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ABSTRACT. In this paper we present an existence result for a class of impulsive differential

equations with causal operators and prove that the solution set is compact in the space of regulated

functions. The results are obtained under conditions with respect to the Hausdorff measure of

noncompactness. An application from optimal control is given to illustrate our main result.
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1. Introduction and preliminaries

The study of functional equations with causal operators has recently been devel-

oped and some results on existence, stability and control are found in the monographs

[7, 14, 23]. The term causal operators or Volterra abstract operator was introduced

by Tonelli [39] (see also Tikhonov [38], [40]). The theory of these operators has the

advantage of unifying some classes of differential equations as: ordinary differential

equations, integrodifferential equations, differential equations with finite or infinite

delay, Volterra integral equations, and neutral functional equations, and so on. Many

papers in the literature address various aspects of the theory of causal operators.

Control problems involving causal operators were studied in [4, 8, 18, 36]. A new

class of abstract integral equations has been introduced in [17]. We note that differ-

ential equations with causal operators were studied by several authors, see [1], [3],

[9]–[12], [19], [25]–[33] and the references therein. The properties of the solutions of

the differential equations with causal operators were studied in [2, 21, 34, 35, 40].

The existence of solutions for impulsive differential equations with causal operators

in finite dimensional spaces were studied in [19, 26].
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Let E be a real separable Banach space endowed with the norm ‖·‖. For x ∈ E

and r > 0 let Br(x) := {y ∈ E; ‖y − x‖ < r} be the open ball centered at x with

radius r, and let Br[x] be its closure. The space of all (classes of) strongly measurable

functions u(·) : [0, b] → E such that

‖u(·)‖p :=

(
∫ b

0

‖u(t)‖p

)1/p

<∞

for 1 ≤ p <∞ and ‖u(·)‖
∞

:= ess supt∈[0,b] ‖u(t)‖ <∞, will be denoted by Lp([0, b], E).

This is a Banach space with respect to the norm ‖u(·)‖p. We denote by PC([0, b], E)

the set of all functions u : [0, b] → E such that u is continuous at t 6= tk, left continu-

ous at t = tk and the right limit u(t+k ) exists for k = 1, 2, . . . , m. Then PC([0, b], E)

is a Banach space with respect to the norm ‖u(·)‖ = sup0≤t≤b ‖u (t)‖.

The following definition of causal operator was given by Tonelli [39].

An operator Q : PC([0, b], E) → Lp
loc([0, b], E) is a causal operator or a Volterra

operator if, for each τ ∈ [0, b) and for all u(·), v(·) ∈ PC([0, b], E) with u(t) = v(t)

for every t ∈ [0, τ ], we have Qu(t) = Qv(t) for a.e. t ∈ [0, τ ].

In this paper we study the following functional impulsive differential equation:

(1.1)



















u′(t) = (Qu(t)), a.e. t ∈ [0, b] r {t1, t2, . . . , tm},

u(t+k ) = u(t−k ) + Ik(u(t
−
k )), k = 1, 2, . . . , m,

u(0) = ξ,

where Q : PC([0, b], E) → Lp([0, b], E), 1 ≤ p ≤ ∞, is a continuous causal operator,

ξ ∈ E, m ∈ N, 0 = t0 < t1 < t2 < · · · < tm < tm+1 = b and Ik : E → E is a continuous

operator for each k = 1, 2, . . . , m. Now we provide some examples of impulsive

differential equations that can be included in impulsive differential equations with

causal operators of the form (1.1). The impulsive differential equation



















u′(t) = F (t, u(t), a.e. t ∈ [0, b] r {t1, t2, . . . , tm},

u(t+k ) = u(t−k ) + Ik(u(t
−
k )), k = 1, 2, . . . , m,

u(0) = ξ,

can be considered as a causal impulsive differential equations by identifying F (t, u(t))

with (Qu)(t). Another example is the general integro-differential equation

(1.2)



















u′(t) = F (t, u(t),
∫ t

0
K(t, s, u(s))ds), a.e. t ∈ [0, b] r {t1, t2, . . . , tm},

u(t+k ) = u(t−k ) + Ik(u(t
−
k )), k = 1, 2, . . . , m,

u(0) = ξ.
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Also, the differential equation with “maxima”:






















u′(t) = F

(

t, u(t), max
0≤s≤t

u(s)

)

, a.e. t ∈ [0, b] r {t1, t2, . . . , tm},

u(t+k ) = u(t−k ) + Ik(u(t
−
k )), k = 1, 2, . . . , m,

u(0) = ξ,

is another example of a causal impulsive differential equation. Finally, we remark

that the Fredholm operator, given by

(Qu)(t) =

∫ a

0

K(t, s, u(s))ds,

is a causal operator if and only if K(t, s, u) ≡ 0 for t < s < a.

We denote by χ(A) the Hausdorff measure of non-compactness of a nonempty

bounded set A ⊂ E, and it is defined by ([13], [20]):

χ(A) = inf{ε > 0;A admits a finite cover by balls of radius ≤ ε}.

This is equivalent to the measure of non-compactness introduced by Kuratowski (see

[13], [20]).

If dim(A) = sup{‖x − y‖; x, y ∈ A} is the diameter of the bounded set A, then

we have that χ(A) ≤ dim(A) and χ(A) ≤ 2d if supx∈A ‖x‖ ≤ d. We recall some

properties of χ (see [13], [20]). If A,B are bounded subsets of E and A denotes the

closure of A, then

(1) χ(A) = 0 if and only if A is compact;

(2) χ(A) = χ(A) = χ(co(A));

(3) χ(λA) = |λ|χ(A) for every λ ∈ R;

(4) χ(A) ≤ χ(B) if A ⊂ B;

(5) χ(A+B) = χ(A) + χ(B);

(6) If T : E → E is a bounded linear operator, then γ(TA) ≤ ‖T‖ γ(A).

If V ⊂ PC([0, b], E) is equicontinuous, then

χ
PC

(V ) := sup
t∈[0,b]

χ(V (t)),

where V (t) := {u(t) : u(·) ∈ V }, is the Hausdorff measure of non-compactness in the

space PC([0, b], E) (see [13]).

We recall the following lemma due to Kisielewicz [22, Lemma 2.2].

Lemma 1.1. Let {un(·);n ≥ 1} be a subset in L1([0, b], E) for which there exists

m(·) ∈ L1([0, b],R+) such that ‖un(t)‖ ≤ m(t) for each n ≥ 1 and for a.e. t ∈ [0, b].

Then the function t 7→ χ(t) := χ({un(t);n ≥ 1}) is integrable on [0, b] and, for each

t ∈ [0, b], we have

χ

({
∫ t

0

un(t)dt;n ≥ 1

})

≤

∫ t

0

χ(t)dt.
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2. An existence result

Consider the following functional impulsive differential equation:

(2.1)



















u′(t) = (Qu(t)), a.e. t ∈ [0, b] r {t1, t2, . . . , tm},

u(t+k ) = u(t−k ) + Ik(u(t
−
k )), k = 1, 2, . . . , m,

u(0) = ξ,

where Q : PC([0, b], E) → Lp([0, b], E), 1 ≤ p ≤ ∞, is a continuous causal operator,

ξ ∈ E, m ∈ N, 0 = t0 < t1 < t2 < · · · < tm < tm+1 = b, Ik : E → E is continuous for

each k = 1, 2, . . . , m.

We consider the following assumptions:

(H1) Q : PC([0, b], E) → Lp([0, b], E), 1 ≤ p ≤ ∞, is a continuous causal operator,

and Ik : E → E is continuous for each k = 1, 2, . . . , m.

(H2) For each r > 0 there exist ψ, η ∈ Lp([0, b],R+) such that, for each u(·) ∈

PC([0, b], E) with sup
0≤t≤b

‖u(t)‖ ≤ r, we have

‖(Qu)(t)‖ ≤ ψ(t) for a.e. t ∈ [0, b],

∑

s<tk<t

∥

∥Ik(u(t
−
k ))

∥

∥ ≤

∫ t

s

η(τ)dτ for s, t ∈ [0, b] with s < t.

(H3) For each bounded subsets A ⊂ PC([0, b], E) and B ⊂ E there exist constants

γA, δk
B > 0 (k = 1, 2, . . . , m) such that

(2.2) χ((QA)(t)) ≤ γ
A
χ(A(t)),

and

χ(Ik(B)) ≤ δk
Bχ(B), k = 1, 2, . . . , m,

for all t ∈ [0, b], where (QA)(t) := {(Qu)(t) : u(·) ∈ A}.

By solution of (2.1) we mean a function u(·) : [0, b] → E such that u(0) = ξ,

u(·) is continuous on (tk, tk+1) for k = 1, 2, . . . , m, u′(t) = (Qu)(t) for a.e. t ∈ [0, b] r

{t1, t2, . . . , tm}, and u(t+k ) = u(t−k ) + Ik(u(t
−
k )), k = 1, 2, . . . , m.

It is easy to show that (see [13]) a function u(·) ∈ PC([0, b], E) is a solution for

(2.1) on [0, b], if and only if

(2.3) u(t) = u(0) +

∫ t

0

(Qu)(s)ds+
∑

0<tk<t

Ik(u(t
−
k )) for t ∈ [0, b].

For a fixed ξ ∈ E, by ST (ξ) we denote the set of solutions u(·) of Cauchy problem

(2.1) on an interval [0, T ] with T ∈ (0, b].

Theorem 2.1. Let Q : PC([0, b], E) → Lp([0, b], E) be a causal operator such that

conditions (H1)–(H3) hold. Then, for every ξ ∈ E, there exists T ∈ (0, b] such that

the set ST (ξ) is nonempty and compact set in PC([0, T ], E).
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Proof. First we shall show that there exists T ∈ (0, b] such that the set ST (ξ) is

nonempty. Let δ > 0 be any number and let r := ‖ξ‖ + δ. We choose T ∈ (0, b] such

that
∫ T

0

ψ(s)ds ≤ δ/4 and

∫ T

0

η(s)ds ≤ δ/4

and we consider the set B defined as follows

B = {u ∈ PC([0, T ], E); ‖u(t) − ξ‖ ≤ δ}.

Further on, we consider the integral operator Λ : B → PC([0, T ], E) given by

(Λu)(t) = ξ +

∫ t

0

(Cu)(s)ds+
∑

0<tk<t

Ik(u(t
−
k )), for t ∈ [0, T ]

and we prove that this is a continuous operator from B into B. First, we observe

that if u(·) ∈ B, then sup0≤t≤b ‖u(t)‖ < r, and so ‖(Cu)(t)‖ ≤ ψ(t) for a.e. t ∈ [0, T ].

Hence, for each u(·) ∈ B, we have

‖(Λu)(t) − ξ‖ ≤

∫ t

0

‖(Cu)(s)‖ ds+
∑

0<tk<t

∥

∥Ik(u(t
−
k ))

∥

∥

≤

∫ T

0

‖(Cu)(s)‖ds+
∑

0<tk<T

∥

∥Ik(u(t
−
k ))

∥

∥

≤

∫ T

0

[ψ(t) + η(t)] dt ≤ δ

and thus, Λ(B) ⊂ B. Further on, let un(·) → u(·) in B. Then we have

‖(Λun)(t) − (Λu)(t)‖ ≤

∫ t

0

‖(Cun)(s) − (Cu)(s)‖ds

+
∑

0<tk<t

∥

∥Ik(un(t
−
k )) − Ik(u(t

−
k ))

∥

∥

≤

∫ T

0

‖(Cun)(s) − (Cu)(s)‖ds

+
∑

0<tk<T

∥

∥Ik(un(t−k )) − Ik(u(t
−
k ))

∥

∥

≤ T 1/q

(
∫ T

0

‖(Cun)(s) − (Cu)(s)‖pds

)1/p

+
∑

0<tk<T

∥

∥Ik(un(t−k )) − Ik(u(t
−
k ))

∥

∥

if 1 ≤ p <∞ and 1/p+ 1/q = 1, and

sup
0≤t≤T

‖(Pun)(t) − (Pu)(t)‖ ≤ T ess sup
0≤t≤T

‖(Cun)(s) − (Cu)(s)‖

+
∑

0<tk<T

∥

∥Ik(un(t−k )) − Ik(u(t
−
k ))

∥

∥
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if p = ∞. Using Lemma 1.15 from [30], by (H1) and (H2) it follows that

sup
0≤t≤T

‖(Λum)(t) − (Λu)(t)‖ → 0 as m→ ∞,

so that Λ : B → B is a continuous operator. Moreover, it follows that Λ(B) is

bounded. Further on, we show that Λ(B) is equicontinuous on [0, T ]. Let ε > 0. On

the closed set [0, T ], the functions t 7→
∫ t

0
ψ(s)ds and t 7→

∫ t

0
η(s)ds, are uniformly

continuous, and so there exist η > 0 such that
∣

∣

∣

∣

∫ t

s

ψ(τ)dτ

∣

∣

∣

∣

≤ ε/4 and

∣

∣

∣

∣

∫ t

s

η(τ)dτ

∣

∣

∣

∣

≤ ε/4

for every t, s ∈ [0, T ] with |t− s| < η. Let t, s ∈ [0, T ] are such that |t− s| ≤ η. If we

suppose that 0 ≤ s ≤ t ≤ T then, for each u(·) ∈ B, we have

‖(Λu)(t) − (Λu)(s)‖

=

∥

∥

∥

∥

∥

∫ t

0

(Cu)(τ)dτ +
∑

0<tk<t

Ik(u(t
−
k )) −

∫ s

0

(Cu)(τ)dτ −
∑

0<tk<s

Ik(u(t
−
k ))

∥

∥

∥

∥

∥

≤

∫ t

s

‖(Cu)(τ)‖dτ +
∑

s<tk<t

∥

∥Ik(u(t
−
k ))

∥

∥ ≤

∫ t

s

[ψ(τ) + η(τ)] dτ ≤ ε.

Therefore, we conclude that Λ(B) is uniformly equicontinuous on [0, T ]. Next, we

construct a sequence {un(·)}n≥1 of continuous functions un(·) : [0, T ] → E as follows.

Let n ∈ N. For i = 1, 2, . . . , n, we define u1
n(t) = ξ, t ∈ [0, T ] and

ui
n(t) =























ui−1
n (t), if t ∈ [0, (i− 1)T/n]

ξ +
∫ t−T/n

0
(Cui−1

n )(s)ds

+
∑

0<tk<t−T/n

Ik(u
i−1
n (t−k )), if t ∈ [(i− 1)T/n, iT/n],

for i > 1. It is easy to see that if i ∈ {1, 2, . . . , n − 1} and ‖ui
n(t)‖ ≤ r for t ∈

[0, iT/n], then ‖ui+1
n (t)‖ ≤ r for t ∈ [0, iT/n] and, by (H2), ‖(Cu

i
n)(t)‖ ≤ ψ(t) for a.e.

t ∈ [0, iT/n] and
∑

0<tk<t−T/n

‖Ik(u
i−1
n (t−k ))‖ ≤

∫ t−T/n

0

η(s)ds

for t ∈ [0, iT/n]. It follows that

‖ui+1
n (t) − ξ‖ =

∥

∥

∥

∥

∥

∥

∫ t−T/n

0

(Cui
n)(s)ds+

∑

0<tk<t−T/n

Ik(u
i
n(t−k ))

∥

∥

∥

∥

∥

∥

≤

∫ t−T/n

0

‖(Cui
n)(s)‖ds+

∑

0<tk<t−T/n

∥

∥Ik(u
i
n(t

−
k ))

∥

∥

≤

∫ t−T/n

0

[ψ(τ) + η(τ)] dτ < δ,
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for all t ∈ [0, (i + 1)T/n]. Since ‖u1
n(t)‖ ≤ r for t ∈ [0, T/n], then by induction on

k we have that ‖ui
n(t)‖ ≤ r for all k = 1, 2, . . . , n, t ∈ [0, iT/n]. In the following,

to simplify the notation, we put un(·) = un
n(·), n ∈ N. Since un

n(s) = un−1
n (s) for all

s ∈ [0, (n− 1)T/n] and C is a causal operator, then

(Cun
n)(s) = (Cun−1

n )(s) for all s ∈ [0, (n− 1)T/n].

Moreover, we have that un
n(t−k ) = un−1

n (t−k ) and so Ik
(

un
n(t−k )

)

= Ik
(

un−1
n (t−k )

)

for

0 < tk < t − T/n with t ∈ [T/n, (n − 1)T/n]. Next, if t ∈ [(n − 1)T/n, T ], then

t− T/n ≤ (n− 1)T/n and consequently
∫ t−T/n

0

(Cun
n)(s)ds =

∫ t−T/n

0

(Cun−1
n )(s)ds

for t ∈ [(n− 1)T/n, T ]. It follows that the sequence {un(·)}n≥1 can be written as

un(t) =











ξ for t ∈ [0, T/n]

ξ +
∫ t−T/n

0
(Cun)(s)ds+

∑

0<tk<t−T/n

Ik(un(t−k )) for t ∈ [T/n, T ],

for every n ∈ N. Moreover, it is easy to see that un(·) ∈ PC([0, T ], E) for all n ≥ 1.

Further, if 0 ≤ t ≤ T/n, then we have

‖(Λun)(t) − un(t)‖ =

∥

∥

∥

∥

∫ t

0

(Cun)(s)ds

∥

∥

∥

∥

≤

∫ T/n

0

‖S(t− s)(Cun)(s)‖ds

≤

∫ T/n

0

ψ(s)ds.

If T/n ≤ t ≤ T, then we have

‖(Λun)(t) − un(t)‖ =

∥

∥

∥

∥

∥

∫ t

0

(Cun)(s)ds+
∑

0<tk<t

Ik(un(t−k ))

−

∫ t−T/n

0

(Cun)(s)ds−
∑

0<tk<t−T/n

Ik(un(t
−
k ))

∥

∥

∥

∥

∥

∥

≤

∫ t

t−T/n

‖(Cun)(s)‖ds+
∑

t−T/n<tk<t

∥

∥Ik(un(t−k ))
∥

∥

≤

∫ t

t−T/n

[ψ(τ) + η(τ)] dτ.

Therefore, it follows that

(2.4) sup
0≤t≤T

‖(Λun)(t) − un(t)‖ → 0 as m→ ∞.

Let A = {un(·);n ≥ 1}. Denote by I the identity mapping on B. From (2.4) it follows

that (I − Λ)(A) is a equicontinuous subset of B. Since A ⊂ (I − Λ)(A) + Λ(A) and
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the set Λ(A) is equicontinuous, then we infer that the set A is also equicontinuous

on [0, T ]. Set A(t) = {un(t);n ≥ 1} for t ∈ [0, T ]. Then, by Lemma 1.1 and the

properties of the measure of non-compactness we have

χ(A(t)) ≤ χ

(
∫ t

0

(CA)(s)ds

)

+ χ

(
∫ t

t−T/n

(CA)(s)ds

)

+ χ





∑

0<tk<t−T/n

Ik(A(t−k ))



 .

Note that, given ε > 0, we can find n(ε) > 0 such that
∫ t

t−T/n
ψ(s)ds < ε/2 for

t ∈ [0, T ] and n ≥ n(ε). Hence we have that

χ

(
∫ t

t−T/n

(CA)(s)ds

)

= χ

({
∫ t

t−T/n

(Cum)(s)ds;n ≥ n(ε)

})

≤ 2 sup
n≥n(ε)

∫ t

t−T/n

ψ(s)ds < ε.

Using the last inequality, we obtain that

χ(A(t)) ≤ χ

(
∫ t

0

(CA)(s)ds

)

+
∑

0<tk<t−T/n

χ
(

(IkA)(t−k )
)

.

Since for every t ∈ [0, T ], A(t) is bounded then, by Lemma 1.1, (H3) and the and

properties of the measure of non-compactness we have that

χ(A(t)) ≤

∫ t

0

χ ((CA)(s)) ds+

m
∑

k=1

δk
rχ(Ik(A(t−k )))

≤

∫ t

0

γrχ(A(s))ds+
m

∑

k=1

δk
rχ(A(t−k ))

for every t ∈ [0, T ]. Therefore, if we put m(t) := χ(A(t)), t ∈ [0, T ], then we infer

that

m(t) ≤

∫ t

0

γrm(s)ds+

m
∑

k=1

δk
rm(t−k ),

for every t ∈ [0, T ]. Then, by Gronwall’s lemma for impulsive integral inequalities

(see [13, Theorem 1.5.1]), we must have that m(t) = χ(A(t)) = 0 for every t ∈ [0, T ].

Moreover, since (see [13]) χ
PC

(A) = sup0≤t≤T χ(A(t)) we deduce that χ
PC

(A) = 0.

Therefore, A is relatively compact subset of PC([0, T ], E). Then, by Arzela-Ascoli

theorem (see [13, Theorem 1.1.5]), and extracting a subsequence if necessary, we may

assume that the sequence {un(·)}m≥1 converges on [0, T ] to a function u(·) ∈ B.

Therefore, since

sup
0≤t≤T

‖(Λu)(t) − u(t)‖ ≤ sup
0≤t≤T

‖(Λu)(t) − (Λun)(t)‖

+ sup
0≤t≤T

‖(Λun)(t) − un(t)‖ + sup
0≤t≤T

‖un(t) − u(t)‖
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then, by (2.4) and by the fact that Λ is a continuous operator, we obtain that

sup)0 ≤ t ≤ T‖(Λu)(t) − u(t)‖ = 0. It follows that

u(t) = (Λu)(t) = ξ +

∫ t

0

(Cu)(s))ds+
∑

0<tk<t

Ik(u(t
−
k ))

for every t ∈ [0, T ], that is u(·) = Λu(·). Hence

u(t) = ξ +

∫ t

0

(Cu)(s)ds+
∑

0<tk<t

Ik(u(t
−
k )), for t ∈ [0, T ]

solve the Cauchy problem (2.1), that is, u(·) ∈ ST (ξ) and so ST (ξ) is a nonempty

set. Since Λ is continuous, then ST (ξ) is a closed subset in PC([0, T ], E). Moreover,

since ST (ξ) = Λ(ST (ξ)) it follows that χ((ST (ξ)) (t)) = χ(Λ (ST (ξ)) (t)) for every

t ∈ [0, T ], where (ST (ξ)) (t) := {u(t); u ∈ ST (ξ)}. Therefore, following the same

argument as above, we obtain that relatively compact subset of PC([0, T ], E). Since

ST (ξ) is a closed subset in PC([0, T ], E) it follows that ST (ξ) is a compact subset in

PC([0, T ], E).

Remark 2.2. The conclusion of Theorem 2.1 is also true if we replace the condition

(2.2) with the condition:

(H′
3
) For each bounded subsets A ⊂ PC([0, b], E) there exists γA > 0 such that

(2.5) χ((CA)(t)) ≤ γ
A

sup
0≤s≤t

χ(A(s)) for every t ∈ [0, b].

3. An optimal control problem

In the following, we shall establish necessary conditions for the existence of an

optimal solution for the control problem:

(3.1)



















u′(t) = (Qu)(t), for a.e. t ∈ [0, T ] r {t1, t2, . . . , tm}

u(t+k ) = u(t−k ) + Ik(u(t
−
k )), k = 1, 2, . . . , m,

u(0) = ξ minimize g(u(T )),

where g(·) : E → R is a given function. For this aim, it will need to establish some

preliminary results. For a fixed ξ ∈ E we denote by AT (ξ) the attainable set of

Cauchy problem (2.1); that is, AT (ξ) = {u(T ); u(·) ∈ ST (ξ)}.

Lemma 3.1. Assume that Q : PC([0, b], E) → Lp([0, b], E) is a causal operator such

that the condition (H1)–(H3) hold. Then the multifunction ST : E → PC([0, T ], E) is

upper semicontinuous.
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Proof. Let K be a closed set in PC([0, T ], E) and G = {ξ ∈ E;ST (ξ) ∩ K 6= ∅}. We

must show that G is closed in E. For this, let {ξn}n≥1 be a sequence in G such that

ξn → ξ. Further on, for each n ≥ 1, let un(·) ∈ ST (ξn) ∩ K. Then

un(t) = ξn +

∫ t

0

(Qun)(s)ds+
∑

0<tk<t

Ik(un(t
−
k ))

for every t ∈ (0, T ]. As in proof of Theorem 1.1 we can show that {un(·)}n≥1 converges

uniformly on [0, T ] to a continuous function u(·) ∈ K. Since

u(t) = lim
n→∞

un(t) = ξ +

∫ t

0

(Qu)(s)ds+
∑

0<tk<t

Ik(u(t
−
k ))

for every t ∈ [0, T ], we deduce that u(·) ∈ ST (ξ)∩K. This prove that G is closed and

so ξ 7→ ST (ξ) is upper semicontinuous.

Corollary 3.2. Assume that Q : PC([0, b], E) → Lp([0, b], E) is a causal operator

such that conditions (H1)–(H3) hold. Then, for any ξ ∈ E and any t ∈ [0, T ] the

attainable set At(ξ) is compact in C([0, t], E)and the multifunction (t, ξ) → At(ξ)is

jointly upper semicontinuous.

Theorem 3.3. Let K0 be a compact set in E and let g(·) : E → R be a lower

semicontinuous function. If Q : PC([0, b], E) → Lp([0, b], E) is a causal operator

such that the condition (H1)–(H3) hold, then the control problem (3.1) has an optimal

solution; that is, there exists ξ0 ∈ K0 and u0(·) ∈ ST (ξ0) such that g(u0(T )) =

inf{g(u(T )); u(·) ∈ ST (ξ0), ξ0 ∈ K0}.

Proof. From Corollary 3.2 we deduce that the attainable set AT (ξ) is upper semi-

continuous. Then the set AT (K0) = {u(T ); u(·) ∈ ST (ξ), ξ ∈ K0} = ∪ξ∈K0
AT (ξ) is

compact in E and so, since g(·) is lower semicontinuous, there exists ξ0 ∈ K0 such

that g(u0(T )) = inf{g(u(T )); u(·) ∈ ST (ξ0), ξ0 ∈ K0}.

4. An example

Consider the following impulsive differential equation:

(4.1)



















u′(t) = g(t) +
∫ t

0
K(t, s)f(s, u(s))ds, a.e. t ∈ [0, b] r {t1, t2, . . . , tm},

u(t+k ) = u(t−k ) +
(

∫ tk+1

tk
λ(t)dt

)

u(t−k ), k = 1, 2, . . . , m,

u(0) = ξ,

where g (·) , λ (·) ∈ Lp([0, b], E), p ≥ 1, and K : [0, b] × [0, b] → L(E) is strongly

continuous. Let M := sups,t∈[0,b] ‖K(t, s)‖. Assume that
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(f1) f : [0, b] × E → E is a Carathéodory function; that is, t 7→ f(t, u) is strongly

measurable for all u ∈ E, u 7→ f(t, u) is continuous for a.e. t ∈ [0, b], and there

c (·) ∈ LP ([0, b],R+)

‖f(t, u)‖ ≤ c(t), t ∈ [0, b], u ∈ E,

(f2) For each bounded set A ⊂ E there exist lA > 0 such that

χ(f(s, A)) ≤ lAχ(A) for every t ∈ [0, b].

If we put

(Cu)(t) := g(t) +

∫ t

0

K(t, s)f(s, u(s))ds, t ∈ [0, b],

and

Ik(u) :=

(
∫ tk+1

tk

λ(t)dt

)

u, k = 1, 2, . . . , m,

for all u ∈ CP ([0, b], E), then equations (4.1) can be written in abstract form (2.1).

It is easy to see that C : PC([0, b], E) → Lp([0, b], E), 1 ≤ p ≤ ∞, is a continuous

causal operator, and Ik : E → E is continuous for each k = 1, 2, . . . , m. Next, by (f1)

we have that

‖(Cu)(t)‖ ≤ ‖g(t)‖ +

∫ t

0

‖K(t, s)‖ · ‖f(s, u(s))‖ds

≤ ‖g(t)‖ +M

∫ t

0

c(s)ds ≤ ‖g(t)‖ +Mb1/p′ ‖c‖p ,

so that ψ(·) := ‖g(·)‖ +Mb1/p′ ‖c‖p ∈ Lp([0, b],R+) and

‖(Cu)(t)‖ ≤ ψ(t) for a.e. t ∈ [0, b].

Now, let s, t ∈ [0, b] be such that s < t and let {tν , tν+1, . . . , tr} ⊂ {t1, t2, . . . , tm} be

such that s < tν < tν+1 < · · · < tr < t. Then,

r
∑

k=ν

∥

∥Ik(u(t
−
k ))

∥

∥ ≤
r

∑

k=ν

(
∫ tk+1

tk

λ(t)dt

)

∥

∥u(t−k )
∥

∥ ≤

(
∫ tr

tν

λ(t)dt

)

‖u‖CP

≤

∫ t

s

‖u‖CP λ(t)dt,

that is,
r

∑

k=ν

∥

∥Ik(u(t
−
k ))

∥

∥ ≤

∫ t

s

η (τ) dτ,

where η (·) := ‖u‖CP λ(·) ∈ Lp([0, b],R+). Therefore, (H2) is verified as true. Next,

if A ⊂ PC([0, b], E) is a bounded set, then using the properties of noncompactness
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measure, Mean Value Theorem (see [23]) and (f2), we have

χ((CA)(t)) = χ

({

g(t) +

∫ t

0

K(t, s)f(s, u(s))ds; u ∈ A

})

= χ

({
∫ t

0

K(t, s)f(s, u(s))ds; u ∈ A

})

≤Mχ

({
∫ t

0

f(s, u(s))ds; u ∈ A

})

= Mtχ (conv {f(s, u(s)), 0 ≤ s ≤ t, u ∈ A})

= Mbχ ({f(s, A(s)), 0 ≤ s ≤ t})

≤MblA sup
0≤s≤t

χ(A(s)),

that is,

χ((CA)(t)) ≤ γA sup
0≤s≤t

χ(A(s)) for every t ∈ [0, b].

Also, it is easy to see that

χ(Ik(B)) ≤ δk
Bχ(B), k = 1, 2, . . . , m,

for each bounded set B ⊂ E, where δk
B :=

∫ tk+1

tk
λ(t)dt, k = 1, 2, . . . , m. Consequently,

all the hypothesis of Theorem 2.1 are satisfied (see also Remark 2.2), so that (4.1)

has a solution on [0, b].
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