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ABSTRACT. In this article we study quantitatively with rates the convergence of sequences of
general Bochner type integral operators, applied on Banach space valued functions, to function
values. The results are mainly pointwise, but in the application to vector Bernstein polynomials we
end up to obtain a uniform estimate. To prove our main results we have to build a rich background
containing many interesting vector fractional results. Our inequalities are fractional involving the
right and left vector Caputo type fractional derivatives, built in vector moduli of continuity. We

treat very general classes of Banach space valued functions.
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1. Introduction

In this paper among others we are motivated by the following results.

Theorem 1 (P. P. Korovkin [13], (1960), p. 14). Let [a,b] be a closed interval in R
and (Ly),cn
Suppose that (L, f) converges uniformly to f for the three test functions f = 1,z,x°.
Then (L, f) converges uniformly to f on [a,b] for all functions f € C ([a,b]).

be a sequence of positive linear operators mapping C ([a,b]) into itself.

Let f € C([a,b]) and 0 < h < b — a. The first modulus of continuity of f at h is
given by
wi (f,h) = sup [f(z) = f(y)l.
x,y€|a,b]
lz—y|<h

If h > b— a, then we define wy (f,h) = w; (f,0— a).

Another motivation is the following

Theorem 2 (Shisha and Mond [18], (1968)). Let [a,b] C R a closed interval. Let

{Ln},en be a sequence of positive linear operators acting on C ([a, b]) into itself. For
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n=1,..., suppose L, (1) is bounded. Let f € C([a,b]). Then forn =1,2,..., we

have

(1) IS = Fllse < W flloo Hon1 = Tl + [ Lnd + oo w1 (f, pim)
where
= [ L (= 2)°) (2]
and ||-||, stands for the sup-norm over [a,b].
One can easily see, forn =1,2,...

pn < || Ln (52) = 2®[|  +2¢ | L (852) = @l| o + €| Lo (1;2) = 1]

where ¢ = max (|al, |b]).

Thus, given the Korovkin assumptions (see Theorem 1) as n — oo we get p,, — 0,
and by (1) that ||L,f — f|,, — 0 for any f € C([a,b]). That is one derives the

Korovkin conclusion in a quantitative way and with rates of convergence.

One more motivation follows
Theorem 3 (see Corollary 7.2.2, p. 219, [3]). Consider the positive linear operator
L:C"(la,b]) — C([a,b]), meN.

Let
k
ck(z):L((t—z) ,:E), k=0,1,...,n;

3=

dy () = [L ([t = z[", 2)]

. c(z) = max (v — a,b— z) <c(a:) > b;a).

Let f € C™([a,b]) such that w; (f(”), h) < w, where w, h are fixed positive numbers,
0 < h <b—a. Then we have the following upper bound

(2) 1L (f,2) = [ @) < |f (@)] |co (= —1\+Z‘f \ck )| + Rn.

e = wonte@) (%) = (o) B
where

o (1) _ m%ﬂ(u)’
with <U) u

6o (2) = /0 : m %dt, (z €R),

[-] is the ceiling of the number.
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Inequality (2) is sharp. It is approximately attained by we, ((t — ) +) and a
measure (i, supported by {z,b} when x — a < b — x, also approximately attained by
we,, ((x —t),) and a measure y, supported by {z,a} when z —a > b — z: in each

case with masses ¢q (z) — (dc”(f;;)) and (i”é?) , Tespectively.

Using the last method and its refinements one derives nice and simple results for

specific operators.

For example from [3, Corollary 7.3.4, p. 230], we obtain: let f € C'([0,1]) and

consider the Bernstein polynomials

(an)(t):2f<%> (Z)tk(l_t>n_k’ te0,1],

then

0.78125 (. 1
|1 Bnf — fllo < 7011 (f ) m) -

So B, f N f as n — oo with rates.

In [5] we extended the above theory to the fractional level using right and left
Caputo fractional derivatives for the first time in the literature, but still for real

valued functions.

In this article we present a fractional quantitative Korovkin type approximation
theory for linear operators involving Banach space valued functions. We use here
vector valued right and left Caputo type fractional derivatives, and these show up
in the moduli of continuity appearing on the right hand side of our inequalities. We
finish with application of our theory to vector valued Bernstein polynomials. All

integrals here are of Bochner type.

In the background section we present many interesting vector fractional results

which by themselves have their own merit and appear for the first time.

In approximation theory the involvement of fractional derivatives is very rare,
almost nothing exists. The only fractional articles that preexisted author’s fractional
works are of V. Dzyadyk [11] of 1959, F. Nasibov [16] of 1962, J. Demjanovic [10] of
1975 and of M. Jaskolski [12] of 1989, all regarding estimates to best approximation

of functions by algebraic and trigonometric polynomials.

We are also motivated by [4].

2. Background
All integrals here are of Bochner type [15]. We need

Definition 4 ([6]). Let [a,b] C R, X be a Banach space, a > 0; m = [a] € N, ([-]
is the ceiling of the number), f : [a,b] — X. We assume that f™ ¢ L, ([a,b], X).
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We call the Caputo-Bochner left fractional derivative of order a:

1

L T /x<x—t>m—a—1f<m><t>dt, Ve o).

If a € N, we set D2 f := f™ the ordinary X-valued derivative (defined similar to

numerical one, see [17, p. 83]), and also set D?_ f := f.

By [6], (D, f) (z) exists almost everywhere in x € [a,b] and D2, f € L, (a, b] , X).

If Hf(m)HLoo([ab} x) < 00 then by [6], D%, f € C([a,b],X), hence ||Df| €
C ([a,0]).

We mention

Lemma 5. Leta >0,a ¢ N, m = [a], f € C™ ' ([a,b], X) and f™ € Ly, ([a,b], X).
Then D2, f (a) = 0.

Proof. By (3) we get

%) @ = s | [ =07 1 0t
1 * m—a—1 m
3 Tl Rt i I
Hf(m)HLoo([a,b},X) m—a
(4) < Fm—adtl) (x —a)™ .
Le.
(5) ||(Da f) (I)H < Hf(m)HLoo([a,bLX) (1, N a)m—a Ve [a b]
*a ~ I'(m—a+1) ’ T
That is D¢, f (a) = 0. O

We mention

Definition 6 ([7]). Let [a,b] C R, X be a Banach space, « > 0, m := [a]. We
assume that ™ € L, ([a,b], X), where f : [a,b] — X. We call the Caputo-Bochner

right fractional derivative of order a:

(=D"

' m-a=1 ¢(m)
(6) (Dy_f) (z) == (=) L (z — ) " (2)dz, Y ux€la,b].

I'm—-«
We observe that (Dj f) (z) = (=1)" f™ (z), for m € N, and (Dj_f) (z) = f ().

By [7], (Dg- f) (z) exists almost everywhere on [a,b] and (D f) € Ly ([a,b], X).

If Hf(m)HLoo([mb]’X) < oo,and a ¢ N, by [7], Di_ f € C([a,b], X), hence | Dg_f|| €
C (la, b))-
We need
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Lemma 7. Let f € C™ ! ([a,b],X), f'™ € Ly ([a,b],X), m = [a], a >0, a ¢ N.
Then Dy f (b) = 0.

Proof. By (6) we get

b __ ’ 2 —x)" 0 (2) dz
[N @ = sy | [ =) 1 ()
1 b z— )"0 (2)]] dz
S el A Kl R
f(m) Lo ([a,b],X —_
M U (mH_ﬁ L=
vV x € [a,bl.
Clearly (Dj- f) (b) = 0. O

We mention the left fractional Taylor formula

Theorem 8 ([6]). Let m € N and f € C™ ' ([a, ], X), where [a,b] C R and X is a
Banach space, and let o« > 0 : m = [a]. Set

z—t)
i!

(8) F(t) == fOx), vitelaa],

where x € [a,b]. Assume that f™ exists outside a A-null Borel set B, C [a, ] (\ is
the Lebesque measure) such that
9) hi(F,(B;)) =0, Yaxé€]a,b]

(hy is the Hausdorff measure of order 1, see [19]). We also assume that f™ €
Ly ([a,b],X). Then

0 J@= PO @)+ s [ = (D) ()

Ve la,b.
We also mention the right fractional Taylor formula

Theorem 9 ([7]). Let [a,b] C R, X be a Banach space, « > 0, m = [a], [ €
C™ 1 ([a,b],X). Set

z—t)

(1) Fo(t) =Y S0 @), Ve o),

where x € [a, b].

Assume that f™ exists outside a A-null Borel set B, C [x,b], such that

(12) hi (F; (By)) =0, Vz€lab.



86 G. A. ANASTASSIOU

We also assume that f™ € Ly (la,b], X). Then

m— 1
— b
(13) @

10 ael
O+ | = (D5 ()

=0

V x € [a,b.

We define the following classes of functions:
Definition 10. We call (z¢ € [a,b] C R)
(14) HY) = {f € " ([a,b], X) : [a,0] C R, (X, [|]])

is a Banach space, o > 0 : m = [a]; f™ € Ly ([a, 0], X); F (t) = Z;’:Ol (m;t)if(i) (t)
is defined V' t € [z, x|, With r € [a, ro) and f™ exists outside a A\-null Borel set BY ¢
[z, o], such that hy ( (B(l))) =0, Yz € la,x; Fé” (t) :== ZZ’Z)I (xlf_!’f)if(i) (t)
is defined V t € [z, 2], with © € [20,b] and f™ exists outside a A-null Borel set

BY ¢ [zg, x], such that hy (Ff) (B;E?))) =0,V z € [xg,b]},

(15) H® .= {f e C™(la,b],X) : [a,b] C R,

X is a Banach space, « > 0:m = [a]}.

Notice that

(16) H® ¢ HQ(CO), YV 2o € [a,b].

Let ([a,b],%, 1u) be a complete measure space, where y is a positive and finite
measure and (X, ||-||) be a Banach space. Let f € C([a,b],X), then, by [14], we
have that f is strongly u-measurable. Clearly || f|| € C ([a,b]) and || f|| is measurable,
hence fa ] ||f )|| dp (t) < oo iff f is Bochner-integrable, see [14]. l.e. the Bochner
integral f[a o f(8) du (t) exists.

We need

Lemma 11. Let ([a,b], X, 1) be a complete measure space, where u is a positive and
finite measure and f € Hé(lj), xo € la,b]. Then

E,, = Z 1o /ab] x —x0) du ()

(a, b] i

1

:W{ /[ y ( /:O<z—x>“—1((Dzo_f)<z>—(D;;O_f)m))dz) dn (x)
an o+ /H (/x:@—z) (D) () = (D) (a0) d ) d ()}

All the above integrals are of Bochner type.
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Proof. By Theorem 9 we get

m—1

18 £ =X IO s s [T e (08 ) (a

V x € [a,x0]. The remainder is a continuous function in x.

By Theorem 8 we get

) 7= Y I 0 g+ s [ () ()

YV x € [zg,b]. The remainder is a continuous function in x.

Consequently we find

}f(x)du($)== f () dp (z) + }f(x)du(x)

la,b la,zo] (z0,b

A (=) @)

rrm UL ([ e o )
(20) e[ (e nn @) )

Notice also that D3 f (zo) = DS, f (20) = 0. The claim is proved. O

*TQ

Convention 12. We assume that

(21) Dy, f(x) =0, forz < x,
and
(22) Dy _f(x)=0, forxz > x,

for all x, g € [a, b].

We need

Definition 13. Let f € C ([a,b], X), [a,b] C R, (X, ||-]]) a Banach space. We define

the first modulus of continuity of f as

(23) wi (f,0) = g%Huu»—fwm, 0<d<b-a
x,y€|a,o|:
lz—y|<é

If § > b—a, then wy (f,0) =wi (f,b—a).

Notice wy (f,d) is increasing in § > 0.

Clearly f is uniformly continuous, see [2, p. 53]. Also easily we see that wy (f,0) <
00, see again [2, p. 52]. For f € B ([a,b],X) (bounded functions) wy (f,0) is defined

the same way.
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Lemma 14. We have wy (f,6) — 0 asd | 0 iff f € C([a,b],X).

Proof. (=) Let wy (f,0) - 0asd | 0. Then Ve > 0,30 >0 with w; (f,0) <e. Le.

Va,y€la,bl:|z—y|l <dweget]|f(z)—f(y)| <e Thatis f € C([a,b],X).
(<) Let f € C(la,b],X). Then Ve > 0, 3 > 0: whenever |z —y| < 6,

x,y € [a,b], it implies ||f (z) — f(y)|| <e. Le. Ve >0,35>0:w (f,0) <e. That
iswy (f,0) = 0asd | 0. O

We mention

Proposition 15. Let f € C" ([a,b],X), n = [v], v > 0. Then DY, f (z) is continu-

ous in x € |a,b].

Proof. We notice that (see [15, p. 116])

(24) Dl @)= gy [ =) e
d

" DY _ 1 e n—v—1 p(n) d

*af(y)—m/o Z " (y = 2) d.

Herea <z <y<b,and0<z—a<y—a.
Hence it holds ([8] and [1, p. 426, Theorem 11.43])

1

D f (y) = DL f (x) = NCE)) l/om—“ S (y = 2) = ) (2 - 2)) de

(25) + /y_a Zn—u—lf(n) (y — 2) dz} )

—a

We have that

V D 1 (x—a)"™"
D7 ()= Diaf ] < s [

(n)
+ Hf HLOO([a,b],X) ((y _ a)n—u _ (ZL’ N a)n—u)]

(n—v)

w1 (f(n)a ly — 95|)

< w0 e (1.l )

+ Hf(n) HLOO([a,b],X) (y—a)"" —(z - a)n_y)} :
So as y — x the last expression goes to zero. As a result,
(26) Do f (y) — DL f (),
proving the claim. O

Proposition 16. Let f € C™ ([a,b],X), m = [a], a > 0. Then D;_f (x) is contin-

uous in x € [a,bl.

Proof. As in Proposition 15. O
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We also mention

Proposition 17. Let f € C™ ' ([a,b],X), f™ € Ly ([a,b],X), m = [a], a > 0
and

(27) D f ) = e | Tty (1),

I'(m—a)/,
for all x,zo € [a,b] : x > xo.

Then D, f (x) is continuous in xg.

Proof. Fix x : x > yg > x¢; x,Z0, Yo € [a,b]. Then

R e

o

(m) Y
zo

D2, 7 (2) — D2, £ (2)]] = ﬁ

£,
oo ([a,b],X) m—a m—a
(28) I'(m—-a+1) ((& = 0) (2= 20)"") ’
as Yo — o, proving continuity of Dg, f in zo € [a,b]. O]

Proposition 18. Let f € C™ ! ([a,b], X), f™ € Ly ([a,b],X), m = [a], a > 0
and

(29) Dg, f(x) = I'(m—a) /IO (¢ =)™t () dg,

for all x,xy € [a,b] : xg > x.

Then Dy, f (x) is continuous in xg.
Proof. As in Proposition 17. O
We need

Proposition 19. Let g € C ([a,b],X), 0 <c <1, z,20 € [a,b]. Define

(30) L(z,z0) = /1‘ (x =) g (t)dt, forxz> xg,

o

and L (x,xq) =0, for z < xy.

Then L is jointly continuous in (z,xo) on |a, 6]2.

Proof. We notice that L (xg, z9) = 0.

Assume x > 1z, then

where y is the characteristic function.
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Let xtny — z, xov — %9, N € N and assume without loss of generality that
TN 2 ZoN-

So we have again

TN —TON 1
L(zy,zon) = / 2Tg (e — 2)dz
0

b—a
2 — [ v ()5 g oy = 2
0
The integrands above are Bochner integrable functions.
We have
(33> X[0,z5—zoN] (Z> — X[0,z—=0] (Z> ) ..,

and (see also [9, p. 88]) the function below on the right is strongly measurable

c—1

(34> X[0,2 xn—2z0n] (Z) Zc_lg (IN - Z) — X[0,z—20] (Z) < g (I - Z) ; a.€.

Notice that
(35) Xi0.an—aon] (2) 2 g (zny — 2)[ < 2 191l »

which is an integrable function.

Thus by Dominated Convergence theorem, [8], we obtain

(36) L(zn,xon) — L(z,20), as N — oo.

Clearly now L (z,x0) is jointly continuous on [a, b]”. O
We mention

Proposition 20. Let g € C([a,b]), 0 < ¢ <1, z,z0 € [a,b]. Define

To
(37) K= [ (=07 9O forz <an
and K (z,z9) =0, for x > xy.
Then K (z,x¢) is jointly continuous from |a, b]2 into R.

Proof. As in Proposition 19. O

Based on Propositions 19, 20 we derive

Corollary 21. Let f € C™([a,b],X), m = [a], a > 0, z,29 € [a,b]. Then
D, f(x), Dy _f(x) are jointly continuous functions in (x,xo) from [a, b into X,

X is a Banach space.

We need



VECTOR FRACTIONAL KOROVKIN TYPE APPROXIMATIONS 91

Theorem 22. Let f : [a,b]> — X be jointly continuous, X is a Banach space.

Consider

(38) G(z)=w (f(2),6 [x,0]),
d>0,z¢€lab.

Then G is continuous on |a, b|.

Proof. (i) Let x, —» =, a <z, <z, and 0 < § < b — z first. (The case when z,, — x

with z,, > x is similar.) Then we can write
(39) G (r,) =max (A, B,C),
where

A =sup{||f (u,z,) — f (v,2,)] ;u,v € [2,b] ,|lu—v| <6}, 0<6<b—u,

(40) B =sup{||f (u,z,) — f (v, )| ;u € [xn, 2] ,v € [2,b] , |[u—v| <},
C =sup{||f (u,z,) — f(v,2,)] ;u,v € [xy, 2], |u —v|] < I}

Now, when z,, — z, then A — G (), B — K (z) < G (z), C — 0 (since also u

converges to v).

In conclusion, G (z,) — max{G (z), K (z),0} = G (x).

(i) If 6 > b—z, thenw; (f (-, z), 4, [x,b]) = w1 (f (-,2),b— x, [x,]]), a case covered
by (i).

That is proving the claim. O

Theorem 23. Let f : [a,b]° — X be jointly continuous, X is a Banach space. Then

(41> H (SL’) = W1 (f (7x) , 0, [CL, x]) )

x € |a,b], is continuous in x € [a,b], § > 0.
Proof. As in Theorem 22. O
We make

Remark 24. Let f € C" ' ([a,b]), f™ € Ly ([a,b]), n = [v], v > 0, v ¢ N. Then

as in the proof of Lemma 5, we have

Hf(n) HLOO([a,b},X) (l’ . a)n—u ’

(42) ||D:af (ZL’)H S F(n_ v+ 1)

V€ la,bl.
Thus we observe

wi (D, f,0) = sup | DL f(x) —Dif W)l
z,y€(a,b]
lz—y|<é
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1 a0

£,
n—v o ([a,b],X) n—v
su Tr—a + —a
_x,ye[lz,b} F'n—v+1) ( ) F'n—v+1) (v )
|z —y|<o
2| F,
w([avaX) n—v
43 < b— )
(43) S T+ 079
Consequently
2 || f)
(44) w1 (D, £,6) < | H““““w—w“%

F'n—v+1)
Similarly, let f € C™ ! ([a,b]), f™ € Ly ([a,0]), m = [a], a@ > 0, a ¢ N, then
2[5 1 o)
'm—-—a+1)
So for f € C™ 1 ([a,b]), f'™ € Ly ([a,b]), m = [a], @ >0, a ¢ N, we find

217 gy )

(45) wi (Di_f,0) <

(b—a)™ .

46 sup wy (D, f,0 = oA
(46) zo€[a,b] 1 (D% )[woi’] ['(m—a+1) | |
and
2Hf(m)HL

a oo ([a,b],X) m-a
4 DS f.6), 1 < - '
0 () S T e 00

We make

Remark 25. Let ([a,b], >, 1) be a complete measure space, with y a positive finite

measure.

Let o > 0, then by Hélder’s inequality we obtain

a

(15) Am#m—ﬁwﬂﬂé(Lm@wﬂfﬂw&»wmu@wwﬁﬁ,

and

(49) témm—awwwwg(LM@—mW“wuﬂﬁﬁuw@m@w.

Let now m = [a], « ¢ Nya >0, k=1,...,m — 1. Then by applying again Holder’s

inequality we obtain

a+l1—k

2y
(50) /[ ) |z — 0| dpu () < </[ ) |z — 20| dp (:c)) p ([a, b)) @D

We need

Lemma 26 ([3, p. 208, Lemma 7.1.1]). Let f € B([a,b],X), (X,]|||) is a Banach
space. Then

) 0 -l < (| E5 | <anrm (14 550,
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vV x,x0 € la,b], h > 0.
We give

Definition 27. Let ([a,b], X, uy) be a complete measure space, with py a positive

finite measure, V N € N. We define the linear operators

(52) Ly (f) = [b}f(t)uw(dt)a VNeN,

vV feC(la,b],X), where (X, ||-||) is a Banach space.

Remark 28 (on Definition 27). Actually it is Ly : C ([a,b],X) — X, and Ly (f)

exists as a Bochner integral. If ¢ € X, then

(53) Ly (¢) = cpn ([a, 0])
and for 7 € X : H?H =1 we get
(54) Ly (7) = 7 nw (a.8]).

Denote py ([a,b]) =: My.

If additionally X is a Banach lattice and f, g € C ([a,b] , X ) are such that f () <
g (t), ¥Vt € [a,b], in the X-lattice order, then (by [1, p. 426, Theorem 11.43])

(55) Ly (f) < Ln(9),
in the X-lattice order.
Thus Ly is a positive linear operator in the X-lattice order.

We further notice that
(56)  In () = H o <dt>H < [ 15 @l @) < M IS0
[a,b] [a,b]
1.e.
(57) Vox ()] < Ma I Flles ¥ N €N,

so that Ly is a bounded linear operator, V N € N.

3. Main Results
We present our first main result

Theorem 29. Let ([a,b], X%, 1) be a complete measure space with p a positive finite
measure. Let f € Hg(cé), xo € |a,b]; 11,79 >0, 0 < a ¢ N. Then

—m_l 1 (o) z—x0)F dp (z
’ BTN /M< o) du ()

LA e
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<F(1a{ / ] ([ o s - (029 () ) o
L (e (@ )= (08, ) ) ) o
R | AR G R G I PE )
@ () e (@m0 - 00 @) b e )
<o { UL ([ e on s @ - 05 oz ) i)
(L (L =10 = 0m) @ d:) dn o)) |
R A G e L LE)
< (D)
(61) +U( }(/m(—)“‘l(uzz )d)du()]w(D foha), }}
L.e. it hold
1Bl < ——
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{ [ ( (z — z)o‘_l <1 + o Z) dz) du ([L’)} w1 (D? _f hl)
awo] hl O [awo}
1

X

_l_

/@0 b}( (z— 2 <1+ - )dz) dy (g;)} w1 (D, f hQ)[mb}}
el (e ([

w1 ( f h’l)[a 0]

[ (2 (e

(63) w1 (D%, f,ha), b]}

1 (xg —x)* 1 (zg— x)”‘“ N
(o) { [/[] ( o hal+D) ) s (5’““)] w1 (Do) g
(5

=

X

_|_

a+1

(x — x9)” (z — 20) >
e h—m> % “”] 1 (Dl h2)“0“} |

(IO 7b]

Therefore it holds

1 a 1 a+1
o {5 e ae s ey /[ (@) du(a:)]

: “ 1 a+1
[ [ e ey [ e @)
wl( *xof h2)[m b]}

Momentarily we assume positive choices of

a+1 T}H)
(65) m=n ([ @-a @) 0,
[a,z0]
and
a+1 ﬁ
(66) he =19 / (x —x0)"" du () > 0.
(w07b]
Consequently we obtain
1 1 1 hi\®
< — (atD) 4 — — o i
1Bl < gy { [0 Qo™+ o (05 ) ()
% 1 h2
(67) + {(M((ifmb]))(““ +m] wi (D% frh2) . b]( ) }’

proving (58).
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Next we examine special cases. If f(xo g (T — 20)* ! dp () = 0, then (z — x0) = 0,
a.e. on (g, b], that is © = x a.e. on (x, b], more precisely u{x € (zo,b] : v # 20} = 0,

hence (xg,b] = 0.

Therefore p concentrates on [a, xo).

ml ) (g,
@)y () - 3 )

In that case inequality (58) is written and holds as
[a,z0] k=0
1 1 1
{Jtoay= + ]

I'(a+1) (a+1)r

™ h (Dg‘”f’ K (/[} (20— )™ dy <x>) H)
</H (w0 —2)"" du (x)) ) } |

Since (b,b] = 0 and p (@) = 0, in the case of xy = b, we get again (68) written for

[ (o) i (2)

<

[a,z0]

xo = b. So inequality (68) is a valid inequality when f[MO] (20 — 2)* dpu (z) # 0.

If additionally we assume that f[a’xo} (2o — 2)* dp () = 0, then (zg — z) = 0,
a.e. on [a, zgl, that is x = xy a.e. on [a, xo|, which means p{z € [a,x¢| : © # 20} = 0.
Hence p = 6,,M, where d,, is the unit Dirac measure and M = p ([a, b]) > 0.

In the last case we obtain that L.H.S.(68)=R.H.S.(68)=0, that is (68) is valid
trivially.

Finally let us go the other way around. Let us assume that [, . (zo—2)*"dp(z) =
0, then reasoning similarly as before we get that u over [a, o] concentrates at z. That
is = ot ([a, z0]), on [a, zo].

In the last case (58) is written and it holds as

m—1 (k) Zo
@y () -y L)

(w0,b] k=0

<t 4 [ i)™+ ]

(69 w(D%ﬁw(Amﬁx—mW“wu@)ﬁﬂ)

If o = a then (69) can be redone and rewritten, just replace (z¢,b] by [a,b] all

AWJx—%fmu@

[IO 7b}

over.
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So inequality (69) is valid when
/ (z — x0)* dp () # 0.
(x()vb}

If additionally we assume that f(xo . (z — 20)*" " dp () = 0, then as before pu(z, b] =
0. Hence (69) is trivially true, in fact L.H.S.(69)=R.H.S.(69)=0.

The proof of (58) now has been completed in all possible cases. O

We continue in a special case.

In the assumptions of Theorem 29, when » = r; = ro > 0, and by calling
M = i ([a,8]) = p([a, zo]) , i (2o, b)), we get

Corollary 30. It holds

—m lf(k)(xo) x— xo)* du (x

‘[ab]f(w)du(w) > /W< o) du (2)
1 1

“Tla+ HM(M” * <a+1>r]

(70) + wy (ij‘xof, r (/[ ’ (r — xo)ourl du (a:)) (a+1)>

We need

Definition 31. Let ([a,b], X, un) be a complete measure space, with py a positive

finite measure, V N € N. Consider the positive linear functional
(71) Ly(f)=[ f@)pn(dt), ¥ NEN,
[a,b]

YV f e ([ab]).

Notice that Ly (1) = pn ([a, b)) = My. Let the constant ¢ € X a Banach space,
then Ly (cf) =cLy (f),V f € C([a,b]). We may use formula (71) for f € L; ([a, b])

with respect to .

Based on Theorem 29 and Corollary 30 we give
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Theorem 32. Let ([a,b],%, un) be a complete measure space with pn a positive
finite measure, V N € N. Let [ € Hé(lj), xo € [a,b]; 7> 0,0 < a ¢ N. Let the linear

operators Ly as in (52) and the linear functionals Ly as in (71). Then

m— 1

-y

k=0

LN<x—:c0 H

1

F(a1+ 0 {(LN )™+ (ail)r}

I Y N TR )
( — 20| X(om0) (% ))>(QL+1>
o ( o (B (= 0™ Xy () )

(N (|55 - 930|aJrl X[zo,b] (95)))(&%1)]
1

ey (O
(73) [ (DO‘ fr(l/l\;v(\x—xo\aﬂ))m—il))[am}
o (Dt (B (|x—a:o|a“))ﬁ) ](LTV(W—%PH))(%H),

V N € N, where in the above x stands for the characteristic function.

la,z0]

["E()’b}

<

[x()vb]

We make
Definition 33. We call (z¢ € [a,b] C R)
(74) HY = {f € C([a,b], X) : [a,b] C R, (X, [}

is a Banach space, 0 < a < 1; f’ € L, ([a,b], X); f' exists outside a A-null Borel set
B C [z, x¢], such that hy (f (ngl))) =0,V z € [a,x]; [ exists outside a A\-null
Borel set BY? C C [xo, z], such that hy (f <B§2)>> =0,V x € [x,b]}.

Notice that C ([a,b], X) C HY), ¥ o € [a,b].

The last Definition 33 simplifies a lot Definition 10 when m = 1.

Because h; is an outer measure on the power set P (X) we can further simplify
Definition 33, based on f (0) =0, hy (0) = 0, and A C B implies hy (A) < hy (B), as

follows:
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Remark 34. Let z € [a,b] C R. We have that
(75) HY = {f € C([a,0], X): (X, ]]])

is a Banach space, 0 < a < 1; f € L ([a,b], X); f' exists outside a A-null Borel set
B, C [a, o], such that hy (f (B,)) = 0; f’ exists outside a A-null Borel set B, C [z, b],
such that hy (f (By)) = 0}.

We make

Remark 35. In the setting of Theorem 32 we observe:

(76) Ly (f)— f(z0) =Ln (f) — f (20) E;V (1) + f (z0) Ly (1) — f (x0)
= (LN (f) - f(xo)fj/v (1)) + f (z0) (EV (1) — 1) .

Hence it holds

() Iy (F) = F @)l || () = £ (o) e (U + 11£ o)l v (1) = 1]
Next we apply Theorem 32 when 0 < o < 1, i.e. m = [a] = 1.

Theorem 36. Let ([a,b], 3, un) be a complete measure space with jun a positive finite
measure, YV N € N. Let f € f[é(lj), zo € la,b]; r > 0,0 < a<1. Let Ly as in (52)
and Ly as in (71). Then

L () = £ (o)l < I (x| L (1) = 1]
by (B 0) ™+ ]
(78) [un (Dg‘o_f,r (Hv (J= — 0] Xfa.mo] (a:))) ﬁ) -
(LN (lz = 20" Xfasao (ff))> )

(Dfxof (EV (\35 - xo‘aﬂ X[zo,b] (I))> (ail))

<LN (Jz - 20l Xpoot (x)))(%ﬂ)]
<17 @oll | Ex (0 =1+ 725 [(z;(l))a“ i ;]
Wi (D?O_f, r (Ev (|2 — xo‘aﬂ)) ﬁ)
(79) + w ( o fr (LN (| — :c0|a+1))(“—i”)

vV N eN.

[mo 7b}

la,zo]

] (T (1o — ) =,

[x()vb]
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We conclude the following convergence result (Korovkin type):

Corollary 37. All as in Theorem 36. Assume that Ev(l) — 1, as N — o0, and

Ly (|x—x0|a+1) — 0, as N — 0o. Then Ly (f) Iy f(x0), as N — oo.

Proof. By inequalities (78)—(79). Notice also the fact

(80) Ev(l)g‘ﬂv(l)—l’+1§K+l,K>O,

because ‘EV (1) — 1’ < K, as ‘EV (1) — 1’ — 0, with N — oo.
That is Ly (1) is bounded. O
It follows:

Theorem 38. Here all as in Theorem 32. Then

L (F) = £ (o)l < 17 (ao) || Ev (1)~ 1]

m—1 (k) To _ .
2 e )

81+ % [(EV (1))“1“ + %}

I'a+1 a+1)r

1
or (Dt (T (1= o)) ™)

1
+ wy (Dfxofar (LN (Jo — $o|a+1)) (QH))

vV N eN.

la,zo]

] (Ev (fo - o)) ),

[x()vb]

Proof. We may write:
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) (B -1) + 5 LV (@)

Hence it holds

L (£) = f (@)l < I (o)l | (L (1) = 1),

ol - m_—l f(k)k(!xo)f;v ((x B xo)k> "
B, -1 +§ Hf(’f;(!xo)H B (- a))

(83)  + ﬁ [(mm)ah +ﬁ}
w1 (D?:O_f, r (L (J2 = @ol"™)) m)

1
+ wy (Dfxofﬂ’ <LN (Jo — 930|a+1)> (aﬂ))

[a,z0]

] (Ev (fo - aol1)) ™7

vV NeN. O

[SC(),I)}

We make

Remark 39. By (50) we have that

= 20) < 7 i)
(84) < (B (o= wl™™) ™ (v ),

fork=1,....m—1,m=[a],a>0,a ¢ N.
Next we use (81).

If clear if Ly (1) — 1 and Ly (Jz — xo\aﬂ) — 0, as N — oo, we obtain again

that Ly (f) i f (z9), as N — 0.

We state now the following convergence theorem (Korovkin type):

Theorem 40. Let ([a,b], 3, un) be a complete measure space with jun a positive finite
measure, ¥ N € N. Let zg € [a,b], 0 < a ¢ N; Ly as in (52) and Ly as in (71),

V N € N. Assume that Ly (1) — 1 and Ly (Jz — :L’0|O‘+1) — 0, as N — oo. Then

Ly (F) 5 £ (20), as N — 00, ¥ f e HY.
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4. Application

Here [a,b] = [0, 1].
Consider g € C'([0,1]) and the classic Bernstein polynomials

(85) (E]Vg)(t)zig%)(Z)tm—t)fv—k, Viel0,1, NeN.

Let xy € [0, 1] be fixed, then

(86) (Brg) (w0) Z g( ) ( ) 2k (1 — ) F

We have that <E37V1> = 1, and E\; are positive linear operators. The last means
(B}l) (z0) = 1.
Let (X, ||]|) be a Banach space, and f € H{Y: r>0,0 < o < 1.

We consider the vector valued in X Bernstein linear operators

(87) (Bnf)( Zf( )(N>x§(1—x0)]v_k, N € N.

That is (Byf) (%) € X.
Applying Theorem 36 we get

Corollary 41. It holds

1 1
I8 ) a0) = 1 )l < s [1+ o]

o <D§;O_f,r ((E]V (Jz — :)30|a+1)> (xo))(ain)[ |
0,z0

(Dfmof ((E\’ (lz — x0|a+1)> (x0)>(ai1))[xo,1]]

o

(88) ((EV (Jo — xo\a“)) (x0)> (&%) , VNeN.

Next let a = % = +1, that is r = —. Notice I' (%) @

Corollary 42. It holds
(B f) (z0) — f (o)l
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(89) ((Bx (I = wl?)) (w))", ¥ NeN.
We have that (see [5])

(90) (é} (|x _ x0|%)> (z0) < (4;])%, Y 2o € [0,1].

We have proved
Corollary 43. Here [a,b] = [0,1], o € [0,1]. Let f € HY, a = 1, N eN. Then
(B f) (o) = f (o)

23 1 1 1 1
(91) < — = |w (ch f, —) +w (Dfx f. —) :
VTV N “T3VN (0.2 " 3VN ao)
3
Notice that 2—\; ~ 1.59.
So as N — oo we derive that (Byf) (xo) -y f (x0), quantitatively, where xy €
[0, 1].

We finish with
Corollary 44. Let f € C*([0,1],X), (X, |I|l) is a Banach space. Then
II1(Bwf) (o) = f (o) [l o, 0,1y

23 1 1 1 1
(92) < ——| sup w (Di _f —) + sup w <D3m I —) :
VAVN | zoeio] “U3VN o2y woclo] " 3VN/ oy
vV N € N.

So as N — oo, we derive that ||Byf — f|| — 0 uniformly with rates.

REFERENCES

[1] C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, Springer, New York, 2006.

[2] C. D. Aliprantis and O. Burkinshaw, Principles of Real Analysis, 3rd edition, Academic Press,
San Diego, New York, 1998.

[3] G. A. Anastassiou, Moments in Probability and Approzimation Theory, Pitman Research Notes
in Math., Vol. 287, Longman Sci. & Tech., Harlow, U.K., 1993.

[4] G. A. Anastassiou, Lattice homomorphism - Korovkin type inequalities for vector valued func-
tions, Hokkaido Mathematical Journal, Vol. 26 (1997), 337-364.

[5] G. Anastassiou, Fractional Korovkin theory, Chaos, Solitons & Fractals, Vol. 42, No. 4 (2009),
2080-2094.

[6] G. A. Anastassiou, A strong Fractional Calculus Theory for Banach space valued functions,
submitted, 2016.

[7] G. A. Anastassiou, Strong Right Fractional Calculus for Banach space valued functions, sub-
mitted, 2016.

[8] Appendix F, The Bochner integral and vector-valued L,-spaces,
https://isem.math.kit.edu/images/f/£7/AppendixF.pdf.



104

[9]

[10]

[11]
[12]

[13]

G. A. ANASTASSIOU

R. F. Curtain, A. J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic
Press, London, New York, 1977.

Jurii Dem’janovic, Approzimation by local functions in a space with fractional derivatives.
(Lithuanian, English summaries), Differencial’'nye Uravnenija i Primenen, Trudy Sem. Processy
(1975), 3549, 103.

V. K. Dzyadyk, On the best trigonometric approximation in the L metric of some functions,
(Russian) Dokl. Akad. Nauk SSSR 129 (1959), 19-22.

Miroslaw Jaskélski, Contributions to fractional calculus and approximation theory on the square,
Funct. Approx. Comment. Math. 18 (1989), 77-89.

P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Corp. Delhi,
India, 1960.

M. Kreuter, Sobolev Spaces of Vector-valued functions, Ulm Univ., Master Thesis in Math.,
Ulm, Germany, 2015.

J. Mikusinski, The Bochner integral, Academic Press, New York, 1978.

F. G. Nasibov, On the degree of best approximation of functions having a fractional derivative in
the Riemann-Liouville sense, (Russian-Azerbaijani summary), Izv. Akad. Nauk Azerbaidzan,
SSR Ser. Fiz.-Mat. Tehn. Nauk, (1962), No. 3, 51-57.

G. E. Shilov, Elementary Functional Analysis, Dover Publications, Inc., New York, 1996.

O. Shisha and B. Mond, The degree of convergence of sequences of linear positive operators,
Nat. Acad. of Sci. U.S., 60, (1968), 1196-1200.

C. Volintiru, A proof of the fundamental theorem of Calculus using Hausdorff measures, Real
Analysis Exchange, 26 (1), 2000/2001, pp. 381-390.



