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ABSTRACT. A sufficient condition for the existence and uniqueness of solution of nonhomogenous

fractional boundary value problem involving sequential fractional derivative of Riemann Liouville

type is established by using a new Lyapunov type inequality and disconjugacy criterion. Green’s

function and some of its properties are also presented. Our approach is quite new and to the best of

our knowledge, the uniqueness of solution of nonhomogenous fractional boundary value problems is

proved by employing Lyapunov type inequality for the first time and this Lyapunov type inequality

improves and generalizes the previous ones.
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1. INTRODUCTION

In this paper we prove an existence and uniqueness criterion for the solution of

nonhomogenous boundary value problem of sequential fractional differential equations

of the form

(aD
α(aD

βy))(t) + f(t)y(t) = g(t), a < t < b,
1

2
< α, β ≤ 1,(1.1a)

y(a) = 0, y(b) = B,(1.1b)

by deriving Lyapunov type inequality and disconjugacy criterion for the following

associated homogenous boundary value problem

(aD
α(aD

βy))(t) + f(t)y(t) = 0, a < t < b,
1

2
< α, β ≤ 1,(1.2a)

y(a) = 0, y(b) = 0,(1.2b)

where (aD
α) and (aD

β) are Riemann Liouville fractional derivatives of order α and

β, respectively, f, g : [a, b] → R are given continuous functions and a, b, B are given

real constants.

Fractional differential equations have attracted a great deal of attention and the

theory of which has been developed rapidly in the last three decades because they are

not only generalization of integer order derivatives but also modelling tools for many

real world phenomena occurring in physical and technical sciences, see [23, 25, 18].

Received April 11, 2016 1056-2176 $15.00 c©Dynamic Publishers, Inc.



148 Z. KAYAR

On the other hand, sequential fractional derivative arises naturally in many fields

of science and engineering because modelling procedure of a real world phenomena by

using differential equations originates from substituting equation containing deriva-

tives into another one. If the derivatives in both equations are fractional, then the

resulting equation will be sequential fractional derivative. Besides, Riemann Liou-

ville and Caputo fractional derivatives can be considered as particular cases of the

sequential fractional derivative.

Although there are few results for existence and uniqueness of boundary value

problems of sequential fractional derivative by using standart fixed point theorems,

such as the method of upper and lower solutions and Schauder fixed point theo-

rem [28], contraction principle [19], the method of upper and lower solutions and its

associated monotone iterative method [4], Banach’s contraction mapping principle,

Krasnoselskii’s fixed point theorem and nonlinear alternative of Leray-Schauder type

[3, 2], as far as we know there is not much done by using Lyapunov type inequality

and disconjugacy criterion. The proof of the main theorem of the present paper is

based on the method, which arises in [17] for the first time showing the connection

between linear impulsive boundary value problems and Lyapunov type inequality.

The history of Lyapunov type inequalities was started by Lyapunov [22] with the

following result.

Theorem 1.1 ([22]). If the boundary value problem

(1.3)
y′′ + q(t)y = 0, a < t < b

y(a) = y(b) = 0

has a nontrivial solution, where q is a real and continuous function with q(t) ≥ 0,

q(t) 6≡ 0, then the so-called Lyapunov inequality

(1.4)

∫ b

a

q(t)dt >
4

b − a
,

holds.

After the initiated work of Lyapunov [22], many authors have paid a considerable

attention to Lyapunov type inequalities and various proofs and generalizations or

improvements have appeared in the literature. For a comprehensive exibition of

these results we refer two surveys [6, 27] and references therein. The results for

(1.3) in [5, 20] are worth mentioning due to their contribution to this subject. Borg

[5] changed the nonnegativity condition of q(t) by nonnegative integral of q(t) and

improved inequality (1.4).

Theorem 1.2 ([5]). If the boundary value problem (1.3) has a nontrivial solution,

where q is a real and continuous function with q(t) 6≡ 0, then we have the Lyapunov



FRACTIONAL BVP AND LYAPUNOV INEQUALITY 149

type inequality

(1.5)

∫ b

a

|q(t)|dt >
4

b − a
.

Krein [20] used the same conditions of Theorem 1.2 and obtained the following

better inequality by replacing |q(t)| by q+(t) = max{q(t), 0}.

Theorem 1.3 ([20]). If the boundary value problem (1.3) has a nontrivial solution,

where q is a real and continuous function with q(t) 6≡ 0, then we have the Lyapunov

type inequality

(1.6)

∫ b

a

q+(t)dt >
4

b − a
.

For α ∈ (1, 2], the fractional counterparts of Lyapunov type inequality is obtained

in [10, 11, 26, 14, 15, 16] and the results of [10] will be improved and extended in the

present paper.

The theory of disconjugacy is well developed for ordinary differential equations,

the history of which starts with [12, 13, 21, 7, 24]. However, generalization of this

theory to the fractional case is not considered much, see [1, 8].

This paper is organized as follows: In Section 2 we recall some preliminary facts

that we will use in the sequel. Section 3 contains auxiliary tools, which are Green’s

function and its properties, Lyapunov type inequality and disconjugacy criterion, used

to prove the main result. Section 4 is devoted to the main result, which is the existence

and uniqueness theorem for nonhomogenous boundary value problem (1.1a)–(1.1b).

To the best of our knowledge although many results have been obtained for fractional

boundary value problems by using different techniques, there is little known about

the connection of fractional boundary value problems and Lyapunov type inequality.

2. PRELIMINARIES

Before going further, let us start with basic definitions and some facts about

Riemann-Liouville fractional integral, Riemann-Liouville fractional derivative and se-

quential fractional derivative and give definition of disconjugacy for fractional differ-

ential equations.

Definition 2.1 ([23, 25, 18]). Let α ≥ 0 and φ be a continuous function defined on

[a, b]. The Riemann Lioville fractional integral of order α is defined by

(aI
αφ)(t) =

1

Γ(α)

∫ t

a

(t − s)α−1φ(s)ds for α > 0

and aI
0φ(t) = φ(t) for α = 0.
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Definition 2.2 ([23, 25, 18]). The Riemann Liouville fractional derivative of order

α ≥ 0 is defined by

(aD
αφ)(t) =

{

(aD
m

aI
m−αφ)(t), α > 0

φ(t), α = 0

where m is the smallest integer greater or equal than α.

The definition of the sequential derivative proposed by Miller [23] is as follows.

Definition 2.3 ([23]). The sequential fractional derivative of order α ≥ 0 is defined

by

(aD
αφ)(t) = (aD

α1

aD
α2 . . .a Dαnφ)(t),

where α1 + α2 + · · · + αn = α and aD
αk , k = 1, 2, . . . , n denote Riemann Liouville

fractional derivative of order αk ≥ 0.

Lemma 2.4 ([23, 25, 18]). Assume that φ ∈ C(a, b) ∩ L(a, b) with a fractional de-

rivative of order α > 0 that belongs to C(a, b) ∩ L(a, b). Then for some constants

ci = 1, 2, . . . , m, one has

aI
α
a Dαφ(t) = φ(t) + c1(t − a)α−1 + c2(t − a)α−2 + · · ·+ cm(t − a)α−m,

where m is the smallest integer greater or equal than α and aD
α denotes Riemann

Liouville fractional derivative of order α > 0.

Definition 2.5. Equation (1.2a) is called disconjugate on an interval [a, b] if and only

if all solutions of equation (1.2a) have at most one zero on the interval [a, b].

3. PREPARATORY THEOREMS

To obtain an existence uniqueness criterion, we need to establish some auxiliary

results in a series of theorems. The first two theorems provide Green’s function and

its properties, the last two yield Lyapunov type inequality and disconjugacy criterion.

3.1. Green’s function and its properties. We derive Green’s function for the

nonhomogenous problem (1.1a)–(1.1b) as follows.

Theorem 3.1. y ∈ C[a, b] is a solution of the boundary value problem (1.1a)–(1.1b)

if and only if y satisfies the following integral equation

(3.1) y(t) = B

(

t − a

b − a

)α+β−1

+

∫ b

a

G(t, s) [g(s) − f(s)y(s)]ds

where

G(t, s) =
1

Γ(α + β)















−

(

t − a

b − a

)α+β−1

(b − s)α+β−1 + (t − s)α+β−1, a ≤ s < t ≤ b

−

(

t − a

b − a

)α+β−1

(b − s)α+β−1, a ≤ t ≤ s ≤ b



FRACTIONAL BVP AND LYAPUNOV INEQUALITY 151

Proof. The proof is similar to that of [10] but for the completeness of this paper, we

will give all the proofs in detail.

By applying the fractional integral operators aI
α and aI

β to the both sides of

equation (1.1a), respectively and using the semigroup property

(aI
α
a Iβy)(t) = (aI

α+βy)(t)

and Lemma 2.4, one can obtain that y is a solution of (1.1a) if and only if

(3.2)
y(t) = c1

Γ(α)(t − a)α+β−1

Γ(α + β)
+ c2(t − a)β−1

+
1

Γ(α + β)

∫ t

a

(t − s)α+β−1 [g(s) − f(s)y(s)]ds

for some real constants c1, c2. In order to have y(a) = 0, we will find c2 = 0. By

imposing the second boundary condition, y(b) = B, we have

c1 =
B Γ(α + β)

Γ(α)(b − a)α+β−1
−

1

Γ(α)(b − a)α+β−1

∫ b

a

(b − s)α+β−1 [g(s) − f(s)y(s)]ds

and the solution y becomes as

y(t) = −

(

t − a

b − a

)α+β−1
1

Γ(α + β)

∫ b

a

(b − s)α+β−1 [g(s) − f(s)y(s)]ds

+
1

Γ(α + β)

∫ t

a

(t − s)α+β−1 [g(s) − f(s)y(s)]ds + B

(

t − a

b − a

)α+β−1

,

which implies the desired result.

Remark 3.2. Let us consider the boundary value problem

(aD
αy)(t) + f(t)y(t) = 0 a < t < b, 1 < α ≤ 2,(3.3a)

y(a) = 0, y(b) = 0,(3.3b)

and its solution and Green’s function

(3.4) y(t) =

∫ b

a

G(t, s)f(s)y(s)ds,

G(t, s) =
1

Γ(α)















(

t − a

b − a

)α−1

(b − s)α−1 − (t − s)α−1, a ≤ s < t ≤ b

(

t − a

b − a

)α−1

(b − s)α−1, a ≤ t ≤ s ≤ b

,

respectively, given in [10]. Although (aD
α(aD

βy))(t) 6= (aD
α+βy))(t), our result can

be considered as a generalization of this result to the sequential differential equation.

Properties of Green’s functions, which will be used in the main theorem, are given

in the next theorem.

Theorem 3.3. Green’s functon has the following features:



152 Z. KAYAR

(1) G(t, s) ≤ 0 for all a ≤ t, s ≤ b.

(2) mint∈[a,b] G(t, s) = G(s, s), s ∈ [a, b].

(3) mins∈[a,b] G(s, s) = G
(

a+b
2

, a+b
2

)

= − 1
Γ(α+β)

(

b−a
4

)α+β−1
.

Proof. Let us define two functions g1(t, s) = −
(

t−a
b−a

)α+β−1
(b−s)α+β−1 +(t−s)α+β−1,

a ≤ s < t ≤ b and g2(t, s) = −
(

t−a
b−a

)α+β−1
(b − s)α+β−1, a ≤ t ≤ s ≤ b.

(1) It is obvious that g2(t, s) ≤ 0, g2(t, s) is a decreasing function of t, and so,

mint∈[a,b] g2(t, s) = g2(s, s) = −
(

s−a
b−a

)α+β−1
(b − s)α+β−1, s ∈ [a, b].

Now, consider g1(t, s). Since s ≥ a, we have a + (s−a)(b−a)
t−a

≥ s and

g1(t, s) = −

(

t − a

b − a

)α+β−1

(b − s)α+β−1 + (t − s)α+β−1

= −

(

t − a

b − a

)α+β−1

(b − s)α+β−1

+

(

t − a

b − a

)α+β−1 [

b −

(

a +
(s − a)(b − a)

t − a

)]α+β−1

≤ −

(

t − a

b − a

)α+β−1

(b − s)α+β−1 +

(

t − a

b − a

)α+β−1

(b − s)α+β−1 = 0

(2) To prove (2), let us differentiate g1(t, s) with respect to t for every fixed s.

Observe that

∂g1(t, s)

∂t
= (α + β − 1)

[

−

(

b − s

b − a

)α+β−1

(t − a)α+β−2 + (t − s)α+β−2

]

≥ (α + β − 1)
[

−(t − a)α+β−2 + (t − s)α+β−2
]

≥ 0

which yields g1(t, s) is a increasing function of t. Therefore it attains its minimum

at t = s. Hence we get

min
t∈[a,b]

g1(t, s) = g1(s, s) = g2(s, s) = −

(

s − a

b − a

)α+β−1

(b − s)α+β−1.

(3) Let us define

f(s) := g1(s, s) = g2(s, s) = −

(

s − a

b − a

)α+β−1

(b − s)α+β−1, s ∈ [a, b].

Then for s ∈ (a, b), we have

f ′(s) = (α + β − 1)
[(s − a)(b − s)]α+β−2

(b − a)α+β−1
(−b + 2s − a)

which yields that f ′(s) = 0 if s = a+b
2

. It is easy to show that f ′(s) < 0 when

s < a+b
2

and f ′(s) > 0 when s > a+b
2

.
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3.2. Lyapunov type inequality for homogenous problem. In this section we

will give Lyapunov type inequality and disconjugacy criterion for the corresponding

homogenous boundary value problem (1.2a)–(1.2b) in order to prove the uniqueness

of the solution of nonhomogenous boundary value problem (1.1a)–(1.1b).

Theorem 3.4. If the homogenous boundary value problem (1.2a)–(1.2b) has a non-

trivial solution y(t) 6= 0 on (a, b), then we have Lyapunov type inequality

(3.5)

∫ b

a

f+(s)ds > Γ(α + β)

(

4

b − a

)α+β−1

,

where f+(t) = max{f(t), 0}.

Proof. Let y(t) be a nontrivial, real and continuous solution of homogenous boundary

value problem (1.2a)–(1.2b). Since aD
α is a linear operator, without loss of generality

we may assume that y(t) > 0 on (a, b). Since y(t) is continuos on [a, b], there exist

a point c in [a, b] such that maxt∈[a,b] y(t) = y(c). Moreover since G(t, s) ≤ 0 for all

t, s ∈ [a, b], mins∈[a,b] G(s, s) = maxs∈[a,b] −G(s, s). Then by using (3.1), we obtain

(3.6) y(c) = −

∫ b

a

G(c, s)f(s)y(s)ds ≤ −

∫ b

a

G(c, s)f+(s)y(s)ds,

where f+(t) = max{f(t), 0}.

Since y(t) ≤ y(c) for all t ∈ [a, b], we have

(3.7) y(c) < −y(c)

∫ b

a

G(c, s)f+(s)ds.

Employing the properties of Green’s function obtained in Theorem 3.3, (3.7) turns

into

1 < −

∫ b

a

G(c, s)f+(s)ds ≤
1

Γ(α + β)

(

b − a

4

)α+β−1 ∫ b

a

f+(s)ds,

which yields the desired result.

Remark 3.5. If α = β = 1 in (1.2a)–(1.2b), then homogenous fractional boundary

value problem (1.2a)–(1.2b) becomes as boundary value problem (1.3) involving in-

teger order derivative considered in [22], [5] and [20]. Then inequality (3.5) reduces

to inequality (1.6).

Remark 3.6. Since f+(t) ≤ |f(t)|, inequality (3.5) is the fractional generalization of

inequality (1.6) and it is an extension and improvement of inequality (1.5).

Remark 3.7. Since f+(t) ≤ |f(t)|, Theorem 3.4 can be considered as a generalization

and improvement of [10, Theorem 2.1].
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3.3. Disconjugacy criterion for homogenous problem. Disconjugacy criterion

can be considered as an application of Lyapunov type inequality due to the fact that

the former is an immediate consequence of the latter. Besides, this criterion will be

the sufficient condition for the uniqueness of the solution of the fractional boundary

value problem (1.1a)–(1.1b).

Theorem 3.8. If

(3.8)

∫ b

a

f+(s)ds ≤ Γ(α + β)

(

4

b − a

)α+β−1

where f+(t) = max{f(t), 0}, then equation (1.2a) is disconjugate on [a, b].

Proof. Proof is made by contradiction. Assume that equation (1.2a) is not disconju-

gate on [a, b]. Then there exist a nontrivial solution y of equation (1.2a) and at least

two points t1, t2 ∈ [a, b] such that y(t1) = y(t2) = 0 for t ∈ [a, b] and y(t) 6= 0 for

t ∈ [a, b]. Then by using Lyapunov type inequality on the interval [t1, t2], we have
∫ t2

t1

f+(s)ds > Γ(α + β)

(

4

t2 − t1

)α+β−1

and hence
∫ b

a

f+(s)ds >

∫ t2

t1

f+(s)ds > Γ(α + β)

(

4

t2 − t1

)α+β−1

> Γ(α + β)

(

4

b − a

)α+β−1

,

which contradicts inequality (3.8).

4. MAIN RESULT

The main result of the paper providing existence and uniqueness result for the

nonhomogenous boundary problem (1.1a)–(1.1b) is as follows:

Theorem 4.1. If

(4.1)

∫ b

a

f+(s)ds ≤ Γ(α + β)

(

4

b − a

)α+β−1

,

then nonhomogenous boundary problem (1.1a)–(1.1b) has a unique solution which is

also the unique solution of integral equation (3.1).

Proof. It is shown in the proof of Theorem 3.1 that the solution of nonhomogenous

boundary problem (1.1a)–(1.1b) is the solution of integral equation (3.1), and vice

versa. To prove the uniqueness, it is sufficient to show that the homogenous boundary

value problem (1.2a)–(1.2b) has only trivial solution. Assume on the contrary that

y(t) 6≡ 0 is a solution of the homogenous boundary value problem (1.2a)–(1.2b). Then

by using Lyapunov type inequality, we have

(4.2)

∫ b

a

f+(s)ds > Γ(α + β)

(

4

b − a

)α+β−1
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which gives a contradiction to (4.1). Therefore the homogenous boundary value prob-

lem (1.2a)–(1.2b) has only trivial solution. Because of the theory of linear fractional

boundary value problems, see [9, Theorem 7.19], the nonhomogenous boundary prob-

lem (1.1a)–(1.1b) has a unique solution.
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