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VERTICAL AND HORIZONTAL GRAZINGMARAT AKHMET AND AYS�EG�UL KIVILCIMDepartment of Mathematis, Middle East Tehnial University, Ankara, TurkeyABSTRACT. Grazing solutions of non-autonomous system with variable moments of impulses areexamined. Appropriate de�nitions for vertial and horizontal grazing in non-autonomous systemsare given and interpreted geometrially. The linearization for the periodi solutions whih havevertial or horizontal grazing is obtained. Examples are presented to demonstrate the pratialityof our results and they are visualized by the simulations.AMS (MOS) Subjet Classi�ation. 34A37,34C25.1. INTRODUCTIONThere an be found two di�erent approahes in the literature for the de�nitionof grazing. One of them is that the grazing ours whenever the trajetory meetswith zero veloity to the surfae of disontinuity [1℄, [2℄, [3℄. Another one is thatthe trajetory meets with the surfae tangentially [4℄{[11℄. In the light of the papers[4℄{[11℄, we foused on the analytial expression of the tangeny at the grazing pointto de�ne the horizontal grazing and vertial grazing.There are wide ranges of studies about grazing phenomenon [1℄{[12℄. All existingstudies are onduted on autonomous systems [3, 13℄, the systems with disontinu-ous right hand side [6, 8℄ and non-autonomous system with autonomous surfaes ofdisontinuity [2℄. In [11℄, a riterion for horizontal grazing motions in a dry frition os-illator is determined by means of the loal theory of non-smooth dynamial systemson the onnetible and aessible domains. In the study [2℄, the reation of periodiorbits assoiated with grazing bifurations in the models of impating systems andsome suÆient onditions are obtained for the existene of a family of periodi solu-tions. In [14℄, two distint types of grazing bifurations are taken into aount. Oneis that the stable motion disappears and system stabilized onto an already existingattrating solution and the other in whih there is an immediate jump to haos aspart of an orbit grazes at a stop. In the paper [1℄, the stable periodi orbits andhaoti motions are determined analytially by utilizing the limit mapping. In [2℄,some suÆient onditions are obtained to determine the existene of a family of pe-riodi orbits whose reation is aused by rami�ation from the grazing bifurationReeived April 11, 2016 1056-2176 $15.00 Dynami Publishers, In.



132 M. AKHMET AND A. KIVILCIMpoint. The smallest appropriate parameter alteration for the horizontal grazing in ahybrid system is determined by applying numerial methods [7℄. A general method ispresented for the onstrution of suitable loal maps near a horizontal grazing pointfor n-dimensional PWS systems in [8℄. In our paper [9℄, we have taken into aountthe grazing properties of disontinuous dynamial systems and we prove the orbitalstability theorem for them.Horizontal and vertial grazing should be onsidered beause they annot betaken into aount by utilizing the existing results in the literature. In a geometrialsense, the horizontal grazing ours when the surfae of disontinuity has a tangentplane at the grazing point whih is parallel to the time axis and the vertial grazingours whenever the tangent plane at the grazing point is perpendiular to the timeaxis. The horizontal and vertial grazing are depited in Figures 1a and 1b, respe-tively. The appropriate de�nitions of the horizontal and vertial grazing for non-autonomous system whose vetor �eld and surfaes are de�ned by non-autonomousfuntions and the de�nition of horizontal grazing for non-autonomous system withylindrial surfae of disontinuity are given. The periodi solutions whih have verti-al or horizontal grazing are obtained in spei� examples. The stabilities of them areexamined by onstruting proper linearization systems around the periodi solutions.The periodi solutions and their stabilities are observed through simulations and theresults are depited.1.1. Motivation. Take into aount the following di�erential equation(1.1) x00 + a(t)x0 + b(t)x = f(t; x; x0);where a(t) is a variable damping funtion, b(t) is a variable spring funtion andf(t; x; x0) is a fore applied to the system. Assume that it is subjet to impats witha ylindrial surfae � = f(t; x; x0) j �(x; x0) = 0g. The type of the barrier is ommonfor impat mehanisms. To illustrate, the surfaes x = X0 and x0 = X 00 in (t; x; x0)are ylindrial surfaes. Thus, if the grazing ours in the non-autonomous equation(1.1), then it is mainly a horizontal one as expeted.In the paper [10℄, the system of leaky integrate-and-�re neuron model is presentedas(1.2) dudt = �ku+ S(t);u(t+) = 0 if u(t) = �;where u is the internal state, k is the leaky parameter and S(t) is the input time serieswhih is positive. If the internal state u reahes the threshold � the spike oursand the internal state immediately resets to the resting state u = 0. In the leakyintegrate and �re neuron model, the grazing takes plae whilst there exists a time Tsuh that dudt t=T = �ku + S(T ) = 0. (See Fig. (A), it is taken from the paper [10℄.)
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(a) Horizontal grazing inneural networks. t
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(b) Vertial grazing.This demonstrates that the horizontal grazing an be observed in neural networks.Moreover, it is determined that the bifuration results in the breaking of inter spikeinterval attrators. In [4℄, it is demonstrated that the grazing bifuration an beutilized to �nd the Arnol'd tongue diagram for mode-loked responses and determinedthat the horizontal grazing phenomenon in integrate-and-�re neuron model auses thepassing to a regular �ring either from a fast �ring or from a doublet �ring and it ausesthe diminish of the stability of sub-threshold osillations.Vertial grazing whih is depited in Fig. (B) is supposed to be useful for theanalysis of singularities. The presentation of the vertial grazing is bene�ial sinethe method of analysis an be applied for models with singularities under impats.Suh systems an be seen in the models of eletrially driven robot manipulatorwhih has slower mehanial dynamis and faster eletrial dynamis. In this type ofsystems, we should onsider the problem in two parts suh as one part is slower andone part is faster dynamis [15℄. For whih the vertial grazing an be utilized in theanalysis of faster dynamis.2. Grazing non-autonomous system with variable impulse momentsLet R, N and Z be the sets of all real numbers, natural numbers and integers,respetively. Let G � Rn be an open and onneted set. The non-autonomoussystems with variable moments of impulses onsist of two di�erent systems. Oneis that the vetor �eld as well as surfaes are de�ned by non-autonomous funtionsand the other is the vetor �eld de�ned as non-autonomous funtion bu the surfaesde�ned as an autonomous funtions in other words the surfaes are ylindrial.The �rst type an be onsidered as a following system(2.1) x0 = f(t; x);�xjt=�i(x) = Ji(x);where (t; i; x) 2 R�Z�G, the funtion f(t; x) is ontinuously di�erentiable in x andt on R � G, and T -periodi in t, i.e. f(t + T; x) = f(t; x), funtions Ji(x) and �i(x),i 2 Z, are di�erentiable on G and Ji(x) satis�es the following equality, Ji+p(x) = Ji(x)



134 M. AKHMET AND A. KIVILCIMfor a natural number p and �i(x) has (T; p)-property, i.e. �i(x) + T = �i+p(x) for alli 2 Z.The other type of system an be de�ned by the following system of impulsivedi�erential equations(2.2) x0 = f(t; x);�xjx2� = Ji(x);where � is a ylindrial surfae of disontinuity and de�ned as � = f(t; x)j�(x) =0; t 2 R; x 2 Gg. The funtion f(t; x) is ontinuously di�erentiable in x and t onR � G, and T -periodi in t, i.e. f(t + T; x) = f(t; x), funtions Ji(x) and �(x) = 0are di�erentiable on G and Ji(x) satis�es the following equality, Ji+p(x) = Ji(x) fora natural number p and for all i 2 Z.To simplify the notation, we need the following system of ordinary di�erentialequations(2.3) y0 = f(t; y):In what follows, the onditions will be needed.(N1) �i(x+ Ji(x)) � �i(x) for all i 2 Z and x 2 G;(N2) if �(t; �i(); +Ji()),  2 G, i 2 Z, is a solution of (2.3), then t 6= �i(�(t; �i(); +Ji())) for all t > �i() and i 2 Z and x 2 G;(N3) There exist positive numbers C and N suh that CN < 1max(t;x)2R�D kf(t; x)k � C; maxx2D k��i(x)�x k � N; max0���1���i(x+ �Ji(x))�x ; Ji(x)� � 0;where h; i is the usual dot produt and D is a ompat subspae of the phasespae and for all (t; x) 2 R �D and i 2 Z and x 2 G;Assume that the onditions (N1){(N3) are valid. Then, the solution of (2.1) intersetsthe surfaes of disontinuity exatly one [16℄. The surfae divides l� into two parts.Consider a point (t0; x0) 2 s�. Take z 2 l� suh that there exists t < �l and z =x(t; t0; x0). Denote the union of all of these z, for all (t0; x0) 2 sl� as bl�. Moreover,denote Kl = Smlj=1 �K(j)l nSi 6=m(K(i)l \K(m)l ), where �S is the losure of a set S.Consider a periodi solution 	(t) of (2.1). Denote by �i, i 2 Z; the moment ofmeeting of a the periodi solution with the surfae t = �i(x), i 2 Z. The intersetionmoments satisfy the property that �i+p = �i+T , i 2 Z, where p is a positive number.De�nition 2.1. There is a horizontal grazing of the periodi solution 	(t) of (2.1)at a point (�l;	(�l)), l = 1; 2; : : : ; p, if for some j = 1; 2; : : : ; n, the onditions areful�lled:(i) fj(�l;	(�l)) = 0,



VERTICAL AND HORIZONTAL GRAZING 135(ii) a funtion t = �(xj) � �l(	1(�l);	2(�l); : : : ;	j�1(�l); xj;	j+1(�l); : : : ;	n(�l)) isinvertible near xj = x0j = 	j(�l) for xj � x0j or xj � x0j , and the one sidedderivative [��1(t)℄0�jt=�l or [��1(t)℄0+jt=�l is equal to zero, respetively.De�nition 2.2. A vertial grazing of the periodi solution 	(t) of (2.1) at a point(�l;	(�l)) exits at the point (�l;	(�l)) l = 1; 2; : : : ; p, if for some j = 1; 2; : : : ; n, thefollowing onditions are ful�lled:(i) a funtion xj = 	j(t) is invertible near xj = x0j = 	j(�l) for xj � x0j or/andxj � x0j , and the one sided derivative [	�1j (xj)℄0�jx=xj or/and [	�1j (xj)℄0+jx=xj isequal to zero, respetively.(ii) �lxj (	(�l)) = 0.Consider a periodi solution 	(t) of (2.2). Denote by �i, i 2 Z, the meetingmoments of 	(t) with the surfae �(x) = 0. They satisfy the property for all i 2 Z,�i+p = �i + T , where p is a positive number.De�nition 2.3. There is a horizontal grazing of the periodi solution 	(t) of thesystem (2.2) at a point (�l;	(�l)), where l = 1; 2; : : : ; p, if the equality at the pointh�(	(�l)); f(�l;	(�l)) = 0 is valid.Next, we will onstrut B-equivalent system to the system (2.1) [16℄, whih re-dues the systems with variable moments of impulses to that with �xed momentsof impulses. For the system (2.2), it an be obtained similarly. Consider a point(�i; x) 2 R � G on the periodi solution with a �xed i 2 Z. Let �i = �i(x) be themeeting moment of the solution x(t) = x(t; �i; x) of (2.3). Additionally, assume thatthe solution x1(t) = x(t; �i; x(�i)) of (2.3) exists on\[�i; �i℄. The B-mapW : x! x1(�)an be onstruted as(2.4) Wi(x) = Z �i�i f(u; x(u))du+ Ji�x+ Z �i�i f(u; x(u))du�+ Z �i�i f(u; x1(u))du:Let us take into aount the following system of di�erential equations with �xedmoments of impulses(2.5) y0 = f(t; y);�yjt=�i = Wi(y):Due to the way of onstrution of Wi(x) systems (2.1) and (2.5) are B-equivalent[16, 17℄ in the neighborhood of 	(t). That is, if x(t) : U ! G is a solution of (2.1),then oinides with a solution y(t) : U ! G when y(t0) = x(t0), for t0 2 Un[i2Z\[�i; �i℄.Partiularly, x(�i) = y(�i+), x(�i) = y(�i), if �i > �i, x(�i) = y(�i), x(�i+) = y(�i), if�i < �i. It is easy to see that 	(t) is also a solution of (2.5) as well. In the remainingpart of the paper, we will onsider (2.5) instead of (2.1).



136 M. AKHMET AND A. KIVILCIMAssume that the periodi solution 	(t) of (2.1) meets the surfae t = �i(x) atthe moment t = �i, transversally. Let us start with the derivative of the equation�i(x) = �i(x(�i(x))), [16℄,(2.6) r�i(	(�i)) = r�i(	(�i))U(�i)1�r�i(	(�i))f(�i;	(�i)) ;where U(t), is a fundamental matrix of u0 = fx(t;	(t))u with U(�i) = I, where I isn� n identity matrix.By taking the derivative of the B-map de�ned by (2.4) with respet to x, we andetermine the matrix Di asDi = Wix(	(�i)) = (f(�i;	(�i))� f(�i;	(�i)))�0i(	(�i))+J(	(�i))�0i(x) + Jix(I+ f(�i;	(�i))�0i(	(�i)));(2.7)where the Jaobian matrix an be obtained as Wix(	(�i)) = [�Wi�x1 ; �Wi�x2 ; : : : ; �Wi�xn ℄.It is easy to see that the linearization at the point (�i;	(�i)) an be obtained as(2.8) �ujt=�i = Diu;with Di+p = Di, i 2 Z.For Examples 2.5 and 2.6, one an utilize the formulas (2.6) and (2.7) to obtaina linearization at the point (�i;	(�i)), i 2 Z. For Example 2.4, we annot applyformulas due to the appearane of singularity in the formula (2.7) at the grazingpoint. For this example, we will onsider another approah to obtain a linearizationat the grazing point.Example 2.4. In this example, the motion of one degree of freedom mehanialosillator whih is subjeted to impats with a rigid wall is onsidered and it an beexpressed as(2.9) x00 + 0:22x0 + x = 1 + 0:22 sin(t);�x0j(t;x;x0)2� = �(1 + 0:9x0)x0;where the surfae of disontinuity is � = f(t; x; x0) j x = 0, t 2 Rg. System (2.9) ad-mits 2�-periodi ontinuous solution of the form 	(t) = 1�os(t). De�ning variablesas x = x1 and x0 = x2, we have(2.10) x01 = x2;x02 = �0:22x2 � x1 + 1 + 0:22 sin(t);�x2j(t;x1;x2)2� = �(1 + 0:9x2)x2;where � = f(t; x1; x2) j x1 = 0; t 2 Rg and the points (�i;	(�i);	0(�i)) = (2�i; 0; 0),i 2 Z, are grazing as well. Denote by x(�i) = (x1(�i); x2(�i)). In what follows, we willapply formula (2.7) in the basis of system (2.10).



VERTICAL AND HORIZONTAL GRAZING 137Fix i 2 Z, and onsider a near solution x(t) = (x1(t); x2(t)) = x(t; �i;	(�i)+�x),to 	(t) of the di�erential part of the system (2.10). The solution x(t) impats thebarrier at a moment t = �i near to t = �i and at the point (x1; x2) = (x1(�i); x2(�i)).Let also, ~x(t) = (~x1(t); ~x2(t)) be a solution of the equation suh that ~x(�i) = x(�i) +J(x(�i)). De�ne the following mapWi(x) = Z �i�i " x2(s)x1(s)� 0:22x2(s) + 1 + 0:22 sin(s)# ds+ J0�x + �iZ�i " x2(s)�x1(s)� 0:22x2(s) + 1 + 0:22 sin(s)# ds1A(2.11) + �iZ�i " ~x2(s)�~x1(s)� 0:22~x2(s) + 1 + 0:22 sin(s)# ds:Let us start with a linearization for inside ontinuous solutions. The solutions, in-side of the yle, do not impat the barrier with non-zero veloity and are ontinuous.Thus, the linearization for these solutions is the following system [18℄,(2.12) u01 = u2;u02 = �u1 � 0:22u2:The multipliers of the system are �(1)1 = 0:5006 � 0:0191i, �(1)2 = 0:5006 + 0:0191i,where i2 = �1. Sine the multipliers are inside the unit irle, the yle 	(t) isasymptotially stable with respet to inside ontinuous solutions.Now, we will ontinue with the linearization for the outside disontinuous solu-tions. The linearization system around the yle 	(t) for solutions whih are outsideof the yle has the form, [16℄,(2.13) u01 = u2;u02 = �u1 � 0:22u2;�ujt=�i = Wix(x�)u;where �i = 2�i and u = (u1; u2)T , where T denotes transpose of a matrix. The matri-es Wix(x�) will be evaluated below. Assume that the solution x(t) meets the barrierat the moment t = � and denote the meeting point as �x = x(�) = (x1(�); x2(�)),where x1(�) = 0, x2(�) < 0 and � � 2�. It is easy to see that any impating so-lution near to 	(t) meets the barrier transversely. Taking derivative of (2.11) and



138 M. AKHMET AND A. KIVILCIMsubstituting x = �x to the derivative, we obtain that�Wi(�x)�x01 = " �x2��x1 � 0:22�x2 + 1 + 0:22 sin(�)# ��i(�x)�x01 + "1 00 1:96�x2#� e1 + " �x2��x1 � 0:22�x2 + 1 + 0:22 sin(�)# ��i(�x)�x01 !(2.14) � " �0:98(�x2)2��x1 + 0:2156(�x2)2 + 1 + 0:22 sin(�)# ��i(�x)�x01 :Moreover, di�erentiating �(x(�i(x))) = 0, we have(2.15) ��i(x(�i))�xj = � �x(x(�i))�x(�i)�x0j�x(x(�i))f(�i; x(�i)) ; j = 1; 2;for the transversal point �x = (�x1; �x2), the �rst omponent ��i(�x)�x01 an be evaluated as��i(�x)�x01 = � 1�x2 . From the last equality, it is seen how the singularity appears at thegrazing point x� = (x�1; x�2) = (0; 0). Finally, we obtain that�Wi(�x)�x01 = " �x2��x1 � 0:22�x2 + 1 + 0:22 sin(�)#��1�x2 �+ "1 00 1:96�x2# e1 � " �x2�x1 + 0:22(�x2 � sin(�))� 1#��1�x2 �!+ " 0:98(�x2)2�x1 + 0:2156(�x2)2 � 1� 0:22 sin(�)#��1�x2 �= " �1 + 0:98�x20:22 + 0:2156�x2 + 1:96(�x1 � 0:22 sin(�) + 0:22�x2 � 1)# ;(2.16)where e1 = (1; 0)T .The last expression demonstrates that the derivative is a ontinuous funtion ofits arguments in a neighborhood of the grazing point. Sine �x is a transversal point,one an evaluate the limit as(2.17) lim�x!x� �Wi(�x)�x01 = B;where B = " �1�1:74#.To linearize system at the grazing point x�, we should verify that the funtionWi(x) is di�erentiable at x�. The di�erentiability requests that the partial derivatives�Wi(x)�x0j , j = 1; 2, exist in a neighborhood of the grazing point and they are ontinuousat the point [19℄. To ompute the derivative �Wi(x)�x01 at x�, the following expression



VERTICAL AND HORIZONTAL GRAZING 139will be taken into aount�Wi(x�1; x�2)�x01 = limx1!x�1 Wi(x1; x�2)�Wi(x�1; x�2)x1 � x�1= limx1!x�1 Wi(x1; x�2)�Wi(x�1; x�2)x1 � x�1 � B +B:(2.18)Applying the Mean Value Theorem [19℄, we obtain that(2.19) limx1!x�1 �Wi(�;x�2)�x01 (x1 � x�1)� B(x1 � x�1)x1 � x�1 +B;where � lies between x1 and x�1.From (2.19), onsidering (2.17), we have that(2.20) �Wi(x�1; x�2)�x01 = B:So, the derivative exists and is ontinuous at x�.Now, let us hek the existene and ontinuity of the derivative �Wi(x)�x02 at x�. Toaomplish these, we should ontinue with di�erentiating (2.11) again and substitut-ing �x = (�x1; �x2). Then, we obtain�Wi(�x)�x02 = " �x2��x1 � 0:22�x2 + 1 + 0:22 sin(�)# ��i(�x)�x02+ "1 00 1:96�x2# i e2 + " �x2��x1 � 0:22(�x2 � sin(�)) + 1# ��i(�x)�x02 !+ " 0:98(�x2)2�x1 � 0:2156(�x2)2 � 1� 0:22 sin(�)# ��i(�x)�x02= " �x2 � 0:98(�x2)2��x1 � 0:22(�x2 � 0:98(�x2)2)# ��i(�x)�x02+ "1 00 1:96�x2# e2 + " �x2��x1 � 0:22(�x2 � sin(�)) + 1# ��i(�x)�x02 !(2.21)where e2 = (0; 1)T . To evaluate the derivative ��i(�x)�x02 in (2.21), we apply formula (2.15)for the transversal point �x = (�x1; �x2) and it is equal to ��i(�x)�x02 = 0: This and formula(2.21) imply(2.22) lim�x!x� �Wi(�x)�x02 = C;where C = "00#.Similar to above disussion for the �rst derivative, one an obtain that �Wi(x�)�x02 = Cand the derivative is ontinuous at x�. Thus, both derivatives �Wi(x)�x01 and �Wi(x)�x02 exist in



140 M. AKHMET AND A. KIVILCIMa neighborhood of x� and they are ontinuous at x�. That is,Wi(x) is di�erentiable atx�. Sine of the periodiity, the linearization an be obtained for all grazing moment�i, i 2 Z.Joining (2.20) and (2.22), it is obtained that(2.23) Wix(x�) = " �1 0�1:74 0# :The multipliers of (2.13) are �1 = 0 and �2 = 0:5339. Due to the fat that themultipliers are less than unity in norm, we an onlude that the periodi solution	(t) is asymptotially stable.Despite the grazing, the singularity is not obtained in the derivative (2.6) inExamples 2.5 and 2.6. So, the method presented in [16℄ an be utilized in the followingexamples to �nd a linearization at the grazing point.Example 2.5. We will onsider the system(2.24) x0 = 0;�xjt=�i(x) = �0:2x;where �i(x) = 10 aros(x+ 0:1) + i�. One an easily determine that the system haszero solution x(t) = 0. We will onsider it as a �-periodi solution of (2.24).By means of the fat that �i(x) is an inreasing funtion, it is easy to seethat ondition (N1) is valid. For onstants C = 1=11, and N = 10p0:99 , suh thatCN < 1 and the following inequalities are valid max(t;x)2R�D kf(t; x)k = 0 � C,maxx2D k��i(x)�x k = maxx2D k 10p1�(x+0:1)2k � N , and max0���1h��i(x+�Ji(x))�x ; Ji(x)i =max0���1 �2p1�((1�0:2�)x)2 � 0: So, (N2) is valid. The ondition (N3) is also true forthis example.The integral line x(t) � 0 is tangent to the surfae t = �0(x) at the point(�1;	(�1)) = (0; 0). Indeed, sine the right hand side f(t; x) is onstantly zero, theondition (i) is valid. Take into aount the funtion t = �(x) � 10 aros(x + 0:1),whih is invertible near x = 	(�1) = 0, for x � 0 and the one sided derivative[��1(t)℄0�jt=�1 = 0:1 sin(�1) = 0. So, it validates the ondition (ii). Therefore, the zerosolution has horizontal grazing at the point (�1;	(�1)) = (0; 0). Moreover, one anvalidate easily that (�i; 0), i 2 Z are also horizontal grazing points. Let us obtaina linearization system around zero solution. For a solution, x(t) = x(t; 0; �x); with�x > 0; there exists no intersetion with the surfaes of disontinuity. This is why, thelinearization system has the form(2.25) u0 = 0:Next, onsider another solution x(t) = x(t; 0; �x), with �x < 0 of (2.24). One aneasily �nd that the solution meets eah of the surfaes of disontinuity. Due to the



VERTICAL AND HORIZONTAL GRAZING 141periodiity of the system, linearization near the zero solution at all points (i�; 0)is the same, if exists. So, it is suÆient to onsider the linearization around thegrazing point (0; 0) for those points where �x < 0. Let us start with the funtion�(x) = 10 aros(x(�(x)) + 0:1). By taking derivative of it, we get(2.26) �0(x) = �10f(�(x); x(�(x)))�0(x) + 1p1� (x(�(x) + 0:1)2) ;and substituting the grazing point into the equation (2.26), one an obtain that�0(0) = �10=p0:99.The oeÆients in the impulsive part of the linearization system have to beevaluated by formulaDi = (f(�(0); x(�(0)))� f(�(0); x(�(0)) + J(x(�(0)))))�0(0)+ Jx(1 + f(�(0); x(�(0))))�0(0) = �0:2;for all i 2 Z.So, linearization system for the interseting solutions with initial value �x < 0 anbe determined as(2.27) u0 = 0;�ujt=�i = �0:2u:Consider solutions with �x < 0. The linearization for them is the system (2.27)and its multiplier an be evaluated as � = 0:8 < 1, and onsequently solutions withnegative initial values are attrated by the zero solution. Nevertheless, the solutionswith positive initial values are onstant. That is, one an say that the zero solutionis stable for neighbors from above. On the basis of the disussion, one an onludethat zero solution is stable. It is pitured in Figure 1. The solutions 	(t) = 0, andx(t; 0; �x) with initial values �x > 0 and �x < 0 are depited in blak, red and magenta,respetively in Fig. 1 and the stability of the zero solution is apparently seen by virtueof simulation.Through the last examples, it is seen that the tangent at the grazing point isparallel to the time axis. This approves why we all the phenomenon as horizontalgrazing.Example 2.6. In order to demonstrate vertial grazing, we take into aount thefollowing system(2.28) x0 = 1pi� t ; t 2 [i� 1; i);�xjt=�i(x) = �1;



142 M. AKHMET AND A. KIVILCIM
0 5 10 15 20 25 30 35 40 45

−0.2

−0.15

−0.1

−0.05

0

0.05

t

x(
t)

Figure 1. The blue urves are the disontinuity surfaes t = �i(x),i = 0; 1; 2; : : : ; 7. The solutions 	(t) = 0, and x(t; 0; �x) with initialvalues �x = 0:01 and �x = �0:03 are depited in blak, red and magenta,respetively.where f(t; x) = 1pi�t and �i(x) = p16� x2 � 3 + i, i 2 Z. The domain is equal toG = (�0:6; 0:6). One an easily determine that the system has a 1-periodi solution	(t) = 8<:�2 if t = 0,�2p1� t if t 2 (0; 1℄.The integral urve of the solution is tangent to the urve of disontinuity �0(x) =p1� x2+1 at the point (�1;	(�1)), and the tangent is vertial. That is, one an �ndthat the funtion x = 	(t) is invertible near x = 	(�1) = 0 and for x < 0, and the lefthand derivative is equal to [	�1j (xj)℄0�jx=xj = �212x(�1)2 = 0 and let �0(x) = �(x), and�x(x) = � x(�1)p16�x2 = 0. Conditions (i) and (ii) are veri�ed and the periodi solution	(t) has vertial grazing at the point (�1;	(�1)). Similarly, the points are (i; 0), i 2 Zare vertial grazing ones. The periodi solution, 	(t), is exhibited through simulationin Fig. 2.Now, we will validate the onditions from (N1) to (N4). Every solution whihmeets a disontinuity surfae does not interset the same one again, whih validates(N1) and instead of the equation x0 = 1pi�t , t 2 [i � 1; i), we will take into aountthe di�erential equation dtdx = 1pi�t , t 2 [i � 1; i). For C = 1 and N = 0:7, suhthat CN < 1 and the following inequalities are valid max(t;x)2R�D kf(t; x)k = 1,maxx2D k��i(x)�x k = maxx2D k 10p1�(x+0:1)2k � N; and max0���1h��i(x+�Ji(x))�x ; Ji(x)i =max0���1 �2p1�((1�0:2�)x)2 � 0: So, (N2) is veri�ed. Conditions (N3) and (N4) an bevalidated easily.Consider a near solution x(t) = x(t; 0; �x) of (2.28) to 	(t) with �x 6= 0. It is easy todetermine that all near solutions intersets the surfae of disontinuity �(x) = �0(x).We ould not evaluate the derivative �0(x) at the grazing point, by onsidering theoriginal system. For this reason, let us interhange the dependent and independent



VERTICAL AND HORIZONTAL GRAZING 143variables in the equation. Consider the system(2.29) dtdx = p1� t:Sine the funtion 	(t) is invertible on the interval [0; 1℄, its inverse satis�es the equa-tion (2.29), as well as the surfae �0(x) an be written as X(t) = �p16� (t� 3)2,for negative values of x. It is easy to hek that the solution(2.30) 	�1(x) = 8<:0 if x = �2,1� x24 if x 2 (�2; 0℄,of the equation (2.29) has a horizontal grazing point, (	�1(�1); �1) = (0; 1).Introdue the funtion �(t) as an analogue of �(x) for the last equation. It iseasy to �nd that(2.31) �0(0) = 1�0(1) ;sine the funtions are mutually inverse. Let us evaluate �0(1). Issuing from the equa-tion �(t) = �p16� (t(�(t))� 3)2, we obtain �0(1) = ��2(t(�(1))�3)(p1�t(�(1))�0(1)+1)2p16�(t(�(1))�3)2and �0(1) = � 1p3 , i.e. �0(0) = �p3. Taking into aount the periodiity of system(2.28) as well as 	(t), one an onlude that �0i(0), is equal to �p3, for all i 2 Z. Byutilizing this disussion and equation (2.7), one an obtain that Di � D = �p3.Thus, the variational system for all solutions near 	(t) has the form(2.32) u0 = 0;�u = �p3u:The multiplier for (2.32) an be found as � = �p3 + 1, and it is less than onein absolute value. So, the periodi solution 	(t) is asymptotially stable. One anobserve through simulations results exhibited in Fig. 2 that near solutions approahto th orbit of the yle 	(t) as time inreases.3. DisussionThis paper inludes information about a non-autonomous system with non-�xedmoments of impulses whose solutions have vertial and grazing points. For the hori-zontal grazing, a system with a non-autonomous vetor �eld and a ylindrial surfaeof d isontinuity is onsidered as an example and for the vertial grazing the systemswith non-autonomous vetor �eld and the surfaes of disontinuity is exempli�ed.By applying a novel tehnique, we onstrut a linearization system around the graz-ing periodi solution. Conrete models are demonstrated and some simulations arepresented to visualize theoretial results. Grazing solutions are widely investigatedin mehanial systems, but there is a few studies an be found in neural networks
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