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1. INTRODUCTION

Let Ω ⊂ R
N (N ≥ 3) be a non-empty bounded open set with a smooth boundary

∂Ω. In this paper, we study the following gradient nonlinear elliptic system with

Dirichlet conditions

(1.1)



















−∆pu + a(x)|u|p−2u = λFu(x, u, v) in Ω,

−∆qv + b(x)|v|q−2v = λFv(x, u, v) in Ω,

u = v = 0 on ∂Ω

where p, q > 1, λ is a positive real parameter, by ∆s we denote the s-Laplacian

operator defined ∆su = div(|∇u|s−2∇u) for all u ∈ W
1,s
0 (Ω) (s = p, q). In the

statement of system (1.1) the reaction term F : Ω × R
2 → R is a C1-function such
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that F (x, 0, 0) = 0 for every x ∈ Ω, Fu, Fv denote the partial derivatives of F with

respect to u and v respectively. We suppose, moreover that a, b ∈ L∞(Ω) and

(1.2) ess inf
x∈Ω

a(x) = a0 ≥ 0, ess inf
x∈Ω

b(x) = b0 ≥ 0.

In recent years the existence and structure of solutions for problem driven by

p-Laplacian have found many interest and different approaches have been developed.

The variational methods are used to obtain weak solutions as critical points of a

suitable energy function. This approach is employed to deal with systems of gradient

type, i.e. the nonlinearities are the gradient of a C1 functional. We refer the reader

to [15] for a complete overview on this subject and [1], [2], [3], [4], [5], [9] [10],[12],[17],

[18] and the references therein for more developments. In [5], the authors study the

existence of critical points of the energy functional for which these points are the

solutions of a quasilinear elliptic system involving (p, q)-Laplacian with 1 < p, q < N .

They consider subcritical growth conditions, and under suitable conditions on the

nonlinearity, prove the existence of non-trivial solutions according to various cases:

sublinear, superlinear and resonant case. In [10] and [17] the authors get the existence

of three solutions for a class of quasilinear elliptic systems involving (p, q)-Laplacian

with p, q > N . In [1], the authors generalize the results obtained in [17] to systems

involving (p1, p2, . . . , pn)-Laplacian. Similar studies, but under different boundary

conditions, can be found in [3], [4] (mixed boundary conditions). It is worth noticing

that in [17] precise values of parameter λ are not established. In the study of nonlinear

elliptic systems in order to obtain non-zero solutions, non-variational approaches have

also been used under a different set of assumptions (as for instance the monotony of

the nonlinearity) and we refer to [14, 16] and the references therein for further details.

The aim of paper is to determine the existence of multiple solutions as the param-

eter λ > 0 varies in an appropriate interval. In this work, without losing generality,

we suppose that 1 < q ≤ p < N .

The paper is arranged as follows. First, we obtain the existence of one non-zero

weak solution to system (1.1) without assuming any asymptotic condition neither at

zero nor at infinity (see Theorem 3.1). Next we prove the existence of at least two

non zero weak solutions by using the Ambrosetti-Rabinowitz condition (see Theo-

rem 3.2). Finally, we present an existence result three solutions under an appropriate

condition on the nonlinear term F (see Theorem 3.3). Moreover the case in which F

is autonomuos is presented and some examples are given.

2. PRELIMINARIES

In this section, we recall definitions and theorems used in the paper.

Let (X, ‖ · ‖) be a real Banach space and Φ, Ψ : X → R be two Gâteaux

differentiable functionals and r ∈] − ∞, +∞]. We say that functional I = Φ − Ψ
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satisfies the Palais-Smale condition cut off upper at r (in short (PS)[r]-condition) if

any sequence {un} in X such that

(α1) {I(un)} is bounded,

(α2) limn→+∞ ‖I ′(un)‖X∗ = 0,

(α3) Φ(un) < r ∀n ∈ N,

has a convergent subsequence.

When r = +∞ the previous definition coincides with the classical (PS)-condition,

while if r < ∞ such condition is more general than the classical one. We refer to [6]

for more details.

We say that the functional I satisfies the weak Palais-Smale condition ((WPS)-

condition) if any bounded sequence {un} in X such that (α1) and (α2) hold, admits

a convergent subsequence.

Our main tool is the local minimum theorem obtained in [6]. We recall here its

version presented in [7].

Theorem 2.1 ([7, Theorem 2.3]). Let X be a real Banach space, and let Φ, Ψ : X →

R be two continuously Gâteaux differentiable functionals such that infX Φ = Φ(0) =

Ψ(0) = 0. Assume that there exist γ ∈ R and ū ∈ X, with 0 < Φ(ū) < γ, such that

(2.1)
supu∈Φ−1(]−∞,γ[) Ψ(u)

γ
<

Ψ(ū)

Φ(ū)

and, for each λ ∈ Λ :=
]

Φ(ū)
Ψ(ū)

, γ

sup
u∈Φ−1(]−∞,γ[) Ψ(u)

[

the functional Iλ = Φ− λΨ satisfied

(PS)[r]-condition.

Then, for each λ ∈ Λ :=
]

Φ(ū)
Ψ(ū)

, γ

sup
u∈Φ−1(]−∞,γ[) Ψ(u)

[

, there is uλ ∈ Φ−1(]0, γ[) such

that Iλ(uλ) ≤ Iλ(u) for all u ∈ Φ−1(]0, γ[) and I ′

λ(uλ) = 0.

Now, we also recall a recent result obtained in [9] that insures the existence of at

least two non-zero critical points for differentiable functionals.

Theorem 2.2 (8, Theorem 2.1]). Let X be a real Banach space and let Φ, Ψ : X → R

be two continuously Gâteaux differentiable functionals such that infX Φ = Φ(0) =

Ψ(0) = 0. Assume that there exist γ ∈ R and ū ∈ X, with 0 < Φ(ū) < γ, such that

supu∈Φ−1(]−∞,γ]) Ψ(u)

γ
<

Ψ(ū)

Φ(ū)

and for each λ ∈ Λ :=
]

Φ(ū)
Ψ(ū)

γ

sup
u∈Φ−1(]−∞,γ]) Ψ(u)

[

, the functional Iλ = Φ − λΨ satisfies

(PS)-condition and it is unbounded from below.

Then, for each λ ∈ Λ :=
]

Φ(ū)
Ψ(ū)

, γ

sup
u∈Φ−1(]−∞,γ]) Ψ(u)

[

, the functional Iλ admits two

non-zero critical points uλ,1, uλ,2 such that Iλ(uλ,1) < 0 < Iλ(uλ,2).
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Finally, we point out an other result which insures the existence of at least three

critical points. Theorem 2.3. has been obtained in [6], it is a more precise version of

Theorem 3.2 of [8] and Theorem 3.6 of [11].

Theorem 2.3 ([9, Theorem 2.1]). Let X be a real Banach space, Φ, Ψ : X → R be

two continuously Gâteaux differentiable functionals with Φ bounded from below and

Φ(0) = Ψ(0) = 0.

Assume that there exist γ ∈ R and ū ∈ X, with 0 < γ < Φ(ū), such that

(i)
sup

u∈Φ−1(]−∞,γ]) Ψ(u)

γ
<

Ψ(ū)
Φ(ū)

(ii) for each λ ∈ Λ :=
]

Φ(ū)
Ψ(ū)

, γ

sup
u∈Φ−1(]−∞,γ]) Ψ(u)

[

the functional Iλ = Φ − λΨ is

bounded from below and satisfies (PS)-condition.

Then, for each λ ∈ Λ, the functional Iλ = Φ − λΨ has at least three distinct critical

points in X.

Throughout in the paper, we suppose that the following condition holds

(H) there exist two non negative constants a1, a2 and two constants s ∈ [1, pN

N−p
[ and

r ∈ [1, qN

N−q
[ such that

|Ft1(x, t1, t2)| ≤ a1 + a2|t1|
s−1

|Ft2(x, t1, t2)| ≤ a1 + a2|t2|
r−1

for every (x, t) ∈ Ω × R
2.

Clearly, from (H) follows

(2.2) |F (x, t1, t2)| ≤ a1(|t1| + |t2|) + a2

(

|t1|
s

s
+

|t2|
r

r

)

for every (x, t) ∈ Ω × R
2.

In fact, there exists 0 < θ < 1 such that

|F (x, t)| = |F (x, t) − F (x, 0)| = |∇F (x, θt) · t|

by using (H), we have

|F (x, t)| ≤
2
∑

i=1

∫ 1

0

|Fti(x, θt)ti|dθ

≤

∫ 1

0

[(a1 + a2|θt1|
s−1)|t1| + (a1 + |θt2|

r−1)|t2|]dθ

≤ a1(|t1| + |t2|) + a2

(

|t1|
s

s
+

|t2|
r

r

)

.

We consider the Sobolev space X = W
1,p
0 (Ω) × W

1,q
0 (Ω) endowed with the norm

‖(u, v)‖ := ‖u‖
W

1,p
0 (Ω) + ‖v‖

W
1,q
0 (Ω)
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for all (u, v) ∈ X, where

‖u‖W
1,p
0 (Ω) :=

(
∫

Ω

(|∇u(x)|p + a(x)|u(x)|p)dx

)
1
p

,

‖v‖W
1,q
0 (Ω) :=

(
∫

Ω

(|∇v(x)|q + b(x)|v(x)|q)dx

)
1
q

,

that are, taking into account (1.2), equivalent to the usual one.

A function (u, v) ∈ X is said a weak solution to system (1.1) if
∫

Ω

[|∇u(x)|p−2∇u(x) · ∇w1(x)dx + |∇v(x)|q−2∇v(x) · ∇w2(x)]dx

+

∫

Ω

[a(x)|u(x)|p−2u(x)w1(x) + b(x)|v(x)|q−2v(x)w2(x)]dx

− λ

∫

Ω

[Fu(x, u(x), v(x))w1(x) + Fv(x, u(x), v(x))w2(x)]dx = 0

for every (w1, w2) ∈ X.

Now, consider 1 < h < N and put h∗ = hN
N−h

. Denote by Γ the Gamma function

defined by

Γ(s) =

∫ +∞

0

zs−1ezdz, ∀s > 0.

From the Sobolev embedding theorem, for every u ∈ W
1,h
0 (Ω) there exists a constant

c(N, h) ∈ R+ such that

(2.3) ‖u‖Lh∗(Ω) ≤ c(N, h)‖u‖
W

1,h
0 (Ω)

the best constant that appears in (2.3) is

c(N, h) = π−
1
2 N−

1
h

(

h − 1

N − h

)1− 1
h

(

Γ
(

1 + N
2

)

Γ(N)

Γ
(

N
h

)

Γ
(

1 + N − N
h

)

)
1
N

(see [19]).

Fixing s ∈ [1, h∗[ in virtue of Sobolev embedding theorem, for every u ∈ W
1,h
0 (Ω),

there exists a positive constant cs,h∗ such that

(2.4) ‖u‖Ls(Ω) ≤ cs,h∗‖u‖
W

1,h
0 (Ω)

and, in virtue of Rellich theorem the embedding is compact.

By using Hölder’s inequality, we have

(2.5) cs,h∗ ≤ µ(Ω)
h∗

−s
h∗s c(N, h)

where µ(Ω) denotes the Lebesgue measure of the set Ω. Now, we put

(2.6) c1,1 = max{c1,p∗, c1,q∗}, cr,s = max{cs
s,p∗, c

r
r,q∗},

where the constants s and r are given by (H).
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Moreover, let

(2.7) D := sup
x∈Ω

dist(x, ∂Ω).

Simple calculations show that there is x0 ∈ Ω such that B(x0, D) ⊆ Ω.

Finally, we set

(2.8) κ =
π

N
2 DN

Γ(1 + N
2
)
,

(2.9) σ =
2p

q
max

{

1

Dp

(

1 −
1

2N

)

+ ‖a‖∞,
1

Dq

(

1 −
1

2N

)

+ ‖b‖∞

}

.

(2.10) τ =
2q

p
min

{

1

Dp

(

1 −
1

2N

)

+ a0,
1

Dq

(

1 −
1

2N

)

+ b0

}

.

In order to study problem (1.1), we will use the functionals Φ, Ψ : X → R defined

by putting

(2.11) Φ(u, v) :=
1

p
‖u‖p

W
1,p
0 (Ω)

+
1

q
‖v‖q

W
1,q
0 (Ω)

, Ψ(u, v) :=

∫

Ω

F (x, u(x), v(x))dx

for every (u, v) ∈ X and put Iλ = Φ − λΨ for λ > 0.

Clearly, Φ is a coercive, weakly sequentially lower semicontinuous, continuously

Gâteaux differentiable and its derivative at point (u, v) ∈ X is defined by

Φ′(u, v)(w1, w2) =

∫

Ω

[|∇u(x)|p−2∇u(x) · ∇w1(x) + a(x)|u(x)|p−2u(x)w1(x)]dx

+

∫

Ω

[|∇v(x)|q−2∇v(x) · ∇w2(x) + b(x)|v(x)|q−2v(x)w2(x))]dx

for every (w1, w2) ∈ X.

Moreover, Ψ is well defined, weakly sequentially upper semicontinuous contin-

uously Gâteaux differentiable with compact derivative and its derivative at point

(u, v) ∈ X is defined by

Ψ′(u, v)(w1, w2) =

∫

Ω

[Fu(x, u(x), v(x))w1(x) + Fv(x, u(x), v(x))w2(x)]dx,

for every (w1, w2) ∈ X.

A critical point for the functional Iλ := Φ − λΨ is any (u, v) ∈ X such that

Φ′(u, v)(w1, w2) − λΨ′(u, v)(w1, w2) = 0 ∀(w1, w2) ∈ X.

Hence, the critical points for functional Iλ := Φ − λΨ are exactly the weak solutions

to system (1.1).

We have the following result

Lemma 2.4. Fix λ > 0 the functional Iλ = Φ − λΨ satisfies the (WPS)-condition.



GRADIENT NONLINEAR ELLIPTIC SYSTEMS... 373

Proof. Fixed λ > 0, we claim that the functional Iλ = Φ − λΨ satisfies the (WPS)-

condition. For this end, let {(un, vn)} be a bounded sequence in X such that Iλ(un, vn)

is bounded and I ′

λ(un, vn)(ω1−un, ω2−vn) ≥ −εn‖(ω1−un, ω2−vn)‖ for all (ω1, ω2) ∈

X and where εn → 0+. Hence, taking a subsequence if necessary, we have

(un, vn) ⇀ (u, v) in X,

un → u in Lα(Ω) for all α ∈ [1, p∗[

vn → v in Lβ(Ω) for all β ∈ [1, q∗[

From the previous relation, written with ω1 = u and ω2 = v we infer

(2.12) Φ′(un, vn)(u−un, v−vn)−λΨ′(un, vn)(u−un, v−vn) ≥ −εn‖(u−un, v−vn)‖.

We observe that

Φ′(un, vn)(u − un, v − vn) = −‖un‖
p

W
1,p
0 (Ω)

− ‖vn‖
q

W
1,q
0 (Ω)

+

∫

Ω

[|∇un(x)|p−2∇un(x) · ∇u(x) + a(x)|un(x)|p−2un(x)u(x)]dx

+

∫

Ω

[|∇vn(x)|p−2∇vn(x) · ∇u(x) + b(x)|vn(x)|p−2vn(x)v(x)]dx

and, bearing in mind that for all a, b ∈ R and p > 1,

|a|p−1|b| ≤
p − 1

p
|a|p +

1

p
|b|p

one has

Φ′(un, vn)(u − un, v − vn) ≤
1

p
‖u‖p

W
1,p
0 (Ω)

+
1

q
‖v‖q

W
1,q
0 (Ω)

(2.13)

−
1

p
‖un‖

p

W
1,p
0 (Ω)

−
1

q
‖vn‖

q

W
1,q
0 (Ω)

.

Moreover, by using (H) we have

|Ψ′(un, vn)(u − un, v − vn)| ≤ a1

(

‖un − u‖L1(Ω) + ‖vn − v‖L1(Ω)

)

+ a2

(

‖un‖
s−1
Lp∗(Ω)

‖un − u‖Lα(Ω) + ‖vn‖
r−1
Lq∗ (Ω)

‖vn − v‖Lβ(Ω)

)

where α = p∗

p∗−s+1
and β = q∗

q∗−r+1
, hence observing that α < p∗ and β < q∗, we obtain

(2.14) lim
n→+∞

Ψ′(un, vn)(u − un, v − vn) = 0.

From (2.12) and (2.13) we obtain

−εn‖(u − un,v − vn)‖ +
1

p
‖un‖

p

W
1,p
0 (Ω)

+
1

q
‖vn‖

q

W
1,q
0 (Ω)

≤
1

p
‖u‖p

W
1,p
0 (Ω)

+
1

q
‖v‖q

W
1,q
0 (Ω)

− λΨ′(un, vn)(u − un, v − vn),

from this, taking into account (2.14) we have

lim sup
n→+∞

(

1

p
‖un‖

p

W
1,p
0 (Ω)

+
1

q
‖vn‖

q

W
1,q
0 (Ω)

)

≤
1

p
‖u‖p

W
1,p
0 (Ω)

+
1

q
‖v‖q

W
1,q
0 (Ω)
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thus, since X is uniformly convex, Proposition III.30 of [13] ensures that {(un, vn)}

converges to (u, v) in X. Hence our claim is proved.

3. MAIN RESULTS

By using the notation of Section 2 we have our main results

Theorem 3.1. We suppose that (H) holds and assume that

(i1) F (x, t) ≥ 0 for every (x, t) ∈ Ω × R
2
+

where R
2
+ = {t = (t1, t2) ∈ R

2 : ti ≥ 0 i = 1, 2};

(i2) there exist two positive constants γ and δ with

δp + δq <
qγ

κσ
,

such that

infx∈Ω F (x, δ, δ)

δp + δq
>

2Nσ

q

[

a1c1,1

(

p
1
p γ

1
p
−1 + q

1
q γ

1
q
−1
)

+ a2cr,s

(

p
s
p

s
γ

s
p
−1 +

q
r
q

r
γ

r
q
−1

)]

where a1, a2, s and r are given by (H) and κ, σ are given by (2.8) and (2.9).

Then, for each λ ∈







2N σ(δp+δq)
q infx∈Ω F (x,δ,δ)

, 1

a1c1,1

„

p
1
p γ

1
p−1

+q
1
q γ

1
q −1

«

+a2cr,s

 

p
s
p

s
γ

s
p−1

+ q
r
q

r
γ

r
q −1

!






, the

system (1.1) has at least one non-zero weak solution.

Proof. Our goal is to apply Theorem 2.1. Consider the Sobolev space X and the

operators defined in (2.11).

Taking into account (2.2), it follows that

Ψ(u, v) =

∫

Ω

F (x, u(x), v(x))dx(3.1)

≤ a1(‖u‖L1(Ω) + ‖v‖L1(Ω)) + a2

(

‖u‖s
Ls(Ω)

s
+

‖v‖r
Lr(Ω)

r

)

.

Let γ ∈]0, +∞[, then for every (u, v) ∈ X such that Φ(u, v) < γ, by using (2.4) and

(2.6) we get

(3.2) Ψ(u, v) ≤ a1c1,1((pγ)
1
p + (qγ)

1
q ) + a2cr,s

(

(pγ)
s
p

s
+

(qγ)
r
q

r

)

.

Hence, from (3.2), we have

(3.3)

sup(u,v)∈Φ−1(]−∞,γ[) Ψ(u, v)

γ
≤ a1c1,1

(

p
1
p γ

1
p
−1 + q

1
q γ

1
q
−1
)

+a2cr,s

(

p
s
p

s
γ

s
p
−1 +

q
r
q

r
γ

r
q
−1

)

,

for every γ > 0.
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Now, we choose the function (ū, ū) defined by putting

(3.4) ū(x) =



















0 if x ∈ Ω \ B(x0, D)

2δ
D

(D −
√

∑N
j=1(xj − xj0)2) if x ∈ B(x0, D) \ B(x0,

D
2
)

δ if x ∈ B(x0,
D
2
)

Clearly (ū, ū) ∈ X and by using (2.8), (2.9) and (2.10) we have

(3.5)
δp + δq

p
κτ < Φ(ū, ū) <

δp + δq

q
κσ.

In virtue of (3.5) and bearing in mind that δp + δq < qγ

κσ
, we obtain

0 < Φ(ū, ū) < γ

and by using (i1) we have

(3.6) Ψ(ū, ū) =

∫

Ω

F (x, ū(x), ū(x))dx ≥

∫

B(x0, D
2

)

F (x, δ, δ)dx ≥
k

2N
inf
x∈Ω

F (x, δ, δ).

Hence, by (3.5) and (3.6), one has

(3.7)
Ψ(ū, ū)

Φ(ū, ū)
≥

q

2Nσ

infx∈Ω F (x, δ, δ)

δp + δq
.

By using (3.3), (3.7) and taking into account (i2), we get

sup(u,v)∈Φ−1(]−∞,γ[) Ψ(u, v)

γ
≤ a1c1,1

(

p
1
p γ

1
p
−1 + q

1
q γ

1
q
−1
)

+ a2cr,s

(

p
s
p

s
γ

s
p
−1 +

q
r
q

r
γ

r
q
−1

)

<
q

2Nσ(δp + δq)
inf
x∈Ω

F (x, δ, δ)

≤
Ψ(ū, ū)

Φ(ū, ū)
.

Moreover, let be r2 > 0 and {(un, vn)} a sequence in X such that (α3) holds, since Φ

is coercive we have that {(un, vn)} is bounded. Then by using Lemma 2.1. we obtain

that (WPS)-condition implies (PS)[r2]-condition.

Therefore, all the assumptions of Theorem 2.1 are satisfied. So, for each

λ ∈







2Nσ(δp + δq)

q infx∈Ω F (x, δ, δ)
,

1

a1c1,1

(

p
1
p γ

1
p
−1 + q

1
q γ

1
q
−1
)

+ a2cr,s

(

p
s
p

s
γ

s
p
−1 + q

r
q

r
γ

r
q
−1
)







⊆

]

Φ(ū, ū)

Ψ(ū, ū)
,

γ

sup(u,v)∈Φ−1(]−∞,γ[) Ψ(u, v)

[

the functional Iλ has at least one non-zero critical point that is weak solution of

system (1.1).

The following result, in which Ambrosetti-Rabinowitz condition is also used, en-

sures the existence at least two non-zero weak solutions.
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Theorem 3.2. We suppose that (H) holds. Assume that

(j1) F (x, t) ≥ 0 for every (x, t) ∈ Ω × R
2
+

where R
2
+ = {t = (t1, t2) ∈ R

2 : ti ≥ 0 i = 1, 2};

(j2) there are two positive constants γ and δ with

δp + δq <
qγ

κσ
,

such that

infx∈Ω F (x, δ, δ)

δp + δq
>

2Nσ

q

[

a1c1,1

(

p
1
p γ

1
p
−1 + q

1
q γ

1
q
−1
)

+ a2cr,s

(

p
s
p

s
γ

s
p
−1 +

q
r
q

r
γ

r
q
−1

)]

where a1, a2, s and r are given by (H) and κ, σ are given by (2.8) and (2.9),

and that there are two positive constants µ > p and R such that

(AR) 0 < µF (x, t) ≤ t · ∇tF (x, t)

for all x ∈ Ω and |t| > R.

Then, for each λ ∈







2N σ(δp+δq)
q infx∈Ω F (x,δ,δ)

, 1

a1c1,1

„

p
1
p γ

1
p−1

+q
1
q γ

1
q −1

«

+a2cr,s

 

p
s
p

s
γ

s
p−1

+ q
r
q

r
γ

r
q −1

!






,

the system (1.1) has at least two non-zero weak solutions.

Proof. Our goal is to apply Theorem 2.2. Consider the Sobolev space X and the

operators defined in (2.11) taking into account that the regolarity assumptions on Φ

and Ψ are satisfied. Arguing as in the proof of Theorem 3.1, put (ū, ū) as in (3.4),

by using (i1), (j2), (3.5) and bearing in mind that δp + δq > qγ

κσ
, we obtain

0 < Φ(ū, ū) < γ

and

sup(u,v)∈Φ−1(]−∞,γ]) Ψ(u, v)

γ
<

Ψ(ū, ū)

Φ(ū, ū)
.

Fix λ ∈







2N σ(δp+δq)
q infx∈Ω F (x,δ,δ)

, 1

a1c1,1

„

p
1
p γ

1
p−1

+q
1
q γ

1
q −1

«

+a2cr,s

 

p
s
p

s
γ

s
p−1

+ q
r
q

r
γ

r
q −1

!






, from (AR), by

standard computations, there is a positive constant C such that

(3.8) F (x, t) ≥ C|t|µ

∀x ∈ Ω, |t| > R.

From (3.8) it follows that Iλ is unbounded from below.
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Now, by using Lemma 2.4 to verify (PS)-condition it is enough to prove that any

sequence of Palais-Smale is bounded. To this end, taking into account (AR) one has

µIλ(un, vn) − ‖I ′

λ(un, vn)‖X′‖(un, vn)‖ ≥ µIλ(un, vn) − I ′

λ(un, vn)(un, vn)(3.9)

= µΦ(un, vn) − λµΨ(un, vn) − Φ′(un, vn)(un, vn) + λΨ′(un, vn)(un, vn)

=

(

µ

p
− 1

)

‖un‖
p

W
1,p
0 (Ω)

+

(

µ

q
− 1

)

‖vn‖
q

W
1,q
0 (Ω)

− λ

∫

Ω

(µF (x, un(x), vn(x))

− (Fu(x, un(x), vn(x))un(x) + Fv(x, un(x), vn(x))vn(x))

≥

(

µ

p
− 1

)

‖un‖
p

W
1,p
0 (Ω)

+

(

µ

q
− 1

)

‖vn‖
q

W
1,q
0 (Ω)

+ C.

where C is a constant.

If {(un, vn)} is not bounded from (3.9) we have a contradiction.

Therefore, all conditions of Theorem 2.2 are satisfied, then the system (1.1),

for each λ ∈







2N σ(δp+δq)
q infx∈Ω F (x,δ,δ)

, 1

a1c1,1

„

p
1
p γ

1
p−1

+q
1
q γ

1
q −1

«

+a2cr,s

 

p
s
p

s
γ

s
p−1

+ q
r
q

r
γ

r
q −1

!






, admits at

least two non-zero weak solutions.

Now, we point out the following result on the existence of at least three weak

solutions.

Theorem 3.3. We suppose that (H) holds and assume that

(j1) F (x, t) ≥ 0 for every (x, t) ∈ Ω × R
2
+

where R
2
+ = {t = (t1, t2) ∈ R

2 : ti ≥ 0 i = 1, 2};

(h2) there exist three positive constants α, β and b with α < p and β < q such that

F (x, t1, t2) ≤ b(1 + |t1|
α + |t2|

β)

for almost every x ∈ Ω and for every (t1, t2) ∈ R
2
+;

(h3) there exist two positive constants γ and δ with

δp + δq >
pγ

κτ
,

such that

infx∈Ω F (x, δ, δ)

δp + δq
>

2Nσ

q

[

a1c1,1

(

p
1
p γ

1
p
−1 + q

1
q γ

1
q
−1
)

+ a2cr,s

(

p
s
p

s
γ

s
p
−1 +

q
r
q

r
γ

r
q
−1

)]

where a1, a2, s and r are given by (H) and κ, σ are given by (2.8) and (2.9).

Then, for each λ ∈







2N σ(δp+δq)
q infx∈Ω F (x,δ,δ)

, 1

a1c1,1

„

p
1
p γ

1
p−1

+q
1
q γ

1
q −1

«

+a2cr,s

 

p
s
p

s
γ

s
p−1

+ q
r
q

r
γ

r
q −1

!






, the

system (1.1) has at least three weak solutions.
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Proof. Our goal is to apply Theorem 2.3. Consider the Sobolev space X and the

operators defined in (2.11) taking into account that the regolarity assumptions on

Φ and Ψ are satisfied, our aim is to verify (i) and (ii). Arguing as in the proof

of Theorem 3.1, put (ū, ū) as in (3.4), by using (3.5) and bearing in mind that

δp + δq > pγ

κτ
, we obtain

Φ(ū, ū) > γ > 0.

Therefore, the assumption (i) of Theorem 2.3 is satisfied.

We prove that the functional Iλ = Φ − λΨ is coercive for all positive parameter,

in fact by using condition (h2) we have

Iλ(u, v) = Φ(u, v) − λΨ(u, v)

=
1

p
‖u‖p

W
1,p
0 (Ω)

+
1

q
‖v‖q

W
1,q
0 (Ω)

− λ

∫

Ω

F (x, u(x), v(x))dx

≥

(

1

p
‖u‖p

W
1,p
0 (Ω)

− λbc
α
s
r,sµ(Ω)

p−α
p ‖u‖α

W
1,p
0 (Ω)

)

+

(

1

q
‖v‖q

W
1,q
0 (Ω)

− λbc
β
r
r,sµ(Ω)

q−β
q ‖v‖β

W
1,q
0 (Ω)

)

− λbµ(Ω).

We observe that the functional Iλ = Φ − λΨ is bounded from below because it is

coercive and weakly sequentially lower semicontinuous.

Now, by using Lemma 2.4 to verify (PS)-condition it is enough to observe that

since the functional Iλ = Φ−λΨ is coercive any sequence of Palais-Smale is bounded.

Then also condition (ii) holds. Hence all the assumptions of Theorem 2.3 are satisfied.

So, for each λ ∈







2N σ(δp+δq)
q infx∈Ω F (x,δ,δ)

, 1

a1c1,1

„

p
1
p γ

1
p−1

+q
1
q γ

1
q −1

«

+a2cr,s

 

p
s
p

s
γ

s
p−1

+ q
r
q

r
γ

r
q −1

!






, the

functional Iλ has at least three distinct critical points that are weak solutions of

system (1.1).

Now, we point out the case when F does not depend on x ∈ Ω, we consider the

following system

(3.10)



















−∆pu + a(x)|u|p−2u = λFu(u, v) in Ω,

−∆qv + b(x)|v|q−2v = λFv(u, v) in Ω,

u = v = 0 on ∂Ω,

we have the following result.

Corollary 3.4. Let F : R
2 → R be a nonnegative and C1-function satisfying (H) and

assume that

lim
t→0+

F (t, t)

tq
= +∞.

Then, there is λ∗ > 0 such that, for each λ ∈]0, λ∗[, the problem (3.10) admits at least

one non-zero weak solution.
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Proof. Fix

λ∗ =
1

a1c1,1

(

p
1
p + q

1
q

)

+ a2cr,s

(

p
s
p

s
+ q

r
q

r

) .

where the constants a1, a2, c1,1 and cr,s are given by condition (H) and (2.6).

By using (2.8) and (2.9) and taking into account that

lim
t→0+

F (t, t)

tq
= +∞

we obtain that for each λ ∈]0, λ∗[ there exists h̄ > 0 such that F (t,t)
tq

> 2N σ
qλ

for each

|t| < h̄.

Now, consider 0 < δ < min{h̄, ( q

2κσ
)

1
q } we have

F (δ, δ)

δp + δq
>

2Nσ

qλ
>

2Nσ

qλ∗

δp + δq <
q

κσ
.

Then, by choosing γ = 1 all assumptions of Theorem 3.1 are satisfied and the proof

is complete.

Corollary 3.5. Let F : R
2 → R be a nonnegative and C1-function satisfying (H),

(AR) and assume that

lim
t→0+

F (t, t)

tq
= +∞.

Then, there is λ∗ > 0 such that, for each λ ∈]0, λ∗[, the problem (3.10) admits at least

two non-zero weak solutions.

Proof. Fix

λ∗ =
1

a1c1,1

(

p
1
p + q

1
q

)

+ a2cr,s

(

p
s
p

s
+ q

r
q

r

)

where the constants a1, a2, c1,1 and cr,s are given by condition (H) and (2.6).

The conclusion follows arguing as in the proof of Corollary 3.4 taking into account

Theorem 3.2.

Now, we present some examples that illustrate our results.

Example 3.6. Let Ω be an open ball of radius one in R
6.

Consider the function F : R
2 → R defined by

F (t1, t2) = log(1 + t21 + t22).

We observe that

Ft1(t1, t2) =
2t1

1 + t21 + t22

Ft2(t1, t2) =
2t2

1 + t21 + t22
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then, choosing q = 3, p = 4, s = r = 2 a1 = 0 and a2 = 2, the condition (H) holds.

We observe

lim
t→0+

F (t, t)

t3
= +∞.

Then by using Corollary 3.4, put

λ∗ = 0, 46

∀λ ∈]0, λ∗[ the following system


















−∆4u + |u|3u = λFu(u, v) in Ω,

−∆3v + |v|2v = λFv(u, v) in Ω,

u = v = 0 on ∂Ω

admits at least one non-zero weak solution in X = W
1,4
0 (Ω) × W

1,3
0 (Ω).

Example 3.7. Let Ω be an open ball of radius one in R
6.

Consider the function F : R
2 → R defined by

F (t1, t2) =







1
18

(t1 + t2) + (t41 + t42)e
−

1

t2
1
+t2

2 (t1, t2) 6= (0, 0)

0 (t1, t2) = (0, 0).

We observe that

Fti(t1, t2) =







1
18

+ 2
(

2t2i +
(t41+t42)

(t21+t22)2

)

tie
−

1

t21+t22 (t1, t2) 6= (0, 0)

1
18

(t1, t2) = (0, 0)

then, choosing p = q = 3, r = s = 4, a1 = 3 and a2 = 6, the condition (H) holds.

Moreover, choose µ = 4 and R = 1 we have

0 < 4F (t1, t2) ≤ t1Ft1(t1, t2) + t2Ft2(t1, t2)

for every (t1, t2) ∈ R
2 with |(t1, t2)| > 1. We observe

lim
t→0+

F (t, t)

t3
= +∞.

Then by using Corollary 3.5, put λ∗ = 0.061, ∀λ ∈]0, λ∗[ the following system


















−∆3u + |u|2u = λFu(u, v) in Ω,

−∆3v + |v|2v = λFv(u, v) in Ω,

u = v = 0 on ∂Ω

admits at least two non-zero weak solutions in X = W
1,3
0 (Ω) × W

1,3
0 (Ω).
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