 0, 1, . . . , m − 1.

Hence, Pi, i = 0, 1, . . . , m − 1 are continuous operators on X × X.

Now, we shall show that Pi, i = 0, 1, . . . , m−1 are compact. Let Γ be a bounded

subset of X × X. Then Γ ⊂ Br × Br for a closed ball Br in X centered at 0 with a

radius r > 0. Recalling (3.4), we have

(3.9) Pi(z) = C(ti+1 − si)u + S(ti+1 − si)v +

∫ ti+1

si

S(ti+1 − s)f(s, x(s, z))ds.

It is easy to see that R : [si, ti+1] → L(X) given as R(s) = S(ti+1 − s) is continuous

and R(s) is compact for any s ∈ [si, ti+1]. Then the sets C(ti+1−si)(Br) and S(ti+1−
si)(Br) are precompact. Next, for any n ∈ N, we consider continuous and linear

operators Λ, Λk : Υi = C([si, ti+1], X) → X, k = 0, 1, . . . , n − 1 given by

Λx =

∫ ti+1

si

R(s)x(s)ds, Λkx =

n−1
∑

k=0

R(rk)

∫ rk+1

rk

x(s)ds

for rk = (n−k)si

n
+ kti+1

n
, k = 0, 1, . . . , n−1. It is well-known that Υi is a Banach space

with a norm

‖x‖∞ = max
s∈[si,ti+1]

‖x(s)‖.
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By

‖Λx − Λkx‖ ≤ ‖x‖∞
n−1
∑

k=0

∫ rk+1

rk

‖R(s) − R(rk)‖ds,

we get

(3.10) ‖Λ − Λk‖ ≤
n−1
∑

k=0

∫ rk+1

rk

‖R(s) − R(rk)‖ds.

Since [si, ti+1] is compact, then R : [si, ti+1] → L(X) is uniformly continuous and so

(3.10) implies Λk → Λ in L(Υi, X). On the other hand, since each x →
∫ rk+1

rk
x(s) is

linear and continuous, so bounded, as a mapping Υi → X and R(rk) are compact,

we see that each Λk is compact. But then Λ is also compact. Next, the Nemytskii

operator F : Υi → Υi defined as (Fx)(s) = f(s, x(s)) is continuous and bounded,

since by (A3), ‖F (x)‖∞ ≤ Kf‖x‖∞+Mf . Hence F maps bounded subsets to bounded

ones. Then the mapping G : Υi → X defined as

G(x) =

∫ ti+1

si

S(ti+1 − s)f(s, x(s))ds

is compact and continuous, since G = Λ ◦ F . According to (3.10), Pi is a sum

of continuous and compact maps, so it is also continuous and compact. We just

presented an alternative way of proving the continuity of Pi.

Finally, we can use the continuity of Ji, i = 1, 2, . . . , m to derive that P is

continuous and compact.

Now we present the main theorems of this paper.

Theorem 3.6. Assume that (A1)–(A7) are satisfied. If (C(t))t≥0 is compact and

θ < 1, then the equation (1.2) has at least a T -periodic PC-mild solution.

Proof. By Lemma 3.5, the operator P is continuous and compact. Inequality (3.7)

implies P : Bθ0 ×Bθ0 → Bθ0 ×Bθ0 for θ0 = A
1−θ

. Clearly Bθ0 ×Bθ0 is bounded, convex

and closed. So by Schauder fixed point theorem, there exit x0, y0 ∈ X such that

P (z0) = z0 for z0 = (x0, y0). By applying Lemma 3.3, we can get a T -periodic PC-

mild solution x(·, z0) of Cauchy problem (2.1) corresponding to the initial conditions

x(0) = x0 and x′(0) = y0. Thus, x(·, z0) is a T -periodic PC-mild solution of the

problem (1.2). The proof is done.

When (C(t))t≥0 is not compact, then we can still have the following results.

Theorem 3.7. Assume that (A1)–(A7) are satisfied. If Ji is compact for some i ∈
{1, 2, . . . , m} and θ < 1, then the equation (1.2) has at least a T -periodic PC-mild

solution.

Proof. The result follows directly from the proof of Theorem 3.6, since now P is still

compact.
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Theorem 3.8. Assume that (A1)–(A7) are satisfied. If (S(t))t≥0 is compact and

θ < 1, then the equation (1.2) has at least a T -periodic PC-mild solution provided

that one of the following conditions holds:

(a) J1
i (si, ·) : X → X is compact for some i ∈ {1, 2, . . . , m − 1},

(b) J1
m(sm, ·) : X → Z for a finite dimensional subspace Z ⊂ X.

Proof. Assuming (a), by (3.9) and arguments below it, we see that Pi+1◦Ji is compact.

Hence P is also compact. So the result follows again directly from the proof of

Theorem 3.6. Assuming (b), we have P : Z × X → Z × X. Next, by (3.9) and

arguments below it, we see that P0 : Z ×X → X is compact. Hence P : (Z ∩Bθ0) ×
X → (Z ∩Bθ0)×X is also compact. So the result follows from Schauder fixed point

theorem. The proof is finished.

By (3.7) we derive

‖P k(z)‖ ≤ A
1 − θk

1 − θ
+ θk‖z‖ ≤ θ0 + θk‖z‖

for any k ∈ N0 and z ∈ X × X. This implies that the mild dynamics of (1.2) is

dissipative and there is its global compact attractor

A =
∞
⋂

k=0

P k(Bθ0 × Bθ0) ⊂ Bθ0 × Bθ0

for Theorems 3.6, 3.7 and 3.8(a), while we have

A =

∞
⋂

k=0

P k((Z ∩ Bθ0) × Bθ0) ⊂ (Z ∩ Bθ0) × Bθ0

for Theorem 3.8(b). Finally, we can just apply Banach fixed point theorem in the

general case.

Theorem 3.9. Assume that (A1)–(A7) are satisfied. If

Υ = Km

(

1 +
1

ω

)m m
∏

i=1

KJi
e(

KKf

ω
+ω)

Pm
i=1(ti−si−1) < 1,

then the equation (1.2) has a unique T -periodic PC-mild solution, which a global

attractor.

Proof. By following above arguments to (3.7) and (3.8), we have

‖P (z1) − P (z2‖ ≤ Υ‖z‖.

Since Υ < 1, the result is a consequence of Banach fixed point theorem.
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4. APPLICATION

We consider the following partial differential equation

∂ttx(t, y) = ∂yyx(t, y) +
|x(t, y)|

1 + |x(t, y)| + y sin t, y ∈ (0, 1), t ∈ (0, π]

x(t, 0) = x(t, 1) = 0, t ∈ [0, 2π],

x(0, y) = x0(y), y ∈ (0, 1),

∂tx(0, y) = y0(y), y ∈ (0, 1),

x(t, y) =
|x(π−, y)|

1 + |x(π−, y)| sin t, y ∈ (0, 1), t ∈ (π, 2π],

∂tx(t, y) =
|x(π−, y)|

1 + |x(π−, y)| cos t, y ∈ (0, 1), t ∈ (π, 2π].(4.1)

The equation (4.1) can be reformulated as the following abstract equation in X =

L2(0, 1):

x′′(t) = Ax(t) + f(t, x(t)), t ∈ (0, π],

x(t) = J1
1 (t, x(t−i )), t ∈ (π, 2π],

x′(t) = J2
1 (t, x(t−i )), t ∈ (π, 2π],

x(0) = x0, x′(0) = y0,(4.2)

where 0 = t0 = s0, t1 = π, s1 = T = 2π, x(t)(y) = x(t, y), y ∈ (0, 1), and

Ax = xyy,

D(A) = {x ∈ X : xyy ∈ X, x(0) = x(1) = 0},

f(t, x)(y) =
|x(·, y)|

1 + |x(·, y)| + y sin t,

J1
1 (t, x(t−i )) =

|x(π−, y)|
1 + |x(π−, y)| sin t,

J2
1 (t, x(t−i )) =

|x(π−, y)|
1 + |x(π−, y)| cos t.

A has an infinite series representation

Ax =

∞
∑

n=1

−n2(x, xn)xn, x ∈ D(A),

where xn(y) =
√

2 sin nπy, n ∈ N is an orthonormal set of eigenfunctions of A.

Moreover, the operator A is the infinitesimal generator of a strongly continuous cosine

family C(t)t∈R on X which is given by

C(t)x =
∞

∑

n=1

cos nt(x, xn)xn, x ∈ X,
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and the associated sine family S(t)t∈R on X is given by

S(t)x =
∞

∑

n=1

1

n
sin nt(x, xn)xn, x ∈ X.

Clearly, C(t)t∈R is not compact, while S(t)t∈R is compact. Next, we have Kf = KJ1 =

1, Lf = LJ1 = 0 and Mf = MJ1 = 1. Hence θ = 0. Since J1
1 (s1, u) = 0, we can apply

Theorem 3.8(b) with Z = {0} to get a 2π-periodic PC-mild solution of (4.1).
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