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ABSTRACT. In this paper, we give sufficient conditions to guarantee exponential decay of solu-
tions to zero of the time varying delay differential equation of first order. By using the Lyapunov-
Krasovskii functional approach, we establish new results on the exponential decay of solutions, which

include and improve some related results in the literature.
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1. INTRODUCTION

In this paper we consider the scalar linear differential equation with time varying

delay

n

(1.1) () =b(t) f(x) = Y _a; () x (t = hi (1))

i=1
where a;(t), b(t) and h;(t) are continuous with 0 < h; (t) < 1o (i = 1,2,...,n) for
positive constant 7o and the function ¢ — h; (¢) is strictly increasing so that it has
an inverse r (t). By using the Lyapunov-Krasovskii functional, we will give sufficient

conditions for instability and exponentially stable of the zero solution of (1.1).

There exist many works on the stability, boundedness, asymptotically stabil-
ity, exponentially stability and unstable. In the literature some of them presented
in [1]-[13]. In the present work, we have motivated from [1, 2, 6]. In [6], Cable
and Raffoul obtained by using Liapunov functionals sufficient conditions that guar-
antee exponential decay of solutions to zero of the multi delays differential equa-
tions z'(t) = a(t)z(t) — Y i, bi(t)x(t — h;) where a,b are continuous with 0 <
h; < h* for i = 1,2,...,n for some positive constant ~*. In [1], Adivar and Raf-
foul used Liapunov functionals to obtain sufficient conditions that guarentee ex-

ponential decay of solutions to zero of the time varying delay differential equation
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' (t) = b(t)x(t) — a(t)xz(t — h(t)) where a,b and h are continuous with 0 < h(t) < rg
for positive constant 7. In [2], Adivar and Raffoul used Liapunov functionals to ob-
tain sufficient conditions that ensure exponential stability of the nonlinear Volterra
integro differential equation z'(t) = P(t)x(t) — ftt_T q(t, s)x(s)ds where the constant 7
is positive, the function p does not need to obey any sign condition and the kernel ¢
is continuous. In addition, authors gived a new criteria for instability. In [5], Burton
compared two methods by applying the fixed point theory to some differential equa-
tions in which Liapunov’s direct methods had ineffecient results in aspect of stability.
For more detail we refer [3, 4], [7]-[13].

Let ¢ : [—rp,0] — (—00,00) be a given continuous initial function with
Il = _max [(s)]-
and
f@) x#0
fil)=9 7
f0), z=0

It should cause no confusion to denote the norm of a continuous function ¢ : [—r, 00) —
(—00, 00) with

el = sup |o(s)]-

—r<s<oo

The notation x; means that x,(7) = z(t + 7), 7 € [—710,0] as long as z(t + 7)
is defined. Thus, z; is a function mapping an interval [—7r¢, 0] into R. We say that
x(t) = x(t,t9,) is a solution of (1.1) if x(t) satisfies (1.1) for ¢t > to and zy,(s) =
z(to + s) = ¥(s), s € [-ro,0].

Equation (1.1) can be written as the following

(1.2) +—

where
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2. Exponential Stability

For convenience, let Q(t,z) := b(t) f1(z) — > i, ci(t).

Lemma 2.1. Let

o —
(2.1) —m <Q(tz) < —7’05;% (t)

ford > 0. If

(22) V(H) = (ma) _g/:m(t) s (s) 2(s) s> +5/_m /t+ 3 (2)dz=ds,

then, along the solution of (1.1) we have
VI([t) < Qt. z)V(2).

Proof. Because of condition (2.1) it is clear that Q(¢,x) < 0 for all t > 0. Let z(t) =
x(t,to,7) be a solution of (1.1). Calculating the time derivative of the functional
V (t) along solution z(t) of (1.1) we get

V'(t) ( Z/t " ) Q(t, z)x(t) + 7‘&20?(1&)# t

-9 Z 2(t+ s)2?(t + s)ds

—T0 =1
n

< Q(t, ) [ﬁ(t) ~uY [ L ale)ds

=1

+ 790 Z () (t
i=1

=6 [ D Gt +s)a’(t+ s)ds + Q(t, x)a*(t)

=Q(t,x)V(t) — Q(t, x) (Z/ 8)2
—5th/_r /t+8. *(2)dzds

=1

(2.3) (roézc +th> —5/ 2(t+ 8)2(t + s)ds.

We can write expressions following to simplify (2.3). Flrstly, if we let u =t + s, then

n

(2.4) /_ Zc (t+s)x t+s)ds-/tt Zc?(s)xz(s)ds.

7o =1 70 =1

Secondly, from Holder’s inequality and 2 \ab| < a? 4 b*, we obtain

n t
(2.5) Z/ ci(s)x(s)ds | < nro/ 7% (s)ds.
i1 Jt—hi(t) t—r0 1
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Lastly, by changing the order of integration we write

o [

By using expressions (2.2), (2.4)—(2.6) into (2.3) obtain

2)dzds < rO/ 7% (s)ds
t—ro0 ;—1

i=1

V'(t) <Q(t, )V +<7’052 +Qt:17> 22 (t)

+ [ (019 + nro)Q(t, ) — J] / Z c2(s)x*(s)ds

(2.7) < Q(t, )V (t).

This completes the proof. O

In the next theorem we will furnish two inequalities; one for t > ty + vyrg and the
other for ¢ € [ty, tg + yro], for v > 0.

Theorem 2.2. Assume that all the conditions of Lemma 2.1 holds and let 1 < a < 2.
If

—1
(2.8) <a - ) ro < hi (t) <o, forallt >0,

then any solution x (t) = x (t,t9,v) of (1.1) satisfies the exponential inequalities

a—1 e G )
(2.9) |z (t)| < \/QWV@O)@ Jio (=) Q(s,z(s))ds
fort>t0+( )7’0, and

t
(2.10) lz (t)] < ||¥|| 6ftto b(s) f1(x(s))ds {1 —l—/ la(u) |e” 4 b(s)f1(x(s)ds 4,
to

fort e [to,to + (O‘T_l) ro}.

Proof. By changing the order of integration we have

/ / (2) dzds
—rg Jit+s ;_

=1

L s

(2.11) :/t_ Zcf(z)gﬂ( 2) (z —t+10)dz.
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For 1 < a < 2, and ift—%o < z < t, then (O‘T_l)ro < z—t+ry <1y Expression
(2.11) yields,

n

/ / > cl(z)e? () deds = /me () (2 — t+ o) d2

/t_ " 20202 (2) (o — t 4 7o) d

(2.12) > (O‘; 1) "o /1:_ ;c?(z)xZ (2) dz.

Function of V' (t) can be write as

) > 5/ / (2) dzds
—ro Jt+s _

=1

-1
>0 <aa )ro/ Zcf(z)zz
=3 o1

This implies that, for 1 < a < 2, we have —r + 22 > —*¢ and hence

V(t—(a;l)ro) (O‘_l)m/t e () (2) de
(2.13) >5<O“1)r0/t_% " 22022 (2) d.

Note that since V' (¢) < 0 we have for t > to + (2=1) ro that

v (7)) s (5))

We note that

n n

(2.14) nro/t Z:cf(z):v2 (2)dz > (Z /t_h'(t) ci(s)x(s)ds> :

—Tro ;=1 1=1

From inequalities (2.13)—(2.14) we obtain

V(t)+V(t—<a;1)r) ( i/th@ s>2

0 n
+0 Z c2(2)x* (2) dzds
—rg Jit+s i=1
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(2.15) > (QLQ)&:E ().

In this way, (2.15) shows that

(2.16) <ov (t . (O‘; 1)

Integrating inequality (2.7) from ¢, to ¢, we have
t
V(1) <V (ty) elo QoloNds,

As a result of (2.16),
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and

a__l t— a;l T
[z (1) < \/2%‘/ (to)e? Jeo (=) " Qlo(s))ds
for t > to+ (2=1) rg. For t € [to,to + (2=2) ro], we observe form (2.8) that

(2.17) (O‘;l)ro—hi(t) (to— (O‘;l) ro) <0.

Thus for t € [to, to + (21) 7] and by (2.17), we have 2’ (t) = b (t) f(z) — Y1y ai(t)

xx(t — hi(t)) = b(t) f(x) — diy ai(t)y(t). Since 1 (t) is the known initial function,
we can easily solve for z (t) using the variations of the parameters formula. That is

t t " t
T (t) — efto b(s) f1(x)ds [w (to) . / Z a; (u) . (u) . o b(s)fl(:v)dsdu] ‘

to =1

Thus for t € [to, to + (07_1) 7"0], the above expression implies

t n ¢
[ 3 <u>|e—ftob<s>fl<x>d8du].

to =1

t b(s x)ds
2z (£)] <[] el 1)

This completes the proof. O

Remark 2.3. Since the delay h (t) is time varying, condition (2.17) is price we paid
to obtain two different inequalities on two different intervals. In the case h; (t) = ro,

where rq is constant, then condition (2.17) is automatically satisfied.

Remark 2.4. It follows form (2.1) and inequality (2.9) that

1—|—C“;6 lti((x)T'O
|z (t)] < \/2%‘/ (to)e? Jio Q(s,z(s))ds

1+ (2510 o8k ff(t%l)m L 2(s)ds
< \/QWV (to)e 0 :

no

Thus, if [~ 371, ¢}(s)ds = oo, then the zero solution of (1.1) is exponentially stable.

i=1Gi
3. A criterion for instability

In this section, we usea non-negative definite Lyapunov functional and obtain a

criterion that can be easily applied to test for instability of the zero solution of (1.1).

Lemma 3.1. Suppose there exists a positive constant D > nry such that
(3.1) Q(t,x) = DY &(t)>0.
i=1
If
n t 2 t n
3 / c()a(s)s) =D [ Y A () dz,
t =

i—1 Jt=hi(t)

(3.2) Vit)= (x (t) —
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then, along the solutions of (1.1) we have
(3.3) Vi) 2 Q. z)V(t).

Proof. Because of condition (3.1), it is clear that Q(¢t,z) > 0 for all ¢ > 0. Let
x(t) = x(t,t9,7) be a solution of (1.1). Using inequality (2.5) and calculating the
time derivative of the functional V' (t) defined by (3.2) along solution z(t) of (1.1) we
have

V(/1) (t) =2 (:c (t) — Z/t - ¢ (8) m(s)ds) Q(t,z)x(t)

+Q (t,z) (—nro + D) 2(2)2% (2) dz

t=T0 j— 1
>Q(t,z) V().
This completes the proof. O

Theorem 3.2. Assume that all the conditions of Lemma 3.1 holds. Then the zero
solution of (1.1) is unstable, provided that

/ Zcf(s)ds:oo.
o =1

Proof. An integration of (3.3) from ¢y to ¢ yields
(3.4) V (£) >V (t) elto @e=(Dds,

Function of V' (t) given by (3.2) we can write as

3.5 V(t)=a*(t) — 22 - [ ¢ (s)xz(s)ds
(3.5) (t) = 2% (1) (t);/t_w) () 2(s)

¢ (s)xz(s)ds| — D C?Z$2zdz,
;[—hi(t)()()] Z()()

t=ro j=1
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Let 3 = D — nry. Then form

(7 ) =0

we have

2ab < 02 4 22
B nro

With this in mind we arrive at,

oz (t)z /t_h.@) ¢ (s)z(s)ds < 2|z (t)] Z /t_h.@) ¢ (s) z(s)ds

" 2
< —2x°(t) + — ¢ (s)x(s)ds
PR V) BCIOED
n I} &
§—$2t+—n7’/ cft:c2sds
FRACREE Ry P SAUTID
A substitution of the above inequality into (3.5) yields,
t n
V(t) < a?(t) + %ﬁ (t) + (8 + nro — D)/ > A (t)a? (s) ds
=10 =1
6 -+ nro 2
=BT 02
3 (t)
D 2
== 2@).
D — m’OI ( )
Using inequalities (3.1) and (3.4), we get
/D nTO 2T Moy2 (4
/D nTO 2oy e% Ji, Qsa(s))ds
/D m‘o V1/2 e% I, iy ci(s)ds
This completes the proof. O
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