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ABSTRACT. In this paper, we introduce a new iterative algorithm to approximate the fixed

points of generalized nonexpansive multi-valued mappings in Banach spaces and utilize the same to

establish weak as well as strong convergence theorems. Our results generalize and improve several

previously known results of the existing literature.
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1. INTRODUCTION

The fixed point theory of multi-valued nonexpansive mappings is relatively more

involved and cumbersome than the corresponding theory of single-valued nonexpan-

sive mappings. Fixed point theory for multi-valued mappings has many fruitful ap-

plications in diverse fields, e.g. game theory, mathematical economics and several

others. Therefore, it is natural to extend the known fixed point results for single-

valued mappings to multi-valued mappings. However, some classical fixed point

theorems for single-valued nonexpansive mappings have already been extended to

multi-valued mappings. The earliest results in this direction were respectively estab-

lished by Markin [10] in Hilbert spaces while by Browder [4] for spaces admitting

weakly continuous duality mapping. Dozo [5] generalized these results in a Banach

space satisfying Opial’s condition. Though nonexpansive mappings are most exten-

sively studied class of mappings in metric fixed point theory, yet there also exists

considerable literature on the classes of mappings enlarging the class of nonexpansive

mappings.

Throughout the paper, E stands for a real Banach space with the norm ‖ · ‖

and K a nonempty subset of E. Let N denotes the set of all positive integers.

Let CB(K), C(K) and P (K) denote the families of nonempty closed and bounded
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subsets, nonempty compact subsets and nonempty proximinal bounded subsets of

K respectively. Recall that the set K is said to be proximinal if for any x ∈ E,

there exists an element y ∈ K such that d(x, y) = dist(x, K), where dist(x, K) =

inf{‖x − y‖; y ∈ K}.

Let H be the Hausdorff metric on CB(E) defined by

H(A, B) = max

{

sup
x∈A

dist(x, B), sup
y∈B

dist(y, A)

}

for all A, B ∈ CB(E).

A multi-valued mapping T : K → CB(E) is said to be nonexpansive if

H(Tx, Ty) ≤ ‖x − y‖ for all x, y ∈ K.

A point z ∈ K is called a fixed point of T if z ∈ Tz. As usual, F (T ) stands

for the set of fixed points of a multi-valued mapping T . A multi-valued mapping

T : K → CB(K) is said to be quasi-nonexpansive ([20]) if F (T ) 6= ∅ and

H(Tx, Tz) ≤ ‖x − z‖ for all x ∈ K and z ∈ F (T ).

As mentioned earlier, the study of fixed points for multi-valued nonexpansive

mappings using the Hausdorff metric was initiated by Markin [10] while the existence

of fixed points for multi-valued nonexpansive mappings in uniformly convex Banach

spaces can be found in Lim [9].

In 2008, Suzuki [23] defined a generalization of nonexpansive mapping and called

it a mapping satisfying condition (C). Further, Garćıa-Falset et al. [7] proposed two

new generalizations of condition (C) and term them as condition (E) and condition

(Cλ) and studied the existence of fixed points for these classes of mappings whose

set-valued versions were studied in [1, 2, 8] whose relevant details can be described

as follows:

Definition 1.1 ([8]). Let T : K → CB(E) be a multi-valued mapping. Then T is

said to satisfy condition (Cλ) if for some λ ∈ (0, 1) and for each x, y ∈ K

λ dist(x, Tx) ≤ ‖x − y‖ ⇒ H(Tx, Ty) ≤ ‖x − y‖.

For λ = 1
2
, we recapture the class of mappings satisfying condition (C). It is easy

to see that for 0 < λ1 < λ2 < 1, condition (Cλ1
) implies condition (Cλ2

).

Lemma 1.2 ([8]). Let T : K → CB(E) be a multi-valued mapping.

(i) If T is nonexpansive, then T satisfies condition (Cλ).

(ii) If T satisfies condition (Cλ) and F (T ) 6= ∅, then T is quasi-nonexpansive.

Lemma 1.3 ([6]). Let K be a nonempty subset of a Banach space E and T : K →

P (E) a multi-valued map satisfying condition (C). Then

H(Tx, Ty) ≤ 2 dist(x, Tx) + ‖x − y‖ for all x, y ∈ K.



FIXED POINT OF GENERALIZED NONEXPANSIVE MULTI-VALUED MAPPINGS 397

Very recently, Abkar and Eslamian [2] used a modified Suzuki condition for multi-

valued mappings which runs as follows:

Definition 1.4 ([2]). A multi-valued mapping T : K → CB(E) is said to satisfy

condition (Eµ) if for some µ ≥ 1, for all x, y ∈ K

dist(x, Ty) ≤ µ dist(x, Tx) + ‖x − y‖.

We say that T satisfies condition (E) on K whenever T satisfies condition (Eµ)

for some µ ≥ 1.

Lemma 1.5 ([2]). Let T : K → CB(E) be a multi-valued nonexpansive mapping.

Then T satisfies condition (E1).

In the sequel we need the following definitions:

Definition 1.6 ([11]). A Banach space E is said to satisfy Opial’s condition if for

any sequence {xn} in E with xn ⇀ x implies that

lim
n→∞

inf ‖xn − x‖ < lim
n→∞

inf ‖xn − y‖ ∀ y ∈ E, y 6= x.

Examples of Banach spaces satisfying Opial’s condition are Hilbert spaces and

all lp spaces (1 < p < ∞). On the other hand, Lp[0, 2] with 1 < p 6= 2 fail to satisfy

Opial’s condition.

Definition 1.7 ([21]). A multi-valued mapping T : K → CB(K) is said to satisfy

condition (I) if there exists a nondecreasing function h : [0,∞) → [0,∞) with h(0) =

0 and h(r) > 0 for all r ∈ (0,∞) such that dist(x, Tx) ≥ h(dist(x, F (T )) for all

x ∈ K.

Definition 1.8. Multi-valued mappings T, S : K → CB(K) are said to satisfy

condition (I ′) if there exists a nondecreasing function g : [0,∞) → [0,∞) with g(0) =

0 and g(r) > 0 for all r ∈ (0,∞) such that either dist(x, Tx) ≥ g(dist(x, F )) or

dist(x, Sx) ≥ g(dist(x, F )) for all x ∈ K where F = F (T ) ∩ F (S).

Remark 1.9. With S = T in Definition 1.8, condition (I ′) reduces to condition (I).

Definition 1.10 ([5], [7]). A multi-valued mapping T : K → P (E) is said to be

demiclosed at y ∈ K if for any sequence {xn} in K weakly convergent to an element

x and yn ∈ Txn strongly convergent to y, we have y ∈ Tx.

Definition 1.11 ([3]). Let {an}n∈N and {bn}n∈N be two sequences of real numbers

that converge to a and b, respectively. Assume that there exists

l = lim
n→∞

|an − a|

|bn − b|
.

If l = 0, then we say that {an}n∈N converges to a faster than {bn}n∈N to b.
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An important property for the class of uniformly convex Banach spaces is con-

tained in following lemma due to Schu [15].

Lemma 1.12 ([15]). Let E be a uniformly convex Banach space and 0 < p ≤ tn ≤ q <

1 for all n ∈ N. If {xn} and {yn} are two sequences of E such that limn→∞ sup ‖xn‖ ≤

r, limn→∞ sup ‖yn‖ ≤ r, and limn→∞ ‖tnxn + (1 − tn)yn‖ = r hold for some r ≥ 0,

then limn→∞ ‖xn − yn‖ = 0.

The purpose of this paper is to approximate the fixed points of generalized non-

expansive multi-valued mappings in Banach spaces via new iterative algorithms and

establish weak and strong convergence theorems of these iterative algorithms under

suitable conditions. For further details one can be referred to [16]–[19].

2. PRELIMINARIES

Different iterative schemes have been utilized to approximate the fixed points of

multi-valued nonexpansive mappings. Sastry and Babu [14] studied the Mann and

Ishikawa iterative schemes for multi-valued mappings and proved that these schemes

for a multi-valued map T with a fixed point z converges to a fixed point q of T under

certain conditions. They also claimed that the fixed point q may be different from z.

To describe some relevant iterative processes, let K be a nonempty convex subset of

E and T : K → P (K) a multi-valued mapping with z ∈ Tz. Then, the sequence of

Mann iterates is defined by with u1 ∈ K,

(2.1) un+1 = (1 − an)un + antn, n ∈ N,

where tn ∈ Tun is such that ‖tn−z‖ = dist(z, Tun) and {an} is a sequence of numbers

in (0, 1) satisfying limn→∞ an = 0 and
∑

an = ∞.

The sequence of Ishikawa iterates is defined by v1 ∈ K,






vn+1 = (1 − an)vn + anun,

qn = (1 − bn)vn + bnt′n, n ∈ N,

where un ∈ Tqn, t′n ∈ Tvn are such that ‖un − z‖ = dist(z, T qn) and ‖t′n − z‖ =

dist(z, Tvn) and {an}, {bn} are real sequences of numbers in (0, 1) satisfying

limn→∞ bn = 0 and
∑

anbn = ∞.

Panyanak [12] extended the result of Sastry and Babu [14] by modifying the

iteration schemes of Sastry and Babu [14] in the setting of uniformly convex Banach

spaces but the domain of T remains compact while Song and Wang [21] employed the

condition Tz = {z} to prove their results.

Recently, Sahu [13] introduced an iterative scheme, which has been studied ex-

tensively in connection with fixed points of single-valued nonexpansive mappings as
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follows: Let K be a nonempty convex subset of E and f : K → K a single-valued

mapping. Then, for arbitrary w1 ∈ K, the iterative process is defined by






wn+1 = fsn

sn = (1 − an)wn + anfwn, n ∈ N,

where {an} ∈ (0, 1).

In the following, we extend the above iterative scheme to the case of multi-valued

nonexpansive mappings on convex subset of E modifying the above ones. Let K be

a nonempty convex subset of E and T : K → P (K) a multi-valued mapping with

z ∈ Tz. Then, the sequence of iterates is defined by

(2.2)



















w1 ∈ K,

wn+1 = vn

sn = (1 − an)wn + anzn, n ∈ N,

where vn ∈ Tsn, zn ∈ Twn are such that ‖vn − z‖ = dist(z, Tsn) and ‖zn − z‖ =

dist(z, Twn) and {an} is a sequence of numbers in (0, 1) satisfying limn→∞ an = 0 and
∑

an < ∞.

Motivated and inspired by the work of Sahu [13], we introduced a new iterative

scheme in the context of multi-valued mappings as follows:

(2.3)



















x1 ∈ K,

xn+1 = un

yn = (1 − an)vn + anwn, n ∈ N,

where un ∈ Tyn, vn ∈ Txn and wn ∈ Sxn are such that ‖vn − z‖ = dist(z, Txn),

‖un − z‖ = dist(z, Tyn) and ‖wn − z‖ = dist(z, Sxn) and {an} is a sequence of

numbers in (0, 1) satisfying limn→∞ an = 0 and
∑

an < ∞.

3. CONVERGENCE THEOREMS VIA ALGORITHM (2.2)

In this section we prove some weak and strong convergence theorems by approxi-

mating the fixed points of a multi-valued quasi-nonexpansive mapping and generalized

nonexpansive multi-valued mappings by using iterative scheme (2.2). In the sequel,

F (T ) denotes the set of fixed point of mapping T .

Theorem 3.1. Let E be a uniformly convex Banach space satisfying Opial’s condi-

tion and K a nonempty closed and convex subset of E. Let T : K → P (K) be a

multi-valued quasi-nonexpansive mapping and {wn} a sequence as defined by (2.2). If

F (T ) 6= ∅ and (I − T ) is demiclosed at zero, then {wn} converges weakly to a fixed

point of T .
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Proof. Let z ∈ F (T ). Hence from (2.2) we have

(3.1) ‖wn+1 − z‖ = ‖vn − z‖ = dist(Tsn, z) ≤ H(Tsn, T z) ≤ ‖sn − z‖,

and

‖sn − z‖ = ‖(1 − an)wn + anzn − z‖

≤ (1 − an)‖wn − z‖ + an‖zn − z‖

= (1 − an)‖wn − z‖ + an dist(Twn, z)

≤ (1 − an)‖wn − z‖ + an H(Twn, T z)

≤ ‖wn − z‖.(3.2)

Hence from (3.1) and (3.2), we have

(3.3) ‖wn+1 − z‖ ≤ ‖wn − z‖.

Therefore, limn→∞ ‖wn − z‖ exists for each z ∈ F (T ). Let limn→∞ ‖wn − z‖ = a for

some a ≥ 0. Then if a = 0, we are done. Suppose that a > 0. Next, we show that

limn→∞ dist(Twn, wn) = 0. Taking lim sup on both sides of (3.2), we have

(3.4) lim
n→∞

sup ‖sn − z‖ ≤ a.

As,

(3.5) lim
n→∞

sup ‖zn − z‖ ≤ lim
n→∞

sup H(Twn, T z) ≤ lim
n→∞

sup ‖wn − z‖ = a.

Moreover, limn→∞ ‖wn+1 − z‖ = a means that

a = lim
n→∞

inf ‖wn+1 − z‖ = lim
n→∞

inf ‖vn − z‖ ≤ lim
n→∞

inf dist(Tsn, z)

≤ lim
n→∞

inf H(Tsn, T z)

≤ lim
n→∞

inf ‖sn − z‖.(3.6)

From (3.4) and (3.6), we have

lim
n→∞

‖sn − z‖ = a.

As,

a = lim
n→∞

‖sn − z‖ = lim
n→∞

‖(1 − an)wn + anzn − z‖

= lim
n→∞

‖(1 − an)(wn − z) + an(zn − z)‖.(3.7)

Therefore from (3.5), (3.7), and Lemma 1.12, we have

(3.8) lim
n→∞

‖wn − zn‖ = 0.

As dist(Twn, wn) ≤ ‖zn − wn‖, we have, limn→∞ dist(Twn, wn) = 0. Now, we prove

that {wn} has a unique weak subsequential limit in F (T ). Let {wnk
} and {wnj

} be

the subsequences of {wn} while z1 and z2 be the weak limits of {wnk
} and {wnj

}
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respectively. Since (I − T ) is demiclosed at zero, therefore using the fact zn ∈ Twn

and equation (3.8), we obtain that z1 ∈ F (T ). Similarly we can show that z2 ∈ F (T ).

Now, we show the uniqueness of weak limit. Let us suppose that z1 6= z2. Since

wnk
⇀ z1 and z1 6= z2, by Opial’s condition, we have

lim
n→∞

‖wn − z1‖ = lim
k→∞

inf ‖wnk
− z1‖ < lim

k→∞

inf ‖wnk
− z2‖ = lim

j→∞

inf ‖wnj
− z2‖

< lim
j→∞

inf ‖wnj
− z1‖

= lim
n→∞

‖wn − z1‖,

which is a contradiction. Hence {wn} converges weakly to a fixed point of T .

Now, we prove some strong convergence theorems involving generalized nonex-

pansive multi-valued mapping.

Theorem 3.2. Let E be a Banach space and K a nonempty closed convex subset of

E. Let T : K → P (K) be a multi-valued quasi-nonexpansive mapping and satisfies

condition (E). Let {wn} be a sequence as defined by (2.2). If F (T ) 6= ∅, then {wn}

converges strongly to a fixed point of T if and only if limn→∞ inf dist(wn, F (T )) = 0.

Proof. The necessary part is evident. For the reverse part, let us suppose that

lim
n→∞

inf dist(wn, F (T )) = 0.

Then by (3.3), we have

‖wn+1 − z‖ ≤ ‖wn − z‖ ⇒ dist(wn+1, F (T )) ≤ dist(wn, F (T )),

which implies that limn→∞ dist(wn, F (T )) exists. Therefore by hypothesis, we have

limn→∞ dist(wn, F (T )) = 0. Now, we show that {wn} is a Cauchy sequence in K. Let

ǫ > 0. As limn→∞ dist(wn, F (T )) = 0, there exists a positive integer m such that for

all n ≥ m, we have dist(wn, F (T )) < ǫ
4
. In particular,

inf{‖wm − z‖ : z ∈ F (T )} <
ǫ

4
.

Therefore there exists l ∈ F (T ) such that ‖wm − l‖ < ǫ
2
. Now for n, p ≥ m, we have

‖wn+p − wn‖ ≤ ‖wn+p − l‖ + ‖wn − l‖ ≤ 2‖wm − l‖ < 2
( ǫ

2

)

= ǫ.

Hence {wn} is a Cauchy sequence in a closed subset K of a Banach space E. Therefore

it converges in K. Let limn→∞ wn = w. Then by using condition (E), we have

dist(w, Tw) ≤ ‖wn − w‖ + dist(wn, Tw)

≤ ‖wn − w‖ + µ dist(wn, Twn) + ‖wn − w‖

≤ 2‖wn − w‖ + µ ‖zn − wn‖ → 0 as n → ∞ (by using (3.8)).

Thus dist(w, Tw) = 0, which in turn implies that w ∈ F (T ).
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Theorem 3.3. Theorem 3.2 also holds if condition (E) is replaced by condition (C).

Proof. From Theorem 3.2, we conclude that the sequence {wn} converges to w ∈ K.

Hence, by using condition (C) and Lemma 1.3, we have

dist(w, Tw) ≤ ‖wn − w‖ + dist(wn, Twn) + H(Twn, Tw)

≤ ‖wn − w‖ + dist(wn, Twn) + 2 dist(wn, Twn) + ‖wn − w‖

= 2‖wn − w‖ + 3 dist(wn, Twn)

≤ 2‖wn − w‖ + 3‖zn − wn‖ → 0 as n → ∞ (by using (3.8)).

Therefore dist(w, Tw) = 0, which in turn implies that w ∈ F (T ).

We now apply Theorem 3.2 to obtain our next result in a uniformly convex

Banach space wherein T satisfies condition (I).

Theorem 3.4. Let E be a uniformly convex Banach space and K, T, F (T ) and {wn}

be as in Theorem 3.2. If T satisfies condition (I) and F (T ) 6= ∅, then {wn} converges

strongly to a fixed point of T .

Proof. By Theorem 3.1, limn→∞ ‖wn − z‖ exists for all z ∈ F (T ). Let limn→∞ ‖wn −

z‖ = a, for some a ≥ 0. If a = 0, then there is nothing to prove. Suppose a >

0. Then again from Theorem 3.1, ‖wn+1 − z‖ ≤ ‖wn − z‖, which implies that,

infz∈F (T ) ‖wn+1 − z‖ ≤ infz∈F (T ) ‖wn − z‖, so that dist(wn+1, F (T )) ≤ dist(wn, F (T ))

and limn→∞ dist(wn, F (T )) exists. On using condition (I) and Theorem 3.1, we have,

lim
n→∞

h(dist(wn, F (T ))) ≤ lim
n→∞

dist(wn, Twn) = 0,

that is, limn→∞ h(dist(wn, F (T ))) = 0. Since h is a nondecreasing function and

h(0) = 0, it follows that limn→∞ dist(wn, F (T )) = 0. Now applying Theorem 3.2, we

obtain the result.

Theorem 3.5. Theorem 3.4 also holds if condition (E) is replaced by condition (C).

Proof. The proof of this theorem is same as that of Theorem 3.4.

4. CONVERGENCE THEOREMS VIA ALGORITHM (2.3)

We start this section to approximate the common fixed points of generalized

nonexpansive multi-valued mappings to prove some weak and strong convergence

theorems by using iterative algorithm (2.3). In the sequel, F = F (T )∩F (S) denotes

the set of common fixed points of mappings T and S.
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Lemma 4.1. Let K be a nonempty closed and convex subset of a uniformly convex

Banach space E and T, S : K → P (K) two multi-valued quasi-nonexpansive map-

pings. Let {xn} be a sequence as defined by (2.3). If F 6= ∅ and

dist(x, Tx) ≤ H(Tx, Sx) ∀ x ∈ K,

then limn→∞ dist(Txn, xn) = 0 = limn→∞ dist(Sxn, xn).

Proof. Let z ∈ F . Then from (2.3) we have

(3.9) ‖xn+1 − z‖ = ‖un − z‖ = dist(Tyn, z) ≤ H(Tyn, T z) ≤ ‖yn − z‖,

and

‖yn − z‖ = ‖(1 − an)vn + anwn − z‖

≤ (1 − an)‖vn − z‖ + an‖wn − z‖

= (1 − an)dist(Txn, z) + an dist(Sxn, z)

≤ (1 − an)H(Txn, T z) + an H(Sxn, Sz)

≤ (1 − an)‖xn − z‖ + an‖xn − z‖

= ‖xn − z‖.(3.10)

Hence from (3.9) and (3.10), we have

(3.11) ‖xn+1 − z‖ ≤ ‖xn − z‖.

Therefore, limn→∞ ‖xn−z‖ exists for each z ∈ F (T ). Assume that limn→∞ ‖xn−z‖ =

b for some b ≥ 0. Then if b = 0, we are done. Suppose that b > 0. Next, we show

that limn→∞ dist(Txn, xn) = 0. Taking limit as n → ∞ on both sides of (3.10), we

have

(3.12) lim
n→∞

‖yn − z‖ ≤ lim
n→∞

‖xn − z‖ = b.

Moreover, as limn→∞ ‖xn+1 − z‖ = b, from (3.9) we have

(3.13) b = lim
n→∞

‖xn+1 − z‖ ≤ lim
n→∞

‖yn − z‖.

From (3.12) and (3.13), we have

lim
n→∞

‖yn − z‖ = b.

As,

(3.14) lim
n→∞

sup ‖vn − z‖ ≤ lim
n→∞

sup H(Txn, T z) ≤ lim
n→∞

sup ‖xn − z‖ = b.

In the same way, we get

(3.15) lim
n→∞

sup ‖wn − z‖ ≤ b.

As,

b = lim
n→∞

‖yn − z‖ = lim
n→∞

‖(1 − an)(vn − z) + an(wn − z)‖,
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hence by using (3.14), (3.15) and by applying Lemma 1.12, we get,

(3.16) lim
n→∞

‖vn − wn‖ = 0.

As H(Txn, Sxn) ≤ ‖vn − wn‖, we have limn→∞ H(Txn, Sxn) = 0. Now, we have

dist(Txn, xn) ≤ H(Txn, Sxn).

Taking limit as n → ∞ on both sides, we get limn→∞ dist(Txn, xn) = 0. Again, we

have for each n ∈ N,

dist(Sxn, xn) ≤ H(Sxn, Txn) + dist(Txn, xn),

which on taking limit as n → ∞ follows, limn→∞ dist(Sxn, xn) = 0.

Remark 4.2. It is well known that every nonexpansive mapping satisfies conditions

(C) and (E). Hence for the sake of simplicity, we present the following example of

nonexpansive mappings with the common non empty fixed point set and satisfies the

inequality

dist(x, Tx) ≤ H(Tx, Sx) ∀ x ∈ K.

Example 4.3. Let E = R and K = [1,∞). Let us define the mappings T and S by

T, S : K → CB(K) by

Tx =

[

0,
1 + x

2

]

, Sx =

[

0,
5 − 2x

3

]

∀ x ∈ K.

Then obviously, S and T are nonexpansive mappings with the common fixed points

0 and 1 as follows: for x, y ∈ K,

H(Tx, Ty) = max

{
∣

∣

∣

∣

1 + x

2
−

1 + y

2

∣

∣

∣

∣

, 0

}

=
1

2
|x − y| ≤ |x − y|.

In a similar way,

H(Sx, Sy) = max

{
∣

∣

∣

∣

5 − 2x

3
−

5 − 2y

3

∣

∣

∣

∣

, 0

}

=
2

3
|x − y| ≤ |x − y|.

Now, for any x, y ∈ K,

dist(x, Tx) = dist

(

x,

[

0,
1 + x

2

])

=

∣

∣

∣

∣

x −
1 + x

2

∣

∣

∣

∣

=
1

2
|x − 1|,

and

H(Tx, Sx) = max

{
∣

∣

∣

∣

1 + x

2
−

5 − 2x

3

∣

∣

∣

∣

, 0

}

=

∣

∣

∣

∣

1 + x

2
−

5 − 2x

3

∣

∣

∣

∣

=
7

6
|x − 1|,

that is, for all x ∈ K,

dist(x, Tx) ≤ H(Tx, Sx).

Theorem 4.4. Let E be a uniformly convex Banach space satisfying Opial’s condition

and K, T, S and {xn} be same as in Lemma 4.1. If F 6= ∅, (I − T ) and (I − S) are

demiclosed at zero, then {xn} converges weakly to a common fixed point of T and S.
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Proof. Let z ∈ F . Then as proved in Lemma 4.1, limn→∞ ‖xn − z‖ exists. Since

E is a uniformly convex Banach space. Thus there exists a subsequence {xni
} ⊂

{xn} such that {xni
} converges weakly to z1 ∈ K. From Lemma 4.1, we have

limn→∞ dist(Txni
, xni

) = 0 and limn→∞ dist(Sxni
, xni

) = 0. Since (I −T ) and (I −S)

are demiclosed at zero, therefore Sz1 = z1. Similarly Tz1 = z1. Finally, we prove

that {xn} converges weakly to z1. Let on contrary that there exists a subsequence

{xnj
} ⊂ {xn} such that {xnj

} converges weakly to z2 ∈ K and z1 6= z2. Again in the

same way, we can prove that z2 ∈ F . Again from Lemma 4.1, limn→∞ ‖xn − z1‖ and

limn→∞ ‖xn − z2‖ exist. Let z1 6= z2. Then by Opial’s condition, we have

lim
n→∞

‖xn − z1‖ = lim
i→∞

inf ‖xni
− z1‖ < lim

i→∞

inf ‖xni
− z2‖ = lim

j→∞

inf ‖xnj
− z2‖

< lim
j→∞

inf ‖xnj
− z1‖

= lim
n→∞

‖xn − z1‖,

which is a contradiction. Hence {xn} converges weakly to a common fixed point of T

and S.

Theorem 4.5. Let E be a Banach space and K a nonempty closed and convex sub-

set of E. Let T, S : K → P (K) be two multi-valued quasi-nonexpansive mappings

satisfying condition (E). Let {xn} be a sequence as defined by (2.3). If F 6= ∅,

then {xn} converges strongly to a common fixed point of T and S if and only if

limn→∞ inf dist(xn, F ) = 0.

Proof. The first part is obvious. Let us suppose that limn→∞ inf dist(xn, F ) = 0.

Then from (3.11), we have

‖xn+1 − z‖ ≤ ‖xn − z‖ ⇒ dist(xn+1, F ) ≤ dist(xn, F ),

which implies that limn→∞ dist(xn, F ) exists. Then on the similar lines of proof of

Theorem 3.2, we can say that {xn} converges in K. Let limn→∞ xn = x. Then by

using condition (E) and Lemma 4.1, we have

dist(x, Tx) ≤ ‖xn − x‖ + dist(xn, Tx)

≤ ‖xn − x‖ + µ dist(xn, Txn) + ‖xn − x‖ → 0 as n → ∞,

that is, dist(x, Tx) = 0 that is, x ∈ F (T ). Similarly, by using condition (E), we have

dist(x, Sx) ≤ 2‖xn − x‖ + µ dist(xn, Sxn).

On taking limit n → ∞, we have dist(x, Sx) = 0, as from Lemma 4.1,

limn→∞ dist(xn, Sxn) = 0. Therefore we have x ∈ F (S), which implies that x ∈

F (T ) ∩ F (S) = F .

Theorem 4.6. Theorem 4.5 also holds if condition (E) is replaced by condition (C).
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Proof. From Theorem 4.5, we conclude that the sequence {xn} converges to x ∈ K.

Hence, by using condition (C) and Lemma 1.3, we have

dist(x, Tx) ≤ ‖xn − x‖ + dist(xn, Txn) + H(Txn, Tx)

≤ ‖xn − x‖ + dist(xn, Txn) + 2 dist(xn, Txn) + ‖xn − x‖

= 2‖xn − x‖ + 3 dist(xn, Txn) → 0 as n → ∞ (by Lemma 4.1).

Therefore dist(x, Tx) = 0, that is, x ∈ F (T ). Similarly, we have dist(x, Sx) = 0, that

is, x ∈ F (S), which implies that x ∈ F (T ) ∩ F (S) = F .

Now by using Theorem 4.5, we obtain a strong convergence theorem of the iter-

ative scheme (2.2) under condition (I ′).

Theorem 4.7. Let E be a uniformly convex Banach space and K, T, S, F and {xn}

be as in Theorem 4.5. If mappings T and S satisfy condition (I ′) and F 6= ∅, then

{xn} converges strongly to a common fixed point of T and S.

Proof. By Lemma 4.1, limn→∞ ‖xn−z‖ exists for all z ∈ F . Let limn→∞ ‖xn−z‖ = b,

for some b ≥ 0. If b = 0, then there is nothing to prove. Suppose that b > 0. Then

again from Lemma 4.1, ‖xn+1−z‖ ≤ ‖xn−z‖, which implies that, infz∈F ‖xn+1−z‖ ≤

infz∈F ‖xn−z‖, so that dist(xn+1, F ) ≤ dist(xn, F ) and limn→∞ dist(xn, F ) exists. On

using condition (I ′) and Lemma 4.1, we have,

lim
n→∞

g(dist(xn, F (T ))) ≤ lim
n→∞

dist(xn, Txn) = 0,

lim
n→∞

g(dist(xn, F (S))) ≤ lim
n→∞

dist(xn, Sxn) = 0,

that is,

lim
n→∞

g(dist(xn, F (T ) ∩ F (S))) = 0, or lim
n→∞

g(dist(xn, F )) = 0.

Since g is a nondecreasing function and g(0) = 0, it follows that limn→∞ dist(xn, F ) =

0. Now applying Theorem 4.5, we obtain the result.

Remark 4.8. The rate of convergence of iterative algorithm (2.3) is faster than

iterative algorithms (2.1) and (2.2) for contraction mappings as shown by the given

proposition.

Proposition 4.9. Let K be a nonempty closed and convex subset of a Banach space

E. Let T, S : K → P (K) be multi-valued contraction mappings with Lipschitz con-

stants k1 and k2 respectively where k1, k2 < k < 1, and a unique fixed point z. Define

sequences {un}, {wn} and {xn} in K by (2.1), (2.2) and (2.3) respectively. Then we

have the following:

1. ‖un+1 − z‖ ≤ [1 − an(1 − k)]n‖u1 − z‖ for all n ∈ N,

2. ‖wn+1 − z‖ ≤ kn[1 − an(1 − k)]n‖w1 − z‖ for all n ∈ N,

3. ‖xn+1 − z‖ ≤ k2n‖x1 − z‖ for all n ∈ N.
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Proof. Suppose that z is a common fixed point of mappings T and S. Then from

iterative algorithm (2.1), we have

‖un+1 − z‖ ≤ ‖(1 − an)(un − z) + an(tn − z)‖

≤ (1 − an)‖un − z‖ + andist(Tun, z)

≤ (1 − an)‖un − z‖ + anH(Tun, T z)

≤ (1 − an)‖un − z‖ + ank1‖un − z‖

≤ (1 − an)‖un − z‖ + ank‖un − z‖

= [1 − (1 − k)an]‖un − z‖

...

≤ [1 − (1 − k)an]n‖u1 − z‖.

Let An = [1 − (1 − k)an]n‖u1 − z‖.

Now, from iterative algorithm (2.2), we have

‖wn+1 − z‖ = ‖vn − z‖ = dist(Tsn, z)

≤ H(Tsn, T z)

≤ k1‖sn − z‖

≤ k‖(1 − an)(wn − z) + an(zn − z)‖

≤ k[(1 − an)‖(wn − z)‖ + andist(Twn, z)]

≤ k[(1 − an)‖(wn − z)‖ + anH(Twn, T z)]

≤ k[(1 − an)‖(wn − z)‖ + ank‖wn − z‖]

= k[1 − (1 − k)an]‖wn − z‖]

...

≤ kn[1 − (1 − k)an]n‖w1 − z‖.

Assume that Bn = kn[1 − (1 − k)an]n‖w1 − z‖.

By iterative algorithm (2.3), we have

‖xn+1 − z‖ = ‖un − z‖ = dist(Tyn, z)

≤ H(Tyn, T z)

≤ k1‖yn − z‖

= k1‖(1 − an)(vn − z) + an(wn − z)‖

≤ k1[(1 − an)dist(Txn, z) + andist(Sxn, z)]

≤ k1[(1 − an)H(Txn, T z) + anH(Sxn, Sz)]

≤ k1[(1 − an)k1‖xn − z‖ + ank2‖xn − z‖]
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= k2‖xn − z‖ (as k1, k2 < k)

...

≤ k2n‖x1 − z‖.

Assume that Cn = k2n‖x1 − z‖.

Now,

lim
n→∞

Cn

An

= lim
n→∞

k2n‖x1 − z‖

[1 − (1 − k)an]n‖u1 − z‖
= lim

n→∞

k2n

[1 − (1 − k)an]n
× lim

n→∞

‖x1 − z‖

‖u1 − z‖
.

Since k < 1,limn→∞ k2n = 0 and as an < 1 with limn→∞ an = 0, we have limn→∞

Cn

An
=

0. Thus {xn} converges faster than {un} to z. Similarly,

lim
n→∞

Cn

Bn

= lim
n→∞

k2n‖x1 − z‖

kn[1 − (1 − k)an]n‖w1 − z‖
= lim

n→∞

kn

[1 − (1 − k)an]n
× lim

n→∞

‖x1 − z‖

‖w1 − z‖
,

so that limn→∞

Cn

Bn
= 0. Therefore {xn} converges faster than {wn} to z.
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