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ABSTRACT. This paper is related to an inverse problem for a class of Dirac operators with dis-

continuous coefficient and eigenvalue parameter contained in boundary conditions. The asymptotic

formula of eigenvalues of this problem is examined. Weyl solution and Weyl function are constructed.
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1. INTRODUCTION

Let

σ1 =

(

0 i

−i 0

)

, σ2 =

(

1 0

0 −1

)

, σ3 =

(

0 1

1 0

)

be the well-known Pauli-matrices which has these properties: σ2
i = I, (I is 2 × 2

identity matrix) σ∗
i = σi (self-adjointness) i = 1, 2, 3 and for i 6= j, σiσj = −σjσi

(anticommutativity).

We consider the following boundary value problem generated by the canonical

Dirac system

(1.1) By′ + Ω (x) y = λρ (x) y, 0 < x < π

with boundary conditions

(1.2)
U1(y) := b1y2 (0) + b2y1 (0) − λ (b3y2 (0) + b4y1 (0)) = 0,

U2(y) := c1y2 (π) + c2y1 (π) + λ (c3y2 (π) + c4y1 (π)) = 0,

where

B =
1

i
σ1, Ω(x) = σ2p(x) + σ3q(x), y (x) =

(

y1 (x)

y2 (x)

)

,

p(x), q(x) are real measurable functions, p(x) ∈ L2(0, π), q(x) ∈ L2(0, π), λ is a

spectral parameter,

ρ (x) =

{

1, 0 ≤ x ≤ a,

α, a < x ≤ π,
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and 1 6= α > 0. Let us define k1 = b1b4 − b2b3 > 0 and k2 = c1c4 − c2c3 > 0. The

main aim of this paper is to solve the inverse problem for the boundary value problem

(1.1), (1.2) by Weyl function on a finite interval.

The inverse problem and the spectral properties of Dirac operators were investi-

gated in detail by many authors [1, 2, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 23, 25, 26, 27, 28, 29, 30, 31, 32]. The inverse spectral problems according to

two spectra was solved in [10]. Using Weyl-Titchmarsh function, direct and inverse

problems for Dirac type-system were studied in [8, 9, 26]. Solution of the inverse

quasiperiodic problem for Dirac system was given in [25]. For weighted Dirac system,

inverse spectral problems was examined in [28]. Reconstruction of Dirac operator

from nodal data was carried out in [30]. Necessary and sufficient conditions for the

solution of Dirac operators with discontinuous coefficient was obtained in [20]. Inverse

problem for interior spectral data of the Dirac operator was given in [23]. For Dirac

operator, Ambarzumian-type theorems were proved in [14, 31]. On a positive half

line, inverse scattering problem for a system of Dirac equations of order 2n was com-

pletely solved in [12] and when boundary condition contained spectral parameter, for

Dirac operator, inverse scattering problem was worked in [6, 21]. Spectral boundary

value problem in a 3 dimensional bounded domain for the Dirac system was studied

in [2]. The applications of Dirac differential equations system has been widespread in

various areas of physics, such as [3, 4, 24, 27].

This paper is organized as follows: in section 2, the operator formulation of prob-

lem (1.1), (1.2) and some spectral properties of the operator are given. In section 3,

asymptotic formula of eigenvalues of the problem (1.1), (1.2) is examined. In sec-

tion 4, Weyl solution, Weyl function are defined and uniqueness theorem for inverse

problem according to Weyl function is proved.

2. OPERATOR FORMULATION AND SOME SPECTRAL

PROPERTIES

An inner product in Hilbert space Hρ = L2,ρ(0, π; C2) ⊕ C
2 is given by

(2.1) 〈Y, Z〉 =

∫ π

0

{

y1 (x) z1 (x) + y2 (x) z2 (x)
}

ρ (x) dx+
1

k1

y3z3 +
1

k2

y4z4,

where

Y =













y1(x)

y2(x)

y3

y4













∈ Hρ, Z =













z1(x)

z2(x)

z3

z4













∈ Hρ.
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Let us define the operator L:

L(Y ) :=







l(y)

b1y2 (0) + b2y1(0)

− (c1y2 (π) + c2y1(π))







with domain

D(L) :=
{

Y | Y = (y1(x), y2(x), y3, y4)
T ∈ Hρ, y1(x), y2(x) ∈ AC[0, π],

y3 = b3y2 (0) + b4y1(0), y4 = c3y2 (π) + c2y1(π), l(y) ∈ L2,ρ(0, π; C2)
}

where

l(y) =
1

ρ(x)
{By′ + Ω(x)y} .

Consequently, the boundary value problem (1.1), (1.2) is equivalent to the operator

equation LY = λY .

Lemma 2.1. (i) The eigenvector functions corresponding to different eigenvalues are

orthogonal.

(ii) The eigenvalues of the operator L are real valued.

Let ϕ (x, λ) =

(

ϕ1(x, λ)

ϕ2(x, λ)

)

and ψ (x, λ) =

(

ψ1(x, λ)

ψ2(x, λ)

)

be solutions of the

system (1.1) satisfying the initial conditions

ϕ (0, λ) =

(

λb3 − b1

b2 − λb4

)

, ψ (π, λ) =

(

−c1 − λc3

c2 + λc4

)

.

The characteristic function of the problem (1.1), (1.2) is defined by

(2.2) ∆(λ) = W [ϕ(x, λ), ψ(x, λ)] = ϕ2(x, λ)ψ1(x, λ) − ϕ1(x, λ)ψ2(x, λ),

where W [ϕ(x, λ), ψ(x, λ)] is Wronskian of the vector solutions ϕ(x, λ) and ψ(x, λ).

The Wronskian does not depend on x. It follows from (2.2) that

∆(λ) = b2ψ1 (0, λ) + b1ψ2 (0, λ) − λ (b4ψ1 (0, λ) + b3ψ2 (0, λ)) = U1 (ψ)

or

∆(λ) = −c1ϕ2 (π, λ) − c2ϕ1 (π, λ) − λ (c3ϕ2 (π, λ) + c4ϕ1 (π, λ)) = −U2 (ϕ) .

Lemma 2.2. The zeros λn of characteristic function coincide with the eigenvalues

of the boundary value problem (1.1), (1.2). The function ϕ(x, λn) and ψ(x, λn) are

eigenfunctions and there exist a sequence βn such that

ψ(x, λn) = βnϕ(x, λn), βn 6= 0.

Proof. This lemma is proved by a similar way in [7] (see Theorem 1.1.1).
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Norming constants are defined as follows:

αn :=

∫ π

0

{

ϕ2
1(x, λn) + ϕ2

2(x, λn)
}

ρ(x)dx+
1

k1

[b3ϕ2(0, λn) + b4ϕ1(0, λn)]
2(2.3)

+
1

k2

[c3ϕ2(π, λn) + c4ϕ1(π, λn)]2 .

Lemma 2.3. The following relation is valid:

αnβn = ∆̇(λn),

where ∆̇(λ) = d
dλ

∆(λ).

Proof. Since ϕ(x, λ) and ψ(x, λ) are solutions of this problem, we have

ψ
′

2(x, λ) + p(x)ψ1(x, λ) + q(x)ψ2(x, λ) = λρ(x)ψ1(x, λ),

−ψ
′

1(x, λ) + q(x)ψ1(x, λ) − p(x)ψ2(x, λ) = λρ(x)ψ2(x, λ),

ϕ
′

2(x, λn) + p(x)ϕ1(x, λn) + q(x)ϕ2(x, λn) = λnρ(x)ϕ1(x, λn),

−ϕ
′

1(x, λn) + q(x)ϕ1(x, λn) − p(x)ϕ2(x, λn) = λnρ(x)ϕ2(x, λn).

Multiplying the equations by ϕ
′

1(x, λn), ϕ
′

2(x, λn), −ψ
′

1(x, λ), −ψ
′

2(x, λ) respectively

and adding them together, we get

d

dx
{ϕ1(x, λn)ψ2(x, λ) − ψ1(x, λ)ϕ2(x, λn)}

= (λ− λn) ρ(x) {ϕ1(x, λn)ψ1(x, λ) + ϕ2(x, λn)ψ2(x, λ)} .

Integrating it from 0 to π,

(λ− λn)

∫ π

0

{ϕ1(x, λn)ψ1(x, λ) + ϕ2(x, λn)ψ2(x, λ)} ρ(x)dx

= ϕ1(π, λn)ψ2(π, λ) − ϕ2(π, λn)ψ1(π, λ) − ϕ1(0, λn)ψ2(0, λ) + ϕ2(0, λn)ψ1(0, λ)

is found. Now, we add

(λ− λn)

{

1

k1
[b3ψ2 (0, λ) + b4ψ1 (0, λ)] [b3ϕ2 (0, λn) + b4ϕ1 (0, λn)]

+
1

k2
[c3ψ2 (π, λ) + c4ψ1 (π, λ)] [c3ϕ2 (π, λn) + c4ϕ1 (π, λn)]

}

in the both sides of last equation and use the boundary condition (1.2). It follows

that
∫ π

0

{ϕ1(x, λn)ψ1(x, λ) + ϕ2(x, λn)ψ2(x, λ)} ρ(x)dx

+
1

k1

[b3ψ2 (0, λ) + b4ψ1 (0, λ)] [b3ϕ2 (0, λn) + b4ϕ1 (0, λn)]

+
1

k2

[c3ψ2 (π, λ) + c4ψ1 (π, λ)] [c3ϕ2 (π, λn) + c4ϕ1 (π, λn)] =
∆ (λ) − ∆ (λn)

λ− λn

.
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According to Lemma 2.2, since ψ(x, λn) = βnϕ(x, λn), as λ→ λn, we obtain

βnαn = ∆̇(λn).

3. ASYMPTOTIC FORMULA OF EIGENVALUES

Lemma 3.1. The solution ϕ(x, λ) =

(

ϕ1(x, λ)

ϕ2(x, λ)

)

has the following integral repre-

sentation

ϕ1 (x, λ) = (λb3 − b1) cosλµ (x) + (λb4 − b2) sinλµ (x)(3.1)

+ (λb3 − b1)

∫ µ(x)

0

[

Ã11 (x, t) cosλt+
≈

A12 (x, t) sin λt
]

dt

+ (λb4 − b2)

∫ µ(x)

0

[≈

A11 (x, t) sin λt− Ã12 (x, t) cosλt
]

dt,

ϕ2 (x, λ) = (λb3 − b1) sinλµ (x) + (b2 − λb4) cosλµ (x)(3.2)

+ (λb3 − b1)

∫ µ(x)

0

[

Ã21 (x, t) cosλt+
≈

A22 (x, t) sin λt
]

dt

+ (λb4 − b2)

∫ µ(x)

0

[≈

A21 (x, t) sin λt− Ã22 (x, t) cosλt
]

dt,

where

Ã1j (x, t) = K1j (x,−t) +K1j(x, t),
≈

A1j (x, t) = K1j (x, t) −K1j(x,−t),

Ã2j (x, t) = K2j (x,−t) +K2j(x, t),
≈

A2j (x, t) = K2j (x, t) −K2j(x,−t),

and Ã1j (x, .) ∈ L2 (0, π),
≈

A1j (x, .) ∈ L2 (0, π), Ã2j (x, .) ∈ L2 (0, π),
≈

A2j (x, .) ∈

L2 (0, π), j = 1, 2.

Proof. To obtain the form of ϕ(x, λ), we use the integral representation for the solution

of equation (1.1) [17]. This representation is not operator transformation and as

follows: Assume that
∫ π

0

‖Ω(x)‖ dx < +∞

is satisfied for Euclidean norm of matrix function Ω(x). Then the integral represen-

tation of the solution of equation (1.1) satisfying the initial condition E(0, λ) = I, (I

is unite matrix) can be represented

E(x, λ) = e−λBµ(x) +

∫ µ(x)

−µ(x)

K(x, t)e−λBtdt,
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where

µ(x) =







x, 0 ≤ x ≤ a,

αx− αa+ a, a < x ≤ π,

and for a kernel K(x, t) the inequality
∫ µ(x)

−µ(x)

‖K(x, t)‖ dt ≤ eσ(x) − 1,

σ(x) =

∫ x

0

‖Ω(s)‖ ds

holds. Moreover, if Ω(x) is differentiable, then K(x, t) satisfy the following relations

BKx + Ω(x)K + ρ(x)KtB = 0,

ρ(x) [K(x, µ(x))B − BK(x, µ(x))] = Ω(x),

BK(x,−µ(x)) = 0.

Now, to find ϕ(x, λ), we will use ϕ(x, λ) = E(x, λ)

(

λb3 − b1

b2 − λb4

)

. From the expression

of E(x, λ)

(3.3) ϕ(x, λ) = e−λBµ(x)

(

λb3 − b1

b2 − λb4

)

+

∫ µ(x)

−µ(x)

K(x, t)e−λBt

(

λb3 − b1

b2 − λb4

)

dt

can be written. Then

e−λBµ(x)

(

λb3 − b1

b2 − λb4

)

=

(

I − λBµ (x) +
(−λBµ (x))2

2!
+ · · ·

)(

λb3 − b1

b2 − λb4

)

=

(

λb3 − b1

b2 − λb4

)

− λ

(

b2 − λb4

b1 − λb3

)

µ (x)

+
λ2

2!

(

b1 − λb3

λb4 − b2

)

µ2 (x) + · · ·

=

(

(λb3 − b1) cosλµ (x) + (λb4 − b2) sinλµ (x)

(b2 − λb4) cosλµ (x) + (λb3 − b1) sinλµ (x)

)

.

Similar to

e−λBt

(

λb3 − b1

b2 − λb4

)

=

(

(λb3 − b1) cos λt+ (λb4 − b2) sinλt

(b2 − λb4) cos λt+ (λb3 − b1) sinλt

)

.

Putting these equalities into (3.3), we obtain (3.1) and (3.2). Moreover, as |λ| → ∞

uniformly in x ∈ [0, π], the following asymptotic formulas hold:

(3.4) ϕ1(x, λ) = λ (b3 cosλµ (x) + b4 sinλµ (x)) +O
(

e|Imλ|µ(x)
)

,

(3.5) ϕ2(x, λ) = λ (b3 sinλµ (x) − b4 cosλµ (x)) +O
(

e|Imλ|µ(x)
)

.
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In fact, integrating by parts the integrals involved in (3.1) and (3.2) and also from

|sinλµ (x)| ≤ e|Imλ|µ(x) and |cosλµ (x)| ≤ e|Imλ|µ(x), the asymptotic formulas (3.4)

and (3.5) are found.

Lemma 3.2. The eigenvalues λn, (n ∈ Z) of the boundary value problem (1.1), (1.2)

are in the form

λn = λ̃n + ǫn,

where

λ̃n =

[

n+
1

π
arctan

(

c3b4 − c4b3

b3c3 + c4b4

)]

π

µ (π)

and {ǫn} ∈ l2. Moreover, the eigenvalues are simple.

Proof. Substituting asymptotic formulas (3.4) and (3.5) into the expression (2.2), we

have

(3.6) ∆ (λ) = λ2χ (λ) +O
(

|λ| e|Imλ|µ(π)
)

,

where

χ (λ) = c3b4 cosλµ (π) − b3c3 sinλµ (π) − c4b3 cosλµ (π) − b4c4 sinλµ (π) .

Denote

Gδ :=
{

λ :
∣

∣

∣
λ− λ̃n

∣

∣

∣
≥ δ, n = 0,±1,±2, . . .

}

,

where δ is a sufficiently small positive number. For λ ∈ Gδ,

(3.7) |χ (λ)| ≥ Cδ exp (|Imλ|µ(π))

is valid, where Cδ is a positive number. This inequality is similarly obtained as in

[22, Lemma 1.3.2]. On the other hand, there exists a constant C > 0 such that

(3.8)
∣

∣∆(λ) − λ2χ (λ)
∣

∣ ≤ C |λ| e|Imλ|µ(π).

Therefore on infinitely expanding contours

Γn :=

{

λ : |λ| = λ̃n +
π

2µ(π)
, n = 0,±1,±2, . . .

}

,

for sufficiently large n, using (3.7) and (3.8) we get
∣

∣∆(λ) − λ2χ (λ)
∣

∣ < |λ|2 |χ (λ)| , λ ∈ Γn.

Applying the Rouche theorem, it is obtained that the number of zeros of the function

{∆(λ) − λ2χ (λ)} + λ2χ (λ) = ∆(λ) inside the counter Γn coincides with the number

of zeros of function λ2χ (λ). Moreover, using the Rouche theorem, there exist only

one zero λn of the function ∆(λ) in the circle γn(δ) =
{

λ :
∣

∣

∣
λ− λ̃n

∣

∣

∣
< δ
}

is concluded.

Since δ > 0 is arbitrary, we have

(3.9) λn =

[

n+
1

π
arctan

(

c3b4 − c4b3

b3c3 + c4b4

)]

π

µ (π)
+ ǫn, lim

n→±∞
ǫn = 0.
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Substituting (3.9) into (3.6), we get sin ǫnµ(π) = O( 1
n
). It follows that ǫn = O( 1

n
).

Thus ǫn ∈ l2 is found. Moreover, the eigenvalues are simple. In fact, since αnβn =

∆̇(λn) and αn 6= 0, βn 6= 0, we get ∆̇(λn) 6= 0.

4. UNIQUENESS THEOREM BY WEYL FUNCTION

In this section, we define Weyl function and Weyl solution. Uniqueness theorem

for inverse problem according to Weyl function is proved.

Denote by Φ(x, λ) =

(

Φ1(x, λ)

Φ2(x, λ)

)

the solution of the system (1.1), satisfying

the conditions

b1Φ2(0, λ) + b2Φ1(0, λ) − λ (b3Φ2(0, λ) + b4Φ1(0, λ)) = 1,

c1Φ2(π, λ) + c2Φ1(π, λ) + λ (c3Φ2(π, λ) + c4Φ1(π, λ)) = 0.

The function Φ(x, λ) is called Weyl solution of the problem (1.1), (1.2). Let the

function C(x, λ) =

(

C1(x, λ)

C2(x, λ)

)

be the solution of system (1.1), satisfying the initial

condition

C1(0, λ) = −
b3

k1
, C2(0, λ) =

b4

k1
.

As in Lemma 3.1, it is obtained that C(x, λ) =

(

C1(x, λ)

C2(x, λ)

)

has the following

integral representation

C1(x, λ) = −
b3

k1

cosλµ(x) −
b4

k1

sin λµ(x)

−
b3

k1

∫ µ(x)

0

[

B̃11(x, t) cos λt+
≈

B12 (x, t) sinλt
]

dt

−
b4

k1

∫ µ(x)

0

[≈

B11 (x, t) sinλt− B̃12(x, t) cosλt
]

dt,

C2(x, λ) =
b4

k1

cosλµ(x) −
b3

k1

sinλµ(x)

−
b3

k1

∫ µ(x)

0

[

B̃21(x, t) cos λt+
≈

B22 (x, t) sinλt
]

dt

−
b4

k1

∫ µ(x)

0

[≈

B21 (x, t) sinλt− B̃22(x, t) cosλt
]

dt,

where B̃ij (x, .) ∈ L2 (0, π),
≈

Bij (x, .) ∈ L2 (0, π), i, j = 1, 2. The solution ψ(x, λ) can

be shown that

(4.1)
ψ(x, λ)

∆ (λ)
= C (x, λ) −

(b4ψ1 (0, λ) + b3ψ2 (0, λ))

k1∆ (λ)
ϕ (x, λ) .
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Denote

(4.2) M(λ) := −
(b4ψ1 (0, λ) + b3ψ2 (0, λ))

k1∆ (λ)
.

It is obvious that

(4.3) Φ(x, λ) = C(x, λ) +M(λ)ϕ(x, λ).

The function

M(λ) = −
(b4Φ1 (0, λ) + b3Φ2 (0, λ))

k1

is called the Weyl function of the boundary value problem (1.1), (1.2). The Weyl

solution and Weyl function are meromorphic functions having simple poles at points

λn eigenvalues of problem (1.1), (1.2). It is obtained from (4.1) and (4.3) that

(4.4) Φ(x, λ) =
ψ(x, λ)

∆(λ)
.

Theorem 4.1. For the Weyl function M(λ), the following representation holds:

(4.5) M(λ) =

∞
∑

n=−∞

1

αn(λ− λn)
.

Proof. Since

W [C(x, λ), ψ(x, λ)] = C2(x, λ)ψ1(x, λ) − C1(x, λ)ψ2(x, λ)

=
b4ψ1(0, λ) + b3ψ(0, λ)

k1

= − [(c1 + λc3)C2(π, λ) + (c2 + λc4)C1(π, λ)] ,

we can rewrite the Weyl function (4.2) as follows

M(λ) =
(c1 + λc3)C2(π, λ) + (c2 + λc4)C1(π, λ)

∆(λ)
.

Using the expression of solution C(x, λ) and taking into account

(4.6) |∆(λ)| ≥ |λ|2Cδ exp(|Imλ|µ(π)),

we have

(4.7) lim
|λ|→∞

λ∈Gδ

|M(λ)| = 0.

Since ψ(x, λn) = βnϕ(x, λn),

βn = −
b4ψ1 (0, λn) + b3ψ2(0, λn)

k1
.

Then, we get

(4.8) Res
λ=λn

M(λ) = −
b4ψ1 (0, λn) + b3ψ2(0, λn)

k1∆̇(λn)
=

1

αn

.
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Consider the following contour integral

IN(λ) =
1

2πi

∫

ΓN (λ)

M(ξ)

ξ − λ
dξ, ξ ∈ intΓN ,

where

ΓN =

{

λ : |λ| =

(

N +
1

π
arctan

(

c3b4 − c4b3

b3c3 + c4b4

))

π

µ (π)
+

π

2µ(π)

}

.

It follows from (4.7) that limN→∞IN(λ) = 0. On the other hand, applying Residue

theorem and the residue (4.8),

IN(λ) = M(λ) +
∑

λn∈intΓN

1

αn(λn − λ)

is found. Thus, as N → ∞

M(λ) =
∞
∑

n=−∞

1

αn(λ− λn)

is obtained.

Now, we seek inverse problem of the reconstruction of the problem (1.1), (1.2) by

Weyl function M (λ) and spectral data {λn, αn} , (n ∈ Z). Along with problem (1.1),

(1.2), we consider a boundary value problem of the same form, but with another

potential function Ω̃(x). Let’s agree to that if some symbol s denotes an object

relating to the problem (1.1), (1.2), then s̃ will denote an object, relating to the

boundary value problem with the function Ω̃(x).

Theorem 4.2. If M(λ) = M̃(λ), then Ω(x) = Ω̃(x), i.e. the boundary value problem

(1.1), (1.2) is uniquely determined by the Weyl function.

Proof. We describe the matrix P (x, λ) = [Pij(x, λ)]
i,j=1,2 with the formula

(4.9) P (x, λ)

(

ϕ̃1 Φ̃1

ϕ̃2 Φ̃2

)

=

(

ϕ1 Φ1

ϕ2 Φ2

)

.

The Wronskian of the solutions ϕ̃(x, λ) and Φ̃(x, λ) is

(4.10) W [ϕ̃(x, λ), Φ̃(x, λ)] = ϕ̃2(x, λ)Φ̃1(x, λ) − ϕ̃1(x, λ)Φ̃2(x, λ) = 1.

Using (4.9) and (4.10), we calculate

(4.11)

P11(x, λ) = Φ1(x, λ)ϕ̃2(x, λ) − ϕ1(x, λ)Φ̃2(x, λ),

P12(x, λ) = ϕ1(x, λ)Φ̃1(x, λ) − Φ1(x, λ)ϕ̃1(x, λ),

P21(x, λ) = Φ2(x, λ)ϕ̃2(x, λ) − ϕ2(x, λ)Φ̃2(x, λ),

P22(x, λ) = ϕ2(x, λ)Φ̃1(x, λ) − Φ2(x, λ)ϕ̃1(x, λ)
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and

(4.12)

ϕ1(x, λ) = P11(x, λ)ϕ̃1(x, λ) + P12(x, λ)ϕ̃2(x, λ),

ϕ2(x, λ) = P21(x, λ)ϕ̃1(x, λ) + P22(x, λ)ϕ̃2(x, λ),

Φ1(x, λ) = P11(x, λ)Φ̃1(x, λ) + P12(x, λ)Φ̃2(x, λ),

Φ2(x, λ) = P21(x, λ)Φ̃1(x, λ) + P22(x, λ)Φ̃2(x, λ).

Taking into account (4.4), (4.10) and (4.11),

P11(x, λ) − 1 =
ψ̃2(x, λ)

∆̃(λ)
{ϕ̃1(x, λ) − ϕ1(x, λ)} − ϕ̃2(x, λ)

{

ψ̃1(x, λ)

∆̃(λ)
−
ψ1(x, λ)

∆(λ)

}

P12(x, λ) =
ψ1(x, λ)

∆(λ)
{ϕ1(x, λ) − ϕ̃1(x, λ)} + ϕ1(x, λ)

{

ψ̃1(x, λ)

∆̃(λ)
−
ψ1(x, λ)

∆(λ)

}

P21(x, λ) =
ψ2(x, λ)

∆(λ)
{ϕ̃2(x, λ) − ϕ2(x, λ)} + ϕ2(x, λ)

{

ψ2(x, λ)

∆(λ)
−
ψ̃2(x, λ)

∆̃(λ)

}

P22(x, λ) − 1 = ϕ̃1(x, λ)

{

ψ̃2(x, λ)

∆̃(λ)
−
ψ2(x, λ)

∆(λ)

}

−
ψ̃1(x, λ)

∆̃(λ)
{ϕ̃2(x, λ) − ϕ2(x, λ)}

are found. Using (4.6), we obtain

lim
|λ|→∞

λ∈Gδ

max
0≤x≤π

|P11(x, λ) − 1| = 0,(4.13)

lim
|λ|→∞

λ∈Gδ

max
0≤x≤π

|P22(x, λ) − 1| = 0,

lim
|λ|→∞

λ∈Gδ

max
0≤x≤π

|P12(x, λ)| = 0,

lim
|λ|→∞

λ∈Gδ

max
0≤x≤π

|P21(x, λ)| = 0.

Substituting (4.3) into (4.11), we have

P11(x, λ) = C1(x, λ)ϕ̃2(x, λ) − ϕ1(x, λ)C̃2(x, λ) + ϕ1(x, λ)ϕ̃2(x, λ)
[

M(λ) − M̃(λ)
]

,

P12(x, λ) = ϕ1(x, λ)C̃1(x, λ) − C1(x, λ)ϕ̃1(x, λ) + ϕ1(x, λ)ϕ̃1(x, λ)
[

M̃(λ) −M(λ)
]

,

P21(x, λ) = C2(x, λ)ϕ̃2(x, λ) − ϕ2(x, λ)C̃2(x, λ) + ϕ2(x, λ)ϕ̃2(x, λ)
[

M(λ) − M̃(λ)
]

,

P22(x, λ) = ϕ2(x, λ)C̃1(x, λ) − C2(x, λ)ϕ̃1(x, λ) + ϕ2(x, λ)ϕ̃1(x, λ)
[

M̃(λ) −M(λ)
]

.

Hence, if M(λ) ≡ M̃(λ), Pij(x, λ)i,j=1,2 are entire functions with respect to λ for every

fixed x. Then from (4.13), we find

P11(x, λ) ≡ 1, P12(x, λ) ≡ 0,

P21(x, λ) ≡ 0, P22(x, λ) ≡ 1.

Substituting these identities into (4.12),

ϕ1(x, λ) ≡ ϕ̃1(x, λ), ϕ2(x, λ) ≡ ϕ̃2(x, λ),
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Φ1(x, λ) ≡ Φ̃1(x, λ), Φ2(x, λ) ≡ Φ̃2(x, λ)

are obtained for all x and λ, so Ω(x) ≡ Ω̃(x).

According to (4.5), the specification of the Weyl function M(λ) is equivalent to

the specification of the spectral data {λn, αn}, n ∈ Z. That is, if λn = λ̃n, αn = α̃n for

all n ∈ Z, M(λ) = M̃(λ) is obtained. It follows from Theorem 4.2 that Ω(x) = Ω̃(x).

We have thus proved the following theorem:

Theorem 4.3. The boundary value problem (1.1), (1.2) is uniquely determined by

spectral data {λn, αn}, n ∈ Z.
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