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ABSTRACT.We consider two dimensional predator-prey system with Beddington-DeAngelis type
functional response on time scales. For this special case, we try to find under which conditions the
system is permanent and globally attractive. This study gives beneficial results for continuous and
discrete cases and also for solving open problems related to the dynamical properties of the systems

which include the species that have unusual life cycle.
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1. Introduction

The subject of mathematical ecology in biomathematics is the relationship be-
tween species and outer environment. Moreover, the connections between different
species describe predator-prey dynamic systems. In this type of dynamic sytems, most
important issues are global attractivity and permanence. Global attractivity shows
the stability of the species in their circumstances and permanence shows whether the
considered species are permanent against environmental conditions. The conditions
that make different predator-prey dynamic systems permanent and globally attrac-
tive were studied in [4], [9] and [18]. Another important notion in predator-prey
systems is functional response, which explains the effect of predator on prey and vice
versa. Therefore, various types of functional responses such as semi-ratio dependent,
Holling-type functional responses have been investigated in several studies like [8],

[11], [16], [17], [19].

In this paper, we consider the predator-prey systems with Beddington DeAngelis
type functional response. This type of functional response was first considered in
[1] and [7] by Beddington and DeAngelis respectively. At low densities, this type
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of functional response can avoid singular behavior of ratio-dependent models. Also
predator feeding can be described by this functional response much better over a
range of predator-prey abundances. Because of these advantages of the Beddington-
DeAngelis type functional response, we have preferred to study on that system. For
such kind of systems, boundedness of solution, permanence and global attractivity
are important topics for the mathematical analysis which give information about the

future of the population of the species.

On the other hand, when the size of the population is rarely small or has non-
overlaping generation, then discrete models are more appropriate than continuous
ones. Since time scale models unify discrete and continuous models, this type of mod-
els becomes more applicable to real life than the others. Many studies about global
attractivity and permanence of the predator-prey dynamic systems with Beddington-
DeAngelis functional response on continuous and discrete cases have been done. [6]
and [14] are some of the examples for continuous case and [9] is the example for dis-
crete case. Additionally, some examples on predator-prey dynamic systems for time
scale case are [3], [10] and [15].

What we study in this paper is permanence and global attractivity of the solutions
for general time scales case of the predator-prey system with Beddington-DeAngelis
type functional response. We have found some conditions for permanence and global
attractivity of the considered system. It enables us to make analysis about future of

the species.

2. Preliminaries

By a time scale, denoted by T, we mean a nonempty closed subset of R. The
theory of time scales give a way to unify continuous and discrete analysis. The
followings are some important notions about the time scales calculus which are taken
from [2] and [13].

The set T* is defined by T* := T/(p(sup T), sup T] and the set T, is defined by
T, := T/[inf T,o(inf T)). The backward jump operator p : T — T is defined by
p(t) := sup(—o0, t)r, for t € T. The forward jump operator o : T — T is defined by
o(t) := inf(t, 00), for t € T. Here, it is assumed that inf ) = sup T and sup ) = inf T.

For a function f : T — T, we denote the A-derivative of f at t € T* as f2(t) and
it is defined as follows: For all € > 0, there exists a neighborhood U C T of t € T*
such that

[f(o(t) = f(s) = FAH)(o(t) = 5)| < elo(t) — 5],
for all s € U.

A function f : T — R is rd-continuous if it is continuous at right dense points in T

and its left-sided limits exist at left-dense points in T. The class of real rd-continuous
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functions defined on a time scale T is denoted by C,.q(T,R). If f € C.4(T,R), then
there exists a function F(¢) such that F2(t) = f(t). The delta integral is defined by

Sy f@)Az = F(b) = F(a).

3. Predator-Prey Dynamic System with Beddington DeAngelis Type

Functional Response

We investigate the following equation:

22 () = a(t) — b(t) exp(z(t)) — 0 c(t) exp(y(t))

B(t) ex +m(t) exp(y(t))’
(t)(ez{p(p )() )) +m(t) exp(y(t))

a(t) + A(t) exp(x(t)) + m(t) exp(y(t))

In this sytem;

1. a(t) — b(t) exp(z(t)) is the specific growth rate of the prey in the absense of
predator.

2. d(t) is the death rate of predator.
— SO eigzszg)(igz ETOIS the Beddington DeAngelis type effect of predator
on prey.

f(t) exp(z(t)) . . .
4. ST exp @) T ep @) 1S the Beddington DeAngelis type effect of prey on

predator.

Consider the following system:

e D)

- #(1) = a(t)(t) — b)) T
o _ Z(t)y
i) =~ ¥ T B + me0

The following information is taken from [14]. Let T = R, then in (3.1), by
taking exp(z(t)) = z(t) and exp(y(t)) = y(t), we obtain the equality (3.2), which
is the standart predator-prey system with Beddington-DeAngelis functional response
governed by ordinary differential equations. Many studies have been done on this
system (see [5], [6] and [12]).

Let T = Z, by using equality (3.1), we get

C () = alt) — b(e) exp(z(£)) — c(t) exp(y(t))
T =TRSO Sy Aepla(t) - m ey
o exp(x
v+ ) =0 = =AW B exp(e(t) + m(®) xp(y(®)
Here, again by taking exp(z(t)) = Z(t) and exp(y(t)) = §(t), we obtain
i Dt
by T [ 0RO = S B + m<t>y<t>]’
F)

g(t+1) =g(t) exp [ —d(t) +
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which is the discrete time predator-prey system with Beddington-DeAngelis type
functional response and also the discrete analogue of (3.2). This system was studied
n [9], [21] and [20]. Since (3.1) incorporates (3.2) and (3.3) as special cases, we
call (3.1) the predator-prey dynamic system with Beddington DeAngelis functional
response on time scales.

For equation (3.1), exp(z(t)) and exp(y(t)) denote the density of prey and the
predator. Therefore x(t) and y(t) could be negative. By taking the exponentials of
x(t) and y(t), we obtain the number of preys and predators that are living per unit
of an area. In other words, for the general time scale case, our equation is based on
the natural logarithm of the density of the predator and prey. Hence, z(t) and y(t)
could be negative.

For equations (3.2) and (3.3), since exp(x(t)) = Z(t) and exp(y(t)) = y(t), the
given dynamic systems directly depend on the density of the prey and predator.

4. Permenance
Taking Z(t) = exp(z(t)) and g(t) = exp(y(¢)) in (3.1), then we get
- - c(t)y(t
(n(a(E)* = a(t) = bOT(0) ~ ~ O
(4.1)
In(g(t))2 = —d(t) + = —.
)™ = =0 S 50t + m5®)
Assume a(t), b(t), c(t), d(t), f(t), B(t), m(t) > 0 and «(t) > 0. Also suppose
that these functions are bounded from above. Each of them is from C,4(T,R) and
z(t),y(t) € Cry(T,R). Additionally, sup,cqa(t) = a¥, infier a(t) = a'. Similar repre-
sentations are used for supremum and infimum of the other coefficient functions of
system (4.1).

Definition 4.1. System (4.1) is called permanent if there exists positive constants
r1, T2, R1, and Ry such that solution (x(t),y(t)) of system (4.1) satisfies

r < hmmfa:( ) <limsup Z(t) < Ry,

t—o0 t—o00

ro < lim inf g(t) < lim sup 9(t) < Ra.

Lemma 4.2. If — fo At+f ﬁ(t DAt < 0, then for all positive solutions of system
(4.1), exp(y(t)) tends to 0 as t tends to infinity in system (3.1).

Proof. Integrate

Sf(t) exp(x(t))
a(t) + B(t) exp(x(t)) +m(t) exp(y(t)) —

ya(t) = —d(t) +
from 0 to ¢t. Then, we get

y(t) < y(0) +/0 —d(s) + %As.
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Thus,

! s
expy(t) < exply(0) exp ( [ ~as)+ Las).
0 B(s)
' - STV OTARE
From the assumption, we have lim;_, ., exp fo d(s) B(S)As 0. Hence,

lim; o exp(y(t)) = 0. O

Remark 4.3. If (4.1) satisfies conditions of Lemma 4.2, then the system can not be
permanent by Definition 4.1.

Lemma 4.4. If conditions for the coefficient functions of system (4.1) are satisfied,
then #(t) < 4 exp(pa") := Gy. In addition to conditions on the coefficient functions
of system (4.1) if —d' + J% > 0 1is satisfied, we have the following

y()_{; eXp(( d + J;)) = G,

where p = maxyer u(t).

Proof. Let us start with the first equation of (4.1),
c()y(t)

(In(z(1)* = a(t) = b(t)Z(t) — -
a(t) + B)Z(t) +m(t)y(t)
< a(t) —bt)x(t) < a* — bi(t).
Set M; := % (k + 1), where 0 < k < exp{ua*} — 1. If Z(t) is not oscillatory about
M, there exists 17 > 0 such that &(t) > M, for t > T7 or (t) < M, for t > T7.

If Z(t) < My for t > T, then #(t) < % exp{ua"}. If Z(t) > M, for t > T, then
(In(Z(¢)))® < —ka*. Hence, there exists T, = T} + 7 such that for t > Ty, Z(t) < M,

which is a contradiction.

(4.2)

If #(t) is oscillatory about M, for t > T} and o(f) be an arbitrary local maximum
of In(z(t)), then

A e (D) e
0 < (In(&(1)))* = a(f) — b(H)a(?) — A1 P00 - a0 < at) = b(t)z(t) < a".
Therefore #(f) < a@ If ¢ is right dense, then Z(o (%)) < b(é If ¢ is right scattered,

by integrating ﬁrst equatlon of (4.1) from ¢ to o(f) and using (4.2), we obtain

= n(#(s)))2As = U@as —b(s)x(s) — c(s)gj(s) S
[ meas= (8) = U)T) = S T B)a(s) + m(e)5()

< pa"

and
P a’
(4.3) z(0(t))) < 5y exp(ua”) = G
Since o(t) be an arbitrary local maximum of In(Z(¢)), then limsup, .. 7(t) < Gi.
Hence, lim sup,_, . z(t) < Rj.
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Consider the second equation of (4.1), we get

F®at) can SO g

N A
(44) (@)™ = =)+ =500 + mas @ = ) ~ B

Define My := L9 (k + 1), where 0 < k < exp (,u(—dl + ];—7)) — 1. If g(¢) is not

dlm!
oscillatory about Ma, there exists T3 > 0 such that g(t) > M, for t > T or g(t) < Mo
for t > Ty. If §(t) < M, for t > Ty, then §(t) < L (k +1). If §(t) > My for t > T,
then (In(g(¢)))? < komr@fg% Hence, there exists Ty = T3 + 7 such that for
t > Ty, y(t) < Ms, which is a contradiction.

If §j(t) is oscillatory about M, for t > T3, let o(t) be an arbitrary local maximum

of In(g(t)), then by using second equation of (4.1), we can conclude that

0 < (In(g($)))* = —d(f) + —

IA

Therefore, §(f) < d’Et )9 1f { is right dense, then j(o(f)) < d’:gifé)

If £ is right scattered, integrate (4.4) from ¢ to o(t) for the same w above and we

obtain

O iaemias = [T _as f()2(s) )
[ oo ‘/f d(”oz(s)+/6<s>:fz<s>+m<s>g<s>A

(4.5) i) < j;Gl exp (u (-dl + f_)) — G,

Since o(f) be an arbitrary local maximum of In(¢(t)), then limsup, . 7(t) < Gs.

Hence limsup,_, . y(t) < Ro. O

Remark 4.5. For all solutions of system (3.1), if exp(y(¢)) does not tend to 0 as t

tends to infinity, Lemma 4.4 follows from Lemma 4.2.

Lemma 4.6. For (4.1) when i(t) < Gy, d — b"G1 — 5 < 0 and a' — & > 0 are
satisfied, then

N 1/, [ c L
x(t)zb—u(a —W)exp (,u(a —b Gl—ﬁ)) =0
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and when §(t) < Gy, —d*a™ — (d“B* — fHg > 0 and —d* + L8 <0 are

a¥+p%g1+muGa
satisfied, then

(—d*a® — (@5 — f)3) exp (u (—d“ i fa )) |

i(t) > i
y(t) at + B4y + mGy

— dvmv

where p = maxyer ().

Proof. Consider the first equation of (4.1) and we obtain

(In(#(1)* = a(t) - b(H)F(t) - o)+ ﬁ(;%@i m(D)§ (1)
(4.6) = all) = b{H)2(t) = wcm(tt)
> d = ba(t) - &
> d —0'Gy — &

If ' — b“G, — fn—ul > 0, then there exists 7" such that t > T, #(t) > Gy, for t > T. So,

there is a contradiction. Therefore a! — b*G; — % <0.

u

Take N; = biu(al — o)1 —q), where ¢ = 1 —exp (w (al — % — b“Gl)). Suppose
that Z(t) is not oscillatory around N;. Then there exists T3, such that Z(t) > N; for
t > Ty or Z(t) < Ny for t > T5. If Z(t) > Ny for t > T5, then Z(t) satisfies the desired
result. Since & > 0, then the condition a’ — < > 0 must be satisfied. If Z(t) < N;
for t > T, then (In(Z(t)))® > (a' — £)G. Since (a' — £;)¢ > 0, there exists Ty such
that for ¢ > T4, we have Z(t) > N; which is a contradiction. Suppose that Z(t) is

oscillatory around N; and o(t;) be an arbitrary local minimum of In(Z(¢)), thus

0> (In(&(t)))™ = alt1) — b(t1)Z(t1) — alt) + 5(;()2()5(;2 m(t1)y(t)
> a(ty) — b(t)3(t) — C((ttll))'

Thus, we have,

1(, 1 clty ~
b_“<a ) W) = 5t (“(tl) ) m%ff)) =)

If ¢; is right dense, then #(o(t;)) > & (a' — %), If ¢; is right scattered, the following

m

is obtained by integrating (4.6) from ¢; to o(;)

R LN (110
/tl (In(F(1)))2 At /t alt) = BOR(E) — e
+1nH(1+gi)

> 4 (a(tl) —b(t)Gy — C(ttl) At) ,

m(t)
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io(t) 2 3ol - Syew ( (- 16— 5) ) =
Since Z(o(t1)) is the arbitrary local minimum, then liminf, .. Z(t) < gy, i.e.
limsup,_, . z(t) < 7ry.
Considering the second equation of (4.1), we have

F(OE() - i
a1 B0 +mOFD ~ T avt Begy 4 miGy

(4.7) (In(g(1)))* = —d(t) +

If —d* + W > 0, then there exits T such that for ¢ > 7%, one can see

g(t) > G5 which is a contradiction. Thus —d* + m <0.
Let us take Ny such that No = 2 (—d"a® — d"3"g1 + f'g1)(1 — r) where r =

1—exp <,u <—d“ + W)) Assume ¢(t) is not oscillatory around N,. Then,

there exists T, such that for t > Ty g(t) > Ny or §(t) < Ns.

For the first case,

l~
CJu U JUQU I~ __Ju fgl
(=d"a dﬁgﬁfgl)e}(p(“( a +au+ﬁ“§1+mUG2))'

y(t) > T

Since § > 0, then —d“a* — d“3%g; + f'g; > 0.

For the second case

(In(g(t))* > (d“m“(a“ + 61“91 +mG)

(—d"a" — d"3"G, + flgl)) .

Since —d“a* — d“3%g, + f'g1 > 0, there exists Ty, such that g(t) > N, for t > T,

which is a contradiction.

Assume g(t) is oscillatory around N; and o(t3) be an arbitrary local minumum
of In(g(t)), then by (4.7) we have

—d(tz)a(tz) — d(t2) B(t2)(tz) — d(t2)m(t2)y(t2) + f(t2)T(t2)
a(tz) + B(t2)a(t2) + m(t2)y(t2)
—d(tz)a(tz) — d(t2)B(t2)g1 — d(t2)m(t2)§(t2) + f(t2)d
B a(te) + B(t2) g1 + m(t2)y(ta)

So, we g6t §(t2) 2 gt (~dl2)alts) — d(E)B(E) + f()5). Thus, (ts) >
T (—d ot — d" 3 g1 + f'g1).

If ¢, is right dense, we have §(o(t2)) > wr (—d"a™ —d"3" gy + f'g1). If t5 is right
scattered, by integrating (4.7) from ¢5 to o(t2) we obtain

a(t2) ~ A B 0(t2)_ f(t)gj(t)
L (@) At‘/tz W T B0 + a0

[ )
> —d" .
—“( M T e

0> (In(g(t2))> =
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By the above inequality, we have

_ 1 . . f'an
> _Jquau Juu l _Ju .
y(U(tQ)) - d“m“( d"a d ﬁ g1+ f gl) P <,U < "+ ot + ﬁ“f]l + m“Gz))

Since g(o(t2)) is the arbitrary local minimum, then liminf, ., §(t) < go, i.e.

lim sup,_, ., y(t) < rs. O

If (3.1) satisfies all the conditions of Lemma 4.4 and Lemma 4.6, then solution is

permanent.
Example 4.7. T = [2k,2k + 1], k € N k start with 0.

PSS H SR . ()
) = (2= gg) —exele) - exp(z) + exp(y)’
(34 7) exp(z

)
N t+1
V=T @) + e ly)

Example 4.7 satisfies all conditions of Lemma 4.4 and Lemma 4.6, therefore, the

solution is permanent.

eY(m ex(m)
10 30
8
20
6
\ 10
4 - —— e - - - - - -
2 olm—mm— M ————
o 20 40 60 o 20 40 60
y(m) >x(m)
2.5 3
2 2
1.5 \ 1
e D s
1 o
o 20 a0 60 o 20 40 60

FIGURE 1. Numeric solutions of Example 4.7 show the permanence.

5. Global Attractivity

% (t)) of (4.1) is said to be globally
attractive if any other positive solution (x(t),y(t)) of (4.1) satifies lim; ., |x*(t) —

2(t)| =0, limy o0 [y* () — y(#)] = 0.

Definition 5.1. A positive solution (z * (t),y

Theorem 5.2. In addition to conditions of Lemma 4.4 and Lemma 4.6 if a1,as €
(0,1), 6 >0 and

9 u\1/3,1/3 u 1/3
aq min bl, -y — |y (8) /Gy + ay fUa)
Guv g(al)2/3(ml)2/3g2/3g;/3 g(ﬁl)2/3(ml)2/392/3g2/3
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Ly | (Lt 2 frGim
29((11)2/3(51)2/39%/39;/3 2 AvBY Gopt AlB!

cH(an)? (351G >>&

+a
() ml g gy 0l 20 Pl
Proof. For any positive solutions (x1(t),y:1(t)) and (x2(t), y2(t)) of system (3.1), it

then system (4.1) is globally attractive.

follows from Lemma 4.4 and Lemma 4.6 that lim inf; . z;(t) < g1, limsup,_, . z;(t) <
G1, liminf, o y;(t) < g2 and limsup,_, . z;(t) < Gy for i = 1,2.

Let Vi(t) = |Inz(t) — Inza(t)], A = a+ Bzi(t) + m(t)yi(t), B = o + Baa(t) +
m(t)ya(t). If ¢ is right dense,

VA () = Vi(o(t)) = Vi(t)  |Inai(o(t)) — Inag(o(t))] — | Ina(t) — Inas(t)]

1(t) pu(t)

1
< m\ Inzy () — Inaa(t) — p(t)b(t)[21(t) — 22(t)]]
— ——|Inz(t) —Inx c(t BB () — z2(t)]
u(t)“ 1(t) = Inza(t)] + ¢ ‘ AB ‘
a(t)[yi(t) — ya(t) B(t)x1(t)[y1(t) — ya(t)]
+ c(t) B ‘ ' AB ‘ :

By using mean value theorem, we have

(5.1) z1(t) — x2(t) = exp(Inz1(t)) —exp(Inaa(t)) = £(t)(Inay (¢) — Inxo(t))

where £(t) is between 1 (t) and xo(t). If ¢ is right scattered, using Young’s inequality

and (5.1), we obtain,

VA0 <~ et = | = 0000 kat) — )

() 0)y* (1)1 (t) — 22(1)]
902/3(t)m2/3 (1) (t) 25> ()3 (1)
c(t)a B (1)]ya(t) — yi(2)
9B2/3(t)ym2/3 (t)xy"* (t)xy> (1) (8> (1)
c(t) B3 ()2} ()]ya(t) — 1 (1)]
902/3(t)m2/3 () () (V) (1)

+

| 2 cH(B) PGy (1) — wa(1)
A _ I e — 2
Vi (t) < —min {b e b } |z1(t) — z2(t)| + 9(al)2/3(ml)2/3gz/3gl/3

+C“(Oé“)1/3\yz(t) yi ()] (3G ya(t) — i (1)]
9(ﬂl)2/3(ml)2/3g2/3g2/3 9<az)2/3(m1)2/3g1/3g2/3
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If ¢ is right dense, we get,

VI (t) = sgn(lnxq(t) — Inz(t)) (

= sgn(Inzi(t) — Inxo(t)) ( — b(t)(z1(t) — z2(t))

3 c(t)yi(t) N c(t)ya(t)
aft) + B (@) +mB)y(t) — a(t) + 6E)za(t) +m(t)ya(?)
Since sgn(lnxy(t) — Inxo(t)) = sgn(x1(t) — z2(t)), then

Vi(t) < —b(0) [ (1) — a(t)] + ey 22D Z 22 0)

a@)[yi(t) — ya(t)] Bt)x1 () [y () — y2(t)]

AB ‘ +e(t) ‘ AB ‘
c(t) B2 ()" () |21 (t) — 22(t)]

9a2/3(tym2/3 (t)zy ()y > (t)yy " (t)

c(t) a3 (1) ]ya(t) — i (t)] c(t) B3 ()2 (1) ]y2(t) —
982/3(tym23xy " (1) 2y () () * (8) 9023 )2y (1) (t)ys'™(
(B PG| (t) — 2a(t)]

9(ah)2/3(m! /g7 g "
(@) Blys(t) — ()] | (B9 BCT ya(t) — (1))
9(BH2/3(mh)23g7 gy 9(al)2/3(mt)2/3gy gl

+ c(t)

< bz (t) — zo(t)] +

0l
t)

< by (t) — wo(t)] +

Therefore,

) c“(ﬁu)1/3G1/3|x1(t) _$2(t)|
—b } |:171(t) - fz(t)| + 9(a1)2/3(2ml)2/3gf/395/3

(o) Y3 |ya(t) — 1 (t)] Cu(ﬁu)l/3G§/3|y2(t) —y1(t)]
9(B1)2/3(ml)23g7 263" ()23 (ml)2/3g) " g3

VAR < —min{bl,—
1 ()— Gl,uu

Let V4(t) = |Inyi(t) — Inys(t)|. By using mean value theorem, we get

(5:2)  (t) = v2(t) = exp(lny () — exp(Inys (1)) = & (1) (Inyy (£) — Inys (1))

where &(t) lies between yi(t) and yo(t). If t is a right scattered point, by (5.2) we

have

P O S R IS B s T I
VA0 <~ | o = [ — 0 X220 ) - eto

J®)aB(#)]x1 () — o(t)]
932/3(£)m2/3 ()} * () s> (O)y > (s ()

F&mYB @)y ()21 (t) — 2a(t)]
9a2/3 (1) B2/3(t)xy > (t)y™ () (2)
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. [ flgomt 2 feGim*
< —min , —
AvBv " Gou* AlB!
FU@) Bl () — xa(t)] - fUm*) G (1) — 2a(t)]
T IN2/3 (s 1)2/3 ,2/3 2/3 N2/3(A1\2/3 ,2/3 1/3 )
9(6)%3(m")*/3g,"" g 9(al)2/3(8)%3g7 g,

If ¢ is right dense, then

Vo (t) = sgn(Iny,(t) — Inya(t)) <Zi§g B Zigg)

= sgn(Iny(t)
T f()za(t) B f(t)za(t)
n (1)) <a<t> TR (D) + mOn® o) T Al + m<t>y2<t>)

fmeme, )00 ea() — 2s(0)
ST O s e ) el 0 )

FOmMY3 )y ()] () — 2a(t)]
902/3(1) 323 (t)ay> (t)ay > () * (1)
M) Pl () —aa(@)] ) PG (1) — ()
9(BY)2/3 (mt)2/3 g7 g3 9(al)2/3(B1)2/3g7 " gy

l ml
< LI (1) — )

flgmt 2 _f"Gﬂn"
AvBu’ Gy AlB!

A COREAORE O] FHmm)BGY |2y () — 2o (8)]
9(B)2/3(m)3 g g3 9(al)2/3(31)2/3 g2 3 gy

Let us define a Lyapunov function as V(t) := a;V4(t) 4+ a2Va(t), ai,as € (0,1).
VA = al Vi (1) + a2 Vi ().

2
VA(H) < — indb, —— —pv
(1 < <m{ T
_a Cu(ﬂu)l/BG;/:3 o fu(au>l/3
9(al)23(mb)2/3¢7 2 gy/> T 9(BY)2/3(ml)23 g P gy

Fum)V3GE?
a29(al)2/3(ﬂl)2/3g§/395/3 ) = ()

( .{flglml 2 f“Glm“}
— | a2 N —

AuBY Gyt ALB
Ao 1/3 w( Qu 1/3G2/3
- < (a®) o) G lat) — (1),

1
9(B1)2/3(ml)23g P g3 ()23 (ml)2/3g P g3

By assumption
VA(t) < =0flar (1) — w2 ()] + [ya(t) — m(®)]].
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Integrating both sides of the above inequality from t¢; to t, we get

/ VA(s)As < 6 / 1 (s) — 2a(s)] + Jyals) — w1 ()]s,

t1 t1

/ l1(s) — ()] + lyals) — ()]s < 21

t1

Then, )
/ 21(s) — a(5)] + lya(s) — 3a(s) 1 As < +oo,

i [l (6) = o (8) + () — 3 (0] = 0.
limy oo [|21(t) — 22(t)]] = 0 and limy_ o [|y1 () — y2(2)|] = 0.

Hence, we get the desired result. O

Corollary 5.3. In addition to conditions of Lemma 4.4 and Lemma 4.6 if a1, ay €

(0,1), a(t) =0, d > 0 and
CUG;M qu;/2 ]

2
(almin{bl, " —bu} - 71/2%—@271/2
Gy Amlgig, 4319,

- flglml 2 qulmu CUG}/2 o5
1 _ _ S
2 AvBu’ G2luu Al B! /2g2 ’

a1

1
4mlg,

then, system (4.1) is globally attractive.

Example 5.4. T = [2k,2k + 1], k € N k start with 0.

A 01 o) 0.01 exp(y)
x=(t) = (0.5 t+ 1) p(z) exp(x) + exp(y)’
yA(t) =—0.1+ 0.2 expla)

exp(z) + exp(y)

Example 5.4 satisfies Corollary 5.3, therefore solution of this system is globally
attractive.

PR <<

0 B N O
oON MO

PN

H

—a —a

FIGURE 2. Initial conditions in this example are z(0) = 3, y(0) = 2.

Although we take several different initial conditions, the solutions (exp(z(t)),
exp(y(t))) approaches to 0.5 in each case. Therefore numeric solution of Example 5.4

shows the global attractivity.
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FIGURE 3. Initial conditions in this example are z(0) = 0, y(0) = 0.
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FIGURE 4. Initial conditions in this example are z(0) = 8, y(0) = 1.
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FIGURE 5. Initial conditions in this example are z(0) = 10, y(0) = 10.
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