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ABSTRACT. In this paper we prove an existence and an approximation result for a generalized

nonlinear quadratic fractional integral equation with maxima of mixed type. An algorithm for

the solutions is developed and it is shown that the sequence of successive approximations starting

with a lower or an upper solution converges monotonically to the solution of the related quadratic

fractional integral equation with maxima under some suitable mixed hybrid conditions. We base

our main results on the Dhage iteration principle embodied in a recent hybrid fixed point theorem

of Dhage (2014) in a partially ordered normed linear space. A couple of numerical examples are also

furnished to illustrate the hypotheses and abstract theory developed in the paper.
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1. INTRODUCTION

Quadratic integral equations have been a topic of interest for a long time because

of their occurrence in the problems of some natural and physical processes of the

universe. See Argyros [1], Deimling [5], Chandrasekher [3] and the references therein.

The study gained momentum after the formulation of the hybrid fixed point princi-

ples in Banach algebras due to Dhage [7, 8]. The study of quadratic intgral equations

involving the back history, called the quadratic functional integral equations, is in-

teresting and existence results for such quadratic operator or functional equations

are generally proved under the mixed Lipschitz and compactness type conditions to-

gether with a certain growth condition on the nonlinearities involved in the quadratic

operator or functional equations. The hybrid fixed point theorems in Banach alge-

bras find numerous applications in the theory of nonlinear quadratic differential and

integral equations. See Dhage [7, 8], Dhage and Dhage [16, 17] and the references

therein. The Lipschitz and compactness hypotheses are considered to be very strong

conditions in the theory of nonlinear differential and integral equations and neverthe-

less do not yield any algorithm to determine the numerical solutions. Therefore, it

is of interest to relax or weaken these conditions in the existence and approximation

theory of quadratic functional integral equations. Very recently, the first author in

[12, 13] and Dhage and Dhage [18, 19] have studied existence results for a special class
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of functional differential equations, namely nonlinear quadratic differential equations

with maxima under weaker partial Lipschitz and partial compactness type conditions

via the Dhage iteration method. Therefore, it is desirable to extend this method to

nonlinear quadratic integral equations with maxima. This is the main motivation of

the present paper.

In this paper we prove the existence as well as approximation of the solutions

of a certain generalized quadratic integral equation with maxima via an algorithm

based on successive approximations dveloped in Dhage iteration method under weak

partial Lipschitz and compactness type conditions.

Given a closed and bounded interval J = [0, T ] of the real line R for some T > 0,

we consider the quadratic functional integral equation (in short QFIE) with maxima

(1.1)

x(t) = k(t, x(t), X(t))

+
[

f(t, x(t), X(t))
]

(

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), X(s)) ds

)

for all t ∈ J , where the functions k, f, g : J × R × R → R and v : J × J → R

are continuous functions, 1 ≤ q ≤ 2, Γ is the Euler’s Gamma function and X(t) =

max0≤ξ≤t x(ξ).

By a solution of the QFIE (1.1) with maxima we mean a function x ∈ C(J,R)

that satisfies the equation (1.1) on J , where C(J,R) is the space of continuous real-

valued functions defined on J .

The QFIE (1.1) with maxima is new to the literature and includes several non-

linear integral equations with maxima as special cases. In particular, if f(t, x, y) = 0

for all t ∈ J and x, y ∈ R the QFIE (1.1) with maxima reduces to the nonlinear

functional equation with maxima

(1.2) x(t) = k(t, x(t), X(t)), t ∈ J,

and if k(t, x, y) = q(t) and f(t, x, y) = 1 for all t ∈ J and x, y ∈ R, it is reduced to

nonlinear usual Volterra integral equation with maxima

(1.3) x(t) = q(t) +

∫ t

0

v(t, s)g(s, x(s), X(s))ds, t ∈ J.

Again, if f(t, x, y) = 1 for all t ∈ J and x, y ∈ R, then (1.1) reduces to the

following well-known nonlinear functional integral equation with maxima

(1.4) x(t) = k(t, x(t), X(t)) +
1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), X(s))ds, t ∈ J.

Next, if k(t, x, y) = 0, f(t, x, y) = f(t, y), v(t, s) = 1 and q = 1, then the QFIE

(1.1) with maxima reduces to the following quadratic integral equation with maxima

(1.5) x(t) =
[

f(t, X(t))
]

(
∫ t

0

g(s,X(s))ds

)
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which is discussed in Dhage [6] via classical fixed point theory.

Finally, if k(t, x, y) = k(t, y) + f(t, y) h(t), f(t, x, y) = f(t, y), g(t, x, y) = g(t, y)

and q = 1, then the QFIE (1.1) with maxima reduces to the following quadratic

integral equation with maxima

(1.6) x(t) = k(t, X(t)) +
[

f(t, X(t))
]

(

q(t) +

∫ t

0

v(t, s)g(s,X(s))ds

)

, t ∈ J.

The nonlinear functional equation (1.2) and the integral equations (1.3) through

(1.6) with maxima are new to the literature and have not been discussed for existence

and approximation results via Dhage iteration method. Therefore, the QFIE (1.1)

with maxima is more general and an existence theorem can be proved under the usual

classic Lipschitz and compactness type conditions via a hybrid fixed point theorem

of Dhage [6]. In this paper, we prove the existence as well as approximation of the

solutions for the QFIE (1.1) with maxima under weaker conditions which include

the existence and approximation results for all the above nonlinear functional and

functional Volterra integral equations as special cases under weak partial Lipschitz

and partial compactness type conditions.

The rest of the paper is organized as follows: In Section 2, we give some prelimi-

naries and auxiliary results which are needed in the subsequent part of the paper. The

main existence and approximation results are given in Section 3, and some illustrative

examples are presented in Section 4.

2. AUXILIARY RESULTS

Unless otherwise mentioned, throughout this paper we let E denote a partially

ordered real normed linear space with an order relation � and the norm ‖ · ‖ in which

the addition and the scalar multiplication by positive real numbers are preserved by

�. A few details of a partially ordered normed linear space appear in Dhage [8],

Heikkilä and Lakshmikantham [22] and the references therein.

Two elements x and y in E are said to be comparable if either the relation

x � y or y � x holds. A non-empty subset C of E is called a chain or totally

ordered if all the elements of C are comparable. It is known that E is regular if

{xn} is a nondecreasing (resp. nonincreasing) sequence in E such that xn → x∗ as

n→ ∞, then xn � x∗ (resp. xn � x∗) for all n ∈ N. The conditions guaranteeing the

regularity of E may be found in Heikkilä and Lakshmikantham [22] and the references

therein.

We need the following definitions (see Dhage [8, 9, 10] and the references therein)

in what follows.

Definition 2.1. A mapping T : E → E is called isotone or monotone nonde-

creasing if it preserves the order relation �, that is, if x � y implies T x � T y for all
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x, y ∈ E. Similarly, T is called monotone nonincreasing if x � y implies T x � T y

for all x, y ∈ E. Finally, T is called monotonic or simply monotone if it is either

monotone nondecreasing or monotone nonincreasing on E.

Definition 2.2. A mapping T : E → E is called partially continuous at a point

a ∈ E if for ǫ > 0 there exists a δ > 0 such that ‖T x − T a‖ < ǫ whenever x is

comparable to a and ‖x− a‖ < δ; T called partially continuous on E if it is partially

continuous at every point of it. It is clear that if T is partially continuous on E, then

it is continuous on every chain C contained in E.

Definition 2.3. A non-empty subset S of the partially ordered Banach space E is

called partially bounded if every chain C in S is bounded. An operator T on a

partially normed linear space E into itself is called partially bounded if T (E) is

a partially bounded subset of E. T is called uniformly partially bounded if all

chains C in T (E) are bounded by a unique constant.

Definition 2.4. A non-empty subset S of the partially ordered Banach space E is

called partially compact if every chain C in S is a relatively compact subset of E.

A mapping T : E → E is called partially compact if T (E) is a partially relatively

compact subset of E. T is called uniformly partially compact if T is a uniformly

partially bounded and partially compact operator on E. T is called partially totally

bounded if for any bounded subset S of E, T (S) is a partially relatively compact

subset of E. If T is partially continuous and partially totally bounded, then it is

called partially completely continuous on E.

Remark 2.5. Suppose that T is a nondecreasing operator on E into itself. Then

T is a partially bounded or partially compact if T (C) is a bounded or relatively

compact subset of E for each chain C in E.

Definition 2.6. The order relation � and the metric d on a non-empty set E are said

to be D-compatible if {xn}n∈N is a monotone (monotone nondecreasing or monotone

nonincreasing) sequence in E and if a subsequence {xnk
}n∈N of {xn}n∈N converges to

x∗ implies that the original sequence {xn}n∈N converges to x∗. Similarly, given a

partially ordered normed linear space (E,�, ‖ · ‖), the order relation � and the norm

‖ · ‖ are said to be D-compatible if � and the metric d defined through the norm ‖ · ‖

are D-compatible. A subset S of E is called Janhavi if the order relation � and the

metric d or the norm ‖ · ‖ are D-compatible in it. In particular, if S = E, then E is

called a Janhavi metric or Janhavi Banach space.

Clearly, the set R of real numbers with usual order relation ≤ and the norm

defined by the absolute value function | · | has this property. Similarly, the finite

dimensional Euclidean space R
n with usual componentwise order relation and the
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standard norm possesses the D-compatibility property. In general every finite di-

mensional Banach space with a standard norm and an order relation is a Janhavi

Banach space.

Definition 2.7. A upper semi-continuous and monotone nondecreasing function ψ :

R+ → R+ is called a D-function provided ψ(r) = 0 iff r = 0. Let (E,�, ‖ · ‖) be

a partially ordered normed linear space. A mapping T : E → E is called partially

nonlinear D-Lipschitz if there exists a D-function ψ : R+ → R+ such that

(2.1) ‖T x− T y‖ ≤ ψ(‖x− y‖)

for all comparable elements x, y ∈ E. If ψ(r) = k r, k > 0, then T is called a partially

Lipschitz with a Lipschitz constant k.

Let (E,�, ‖ · ‖) be a partially ordered normed linear algebra. Denote

E+ =
{

x ∈ E | x � θ, where θ is the zero element of E
}

and

(2.2) K = {E+ ⊂ E | uv ∈ E+ for all u, v ∈ E+}.

The elements of K are called the positive vectors of the normed linear algebra E.

The next lemma follows immediately from the definition of the set K which is often

used in the applications of hybrid fixed point theory in Banach algebras.

Lemma 2.8 (Dhage [8]). If u1, u2, v1, v2 ∈ K are such that u1 � v1 and u2 � v2, then

u1u2 � v1v2.

Definition 2.9. An operator T : E → E is said to be positive if the range R(T ) of

T is such that R (T ) ⊆ K.

The essential idea of the “Dhage iteration principle” may be described as

“the monotonic convergence of the sequence of successive approximations

to the solutions of a nonlinear equation beginning with a lower or an upper

solution of the equation as its initial or first approximation” and it is a very

powerful tool in the existence theory of nonlinear analysis. The procedure involved

in the application of the Dhage iteration principle to nonlinear equation is called the

“Dhage iteration method.” It is clear that Dhage iteration method is different

for different nonlinear problems and also different from the usual Picard’s successive

iteration method. The Dhage iteration method embodied in the following applicable

hybrid fixed point theorems of Dhage [9] is used as the key tool for our work contained

in this paper. A few other hybrid fixed point theorems involving the Dhage iteration

method may be found in Dhage [9, 10, 11].
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Theorem 2.10 (Dhage [10]). Let
(

E,�, ‖ · ‖
)

be a regular partially ordered complete

normed linear algebra such that the order relation � and the norm ‖ · ‖ in E are

compatible in every compact chain of E. Let A,B : E → K and C : E → E be three

nondecreasing operators such that

(a) A and C are partially bounded and partial nonlinear D-Lipschitz with D-functions

ψA and ψC respectively,

(b) B is partially continuous and uniformly partially compact, and

(c) MψA(r)+ψC(r) < r, r > 0, where M = sup{‖B(C)‖ : C is a chain in E}, and

(d) there exists an element x0 ∈ X such that x0 � Ax0 Bx0+Cx0 or x0 � Ax0 Bx0+

Cx0.

Then the operator equation

(2.3) AxBx+ Cx = x

has a solution x∗ in E and the sequence {xn} of successive iterations defined by

xn+1 = Axn Bxn + Cxn, n = 0, 1, . . . , converges monotonically to x∗.

Remark 2.11. The compatibility of the order relation � and the norm ‖ · ‖ in

every compact chain of E holds if every partially compact subset of E possesses the

compatibility property with respect to � and ‖ · ‖. This simple fact has been utilized

to prove the main results of this paper.

Remark 2.12. The hypothesis (a) of Theorem 2.10 implies that the operators A and

C are partially continuous and consequently all the three operators A, B and C in the

theorem are partially continuous on E. The regularity of E in above Theorem 2.10

may be replaced with a stronger continuity condition of the operators A, B and C on

E.

3. EXISTENCE AND APPROXIMATION RESULT

The QFIE (1.1) with maxima is considered in the function space C(J,R) of

continuous real-valued functions defined on J . We define a norm ‖ · ‖ and the order

relation ≤ in C(J,R) by

(3.1) ‖x‖ = sup
t∈J

|x(t)|

and

(3.2) x ≤ y ⇐⇒ x(t) ≤ y(t) ∀ t ∈ J,

respectively.

Clearly, C(J,R) is a Banach algebra with respect to above supremum norm and

is also partially ordered w.r.t. the above partially order relation ≤. It is known that

the partially ordered Banach algebra C(J,R) has some nice properties concerning
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the compatibility property with respect to the norm ‖ · ‖ and the order relation ≤

in certain subsets of of it. The following lemma in this connection follows by an

application of the Arzelá-Ascoli theorem.

Lemma 3.1. Let
(

C(J,R),≤, ‖·‖
)

be a partially ordered Banach space with the norm

‖ · ‖ and the order relation ≤ defined by (3.1) and (3.2) respectively. Then every

partially compact subset S of C(J,R) is Janhavi, i.e., ‖ · ‖ and ≤ are D-compatible

in every compact chain C in S.

Proof. The lemma is mentioned in Dhage [8, 9], but the proof appears in Dhage

[11, 12] and Dhage and Dhage [14, 15, 16]. Since the proof is not well-known, we

give the details of the proof. Let S be a partially compact subset of C(J,R) and let

{xn}n∈N be a monotone nondecreasing sequence of points in S. Then we have

(3.3) x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ · · · ,

for each t ∈ J .

Suppose that a subsequence {xnk
}n∈N of {xn}n∈N is convergent and converges

to a point x in S. Then the subsequence {xnk
(t)}k∈N of the monotone real se-

quence {xn(t)}n∈N is convergent. By monotone characterization, the whole sequence

{xn(t)}n∈N is convergent and converges to a point x(t) in R for each t ∈ J . This shows

that the sequence {xn}n∈N converges to x point-wise on J . To show the convergence

is uniform, it is enough to show that the sequence {xn(t)}n∈N is equicontinuous. Since

S is partially compact, every chain or totally ordered set and consequently {xn}n∈N is

an equicontinuous sequence by Arzelá-Ascoli theorem. Hence {xn}n∈N is convergent

and converges uniformly to x. As a result ‖ · ‖ and ≤ are D-compatible in S. Conse-

quently, every partially compact subset S of C(J,R) is Janhavi. This completes the

proof.

We need the following definition in what follows.

Definition 3.2. A function a ∈ C(J,R) is said to be a lower solution of the QFIE

(1.1) with maxima if it satisfies

u(t) ≤ k(t, u(t), U(t))

+
[

f(t, u(t), U(t))
]

(

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, u(s), U(s)) ds

)

for all t ∈ J . Similarly, a function v ∈ C(J,R) is said to be an upper solution of the

QFIE (1.1) with maxima if it satisfies the above inequalities with reverse sign.

Definition 3.3. A function g(t, x, y) is called Carathéodory if

(i) the map t 7→ g(t, x, y) is measurable for each x, y ∈ R and

(ii) the map (x, y) 7→ g(t, x, y) is jointly continuous for each t ∈ J.
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A Carathéodory function g is called L2-Carathéodory if

(iii) there exists a function h ∈ L2(J,R) such that

|g(t, x, y)| ≤ h(t) a.e. t ∈ J

for all x, y ∈ R.

We consider the following set of assumptions in what follows:

(A1) The function f is nonnegative on J × R × R.

(A2) There exists a D-function ψf such that

0 ≤ f(t, x1, x2) − f(t, y1, y2) ≤ ψf (max{x1 − y1, x1 − y1})

for all t ∈ J and x1, x2, y1, y2 ∈ R, x1 ≥ y1, x2 ≥ y2.

(A3) There exists a constant Mf > 0 such that 0 ≤ f(t, x, y) ≤ Mf for all t ∈ J and

x, y ∈ R.

(B1) The function v is nonnegative on J × J .

(B2) g defines a L2-Carathéodory function g : J × R × R → R+.

(B3) g(t, x, y) is nondecreasing in x and y for all t ∈ J .

(C1) There exists a D-function ψk such that

0 ≤ k(t, x1, x2) − k(t, y1, y2) ≤ ψk(max{x1 − y1, x1 − y1})

for all t ∈ J and x1, x2, y1, y2 ∈ R with x1 ≥ y1, x2 ≥ y2.

(C2) There exists a constant Mk > 0 such that |k(t, x, y)| ≤ Mk for all t ∈ J and

x ∈ R.

(C3) The QFIE (1.1) with maxima has a lower solution u ∈ C(J,R).

Theorem 3.4. Assume that hypotheses (A1)–(A3), (B1)–(B3) and (C1)–(C3) hold. If

(3.4)

(

V T q−1 ‖h‖L2

Γ(q)

)

ψf (r) + ψk(r) < r, r > 0,

then the QFIE (1.1) with maxima has a solution x∗ defined on J and the sequence

{xn}n∈N∪{0} of successive approximations defined by

(3.5)

xn+1(t) = k(t, xn(t), Xn(t))

+
[

f(t, xn(t), Xn(t))
]

(

1

Γ(q)

∫ t

t0

v(t, s)

(t− s)1−q
g(s, xn(s), Xn(s))ds

)

for all t ∈ J, where x0 = u and Xn(t) = max0≤ξ≤t xn(ξ), converges monotonically to

x∗.

Proof. Set E = C(J,R). Then, from Lemma 3.1 it follows that every compact chain

in E possesses the compatibility property with respect to the norm ‖ ·‖ and the order

relation ≤ in E.
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Define three operators A, B and C on E by

(3.6) Ax(t) = f(t, x(t), X(t)), t ∈ J,

(3.7) Bx(t) =
1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), X(s)) ds, t ∈ J,

and

(3.8) Cx(t) = k(t, x(t), X(t)), t ∈ J.

From the continuity of the integral and the hypotheses (A0)–(A1) and (B1), it

follows that A and B define the maps A,B : E → K. Now by definitions of the

operators A and B, the QFIE (1.1) with maxima is equivalent to the operator equation

(3.9) Ax(t)Bx(t) + Cx(t) = x(t), t ∈ J.

We shall show that the operators A, B and C satisfy all the conditions of Theo-

rem 2.10. This is achieved in the series of following steps.

Step I: A, B and C are nondecreasing on E.

Let x, y ∈ E be such that x ≥ y. Then x(t) ≥ y(t) for all t ∈ J . Since y is

continuous on [a, t], there exists a ξ∗ ∈ [a, t] such that y(ξ∗) = maxa≤ξ≤t y(ξ). By

definition of ≤, one has x(ξ∗) ≥ y(ξ∗). Consequently, we obtain

X(t) = max
a≤ξ≤t

x(ξ) = x(ξ∗) ≥ y(ξ∗) = max
a≤ξ≤t

y(ξ) = Y (t)

for each t ∈ J . Then, by hypothesis (A2) and (C2), we obtain

Ax(t) = f(t, x(t), X(t)) ≥ f(t, y(t), Y (t)) = Ay(t),

and

Cx(t) = k(t, x(t), X(t)) ≥ k(t, y(t), Y (t)) = Cy(t),

for all t ∈ J . This shows that A and C are nondecreasing operators on E into E.

Similarly, using hypothesis (B3),

Bx(t) =
1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), X(s)) ds

≥
1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, y(s), X(s)) ds

= By(t)

for all t ∈ J . Hence, it is follows that the operator B is also a nondecreasing operator

on E into itself. Thus, A, B and C are nondecreasing positive operators on E into

itself.

Step II: A and C are partially bounded and partially D-Lipschitz on E.
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Let x ∈ E be arbitrary. Then by (A2),

|Ax(t)| ≤
∣

∣f(t, x(t), X(t))
∣

∣ ≤Mf ,

for all t ∈ J . Taking the supremum over t, we obtain ‖Ax‖ ≤ Mf and so, A is

bounded. This further implies that A is partially bounded on E. Similarly, using

hypothesis (C1), it is shown that ‖Cx‖ ≤Mk and consequently C is partially bounded

on E.

Next, let x, y ∈ E be such that x ≥ y. Then, we have

|x(t) − y(t)| ≤ |X(t) − Y (t)|

and
|X(t) − Y (t)| = X(t) − Y (t)

= max
t0≤ξ≤t

x(ξ) − max
t0≤ξ≤t

y(ξ)

≤ max
t0≤ξ≤t

[x(ξ) − y(ξ)]

= max
t0≤ξ≤t

|x(ξ) − y(ξ)|

≤ ‖x− y‖

for each t ∈ J . As a result, by hypothesis (A3),

|Ax(t) −Ay(t)| =
∣

∣f(t, x(t), X(t)) − f(t, y(t), Y (t))
∣

∣

≤ ψf (max{|x(t) − y(t)| , |X(t) − Y (t)|})

≤ ψf (‖x− y‖),

for all t ∈ J . Taking the supremum over t, we obtain

‖Ax−Ay‖ ≤ ψf(‖x− y‖)

for all x, y ∈ E with x ≥ y. Similarly, by hypothesis (C2),

‖Cx− Cy‖ ≤ ψk(‖x− y‖)

for all x, y ∈ E with x ≥ y. Hence, A and C are partially nonlinear D-Lipschitz

operators on E which further implies that they are also partially continuous on E

into itself.

Step III: B is a partially continuous operator on E.

Let {xn}n∈N be a sequence in a chain C of E such that xn → x for all n ∈ N.

Then, by the dominated convergence theorem, we have

lim
n→∞

Bxn(t) = lim
n→∞

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, xn(s), Xn(s)) ds

=
1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q

[

lim
n→∞

g(s, xn(s), Xn(s))
]

ds
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=
1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), X(s)) ds

= Bx(t),

for all t ∈ J . This shows that Bxn converges monotonically to Bx pointwise on J .

Next, we will show that {Bxn}n∈N is an equicontinuous sequence of functions in

E. Let t1, t2 ∈ J be arbitrary with t1 < t2. Then,

∣

∣

∣
Bxn(t2) − Bxn(t1)

∣

∣

∣
=

∣

∣

∣

∣

1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, xn(s), Xn(s)) ds

−
1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, xn(s), Xn(s)) ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, xn(s), Xn(s)) ds

−
1

Γ(q)

∫ t2

0

v(t1, s)

(t2 − s)1−q
g(s, xn(s), Xn(s)) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

1

Γ(q)

∫ t2

0

v(t1, s)

(t2 − s)1−q
g(s, xn(s), Xn(s)) ds

−
1

Γ(q)

∫ t1

0

v(t1, s)

(t2 − s)1−q
g(s, xn(s), Xn(s)) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

1

Γ(q)

∫ t1

0

v(t1, s)

(t2 − s)1−q
g(s, xn(s), Xn(s)) ds

−
1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, xn(s), Xn(s)) ds

∣

∣

∣

∣

≤
1

Γ(q)

∫ t2

0

|v(t2, s) − v(t1, s)|

(t2 − s)1−q
|g(s, xn(s), Xn(s))| ds

+
1

Γ(q)

∣

∣

∣

∣

∫ t2

t1

|v(t1, s)|

(t2 − s)1−q
|g(s, xn(s), Xn(s))| ds

∣

∣

∣

∣

+
1

Γ(q)

∫ t1

0

|v(t1, s)| |(t2 − s)q−1 − (t1 − s)q−1| |g(s, xn(s), Xn(s))| ds

≤
1

Γ(q)

∫ T

0

|v(t2, s) − v(t1, s)|

(t2 − s)1−q
h(s) ds+

1

Γ(q)

∫ t2

t1

|v(t, s)|

(t2 − s)1−q
h(s) ds

+
1

Γ(q)

∫ T

0

|v(t1, s)|
∣

∣(t2 − s)q−1 − (t1 − s)q−1
∣

∣ h(s) ds

≤
T q−1

Γ(q)

(
∫ T

0

|v(t2, s) − v(t1, s)|
2 ds

)1/2 (
∫ T

0

h2(s) ds

)1/2

+
V

Γ(q)

(
∫ T

0

∣

∣(t2 − s)q−1 − (t1 − s)q−1
∣

∣

2
ds

)1/2 (
∫ T

0

h2(s) ds

)1/2

+
V T q−1

Γ(q)
|p(t1) − p(t2)|(3.10)
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Since the functions p and q are continuous on the compact interval J and v is

continuous on the compact set J×J , they are uniformly continuous there. Therefore,

from the above inequality (3.10), it follows that

|Bxn(t2) − Bxn(t1)| → 0 as n→ ∞

uniformly for all n ∈ N. This shows that the convergence Bxn → Bx is uniform and

hence B is partially continuous on E.

Step IV: B is a uniformly partially compact operator on E.

Let C be an arbitrary chain in E. We will show that B(C) is a uniformly bounded

and equicontinuous set in E. First we show that B(C) is uniformly bounded. Let

y ∈ B(C) be any element. Then there is an element x ∈ C be such that y = Bx.

Now, by hypothesis (B2),

|y(t)| =

∣

∣

∣

∣

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), X(s)) ds

∣

∣

∣

∣

≤
1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
|g(s, x(s), X(s))| ds

≤
V T q−1 ‖h‖L2

Γ(q)

= r

for all t ∈ J . Taking the supremum over t, we obtain ‖y‖ ≤ ‖Bx‖ ≤ r for all

y ∈ B(C). Hence, B(C) is a uniformly bounded subset of E. Moreover, ‖B(C)‖ ≤ r

for all chains C in E. Hence, B is a uniformly partially bounded operator on E.

Next, we will show that B(C) is an equicontinuous set in E. Let t1, t2 ∈ J be

arbitrary with t1 < t2. Then, for any y ∈ B(C), one has

∣

∣

∣
Bx(t2) −Bx(t1)

∣

∣

∣
=

∣

∣

∣

∣

1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), X(s)) ds

−
1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, x(s), X(s)) ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), X(s)) ds

−
1

Γ(q)

∫ t2

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s))) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

1

Γ(q)

∫ t2

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), X(s)) ds

−
1

Γ(q)

∫ t1

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), X(s)) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

1

Γ(q)

∫ t1

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), X(s)) ds
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−
1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, x(s), X(s)) ds

∣

∣

∣

∣

≤
1

Γ(q)

∫ t2

0

|v(t2, s) − v(t1, s)|

(t2 − s)1−q
|g(s, x(s), X(s))| ds

+
1

Γ(q)

∫ t2

t1

|v(t1, s)|

(t2 − s)1−q
|g(s, x(s), X(s))| ds

+
1

Γ(q)

∫ t1

0

|v(t1, s)| |[(t2 − s)q−1 − (t1 − s)q−1]| |g(s, x(s), X(s))| ds

≤
1

Γ(q)

∫ T

0

|v(t2, s) − v(t1, s)|

(t2 − s)1−q
h(s) ds+

1

Γ(q)

∫ t2

t1

|v(t, s)|

(t2 − s)1−q
h(s) ds

+
1

Γ(q)

∫ T

0

|v(t1, s)|
∣

∣

[

(t2 − s)q−1 − (t1 − s)q−1
]
∣

∣ h(s) ds

≤
1

Γ(q)

∫ T

0

|v(t2, s) − v(t1, s)|

(t2 − s)1−q
h(s) ds+

1

Γ(q)

∣

∣

∣

∣

∫ t2

t1

|v(t, s)|

(t2 − s)1−q
h(s) ds

∣

∣

∣

∣

+
1

Γ(q)

∫ T

0

|v(t1, s)|
∣

∣(t2 − s)q−1 − (t1 − s)q−1
∣

∣ h(s) ds

≤
T q−1

Γ(q)

(
∫ T

0

|v(t2, s) − v(t1, s)|
2 ds

)1/2 (
∫ T

0

h2(s) ds

)1/2

+
V

Γ(q)

(
∫ T

0

∣

∣(t2 − s)q−1 − (t1 − s)q−1
∣

∣

2
ds

)1/2 (
∫ T

0

h2(s) ds

)1/2

+
V T q−1

Γ(q)
|p(t1) − p(t2)|

−→ 0 as t1 → t2,

uniformly for all y ∈ B(C). Hence, B(C) is an equicontinuous subset of E. Now, B(C)

is a uniformly bounded and equicontinuous set of functions in E, so it is compact.

Consequently, B is a uniformly partially compact operator on E into itself.

Step V: a satisfies the operator inequality a ≤ AaBa+ Ca.

By hypothesis (C4), the QFIE (1.1) has a lower solution a defined on J . Then,

we have

(3.11)

u(t) ≤ k(t, u(t), U(t))

+
[

f(t, u(t), U(t))
]

(

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, u(s), U(s)) ds

)

for all t ∈ J . From the definitions of the operators A, B and C it follows that

u(t) ≤ Au(t)Bu(t) + Cu(t) for all t ∈ J . Hence, u ≤ AuBu+ Cu.

Step VI: The D-functions ψA and ψC satisfy the growth condition MψA(r)+ψC(r) <

r, for r > 0.
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Finally, the D-function ψA and ψC of the operator A and C satisfy the inequality

given in hypothesis (d) of Theorem 2.10, viz.,

MψA(r) + ψC(r) ≤

(

V T q−1‖h‖L2

Γ(q)

)

ψf (r) + ψk(r) < r

for all r > 0.

Thus, A, B and C satisfy all the conditions of Theorem 2.10 and we conclude that

the operator equation AxBx+ Cx = x has a solution. Consequently, the QFIE (1.1)

with maxima has a solution x∗ defined on J . Furthermore, the sequence {xn}n∈N

of successive approximations defined by (3.5) converges monotonically to x∗. This

completes the proof.

The conclusion of Theorems 3.4 also remains true if we replace the hypothesis

(C3) with the following one:

(C′
3) The QFIE (1.1) has an upper solution v ∈ C(J,R).

The proof of Theorem 3.4 under this new hypothesis is similar and can be obtained

by closely observing the same arguments with appropriate modifications.

Remark 3.5. We note that if the QFIE (1.1) has a lower solution u as well as an

upper solution v such that u ≤ v, then under the given conditions of Theorem 3.4,

it has corresponding solutions x∗ and x∗ and these solutions satisfy x∗ ≤ x∗. Hence,

they are the minimal and maximal solutions of the QFIE (1.1) in the vector segment

[u, v] of the Banach space E = C(J,R), where the vector segment [u, v] is a set in

C1(J,R) defined by

[u, v] = {x ∈ C(J,R) | u ≤ x ≤ v}.

This is because the order relation ≤ defined by (3.2) is equivalent to the order relation

defined by the order cone K = {x ∈ C(J,R) | x ≥ θ} which is a closed set in C(J,R).

Remark 3.6. If the function k is nonnegative on J×R×R in Theorem 3.4, then the

QFIE (1.1) has a positive solution x∗ and the sequence {xn} of successive approxi-

mations defined by (3.5) converges to x∗.

4. EXAMPLES

Example 4.1. Given a closed and bounded interval J = [0, 1], consider the QFIE,

x(t) =
1

4

[

4 + arctanx(t) + arctanX(t)
]

×

(

1

Γ(3/2)

∫ t

0

(t− s)1/2

t2 + 1
·
[1 + tanhx(s)]

4
ds

)

+
1

4

[

arctanx(t) + arctanX(t)
]

(4.1)

for t ∈ J , where X(t) = max0≤ξ≤t x(ξ).
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Here, v(t, s) = 1

t2+1
which is continuous and V = 1. Similarly, the functions k, f

and g are defined by

k(t, x, y) =
1

4

[

arctan x+ arctan y
]

,

f(t, x, y) =
1

4

[

4 + arctanx+ arctan y
]

and

g(t, x, y) = g(t, x) =
1 + tanhx

4
.

The function f satisfies the hypothesis (A2) with ψf (r) = 1

2
· r

1+ξ2 for each 0 <

ξ < r. To see this, we have

0 ≤ f(t, x1, x2) − f(t, y1, y2)

≤
1

4
·

1

1 + ξ2
· (x1 − y1) +

1

4
·

1

1 + ξ2
· (x2 − y2)

≤
1

2
·

1

1 + ξ2
· max{x1 − y1 , x2 − y2}

for all x1, y1, x2, y2 ∈ R, x1 ≥ y1 and x2 > ξ > y2. Moreover, the function f is

nonnegative and bounded on J ×R× with bound Mf = 2 and so the hypothesis (A3)

is satisfied.

Again, since g is nonnegative and bounded on J ×R×R with bound ‖h‖L2 = 1

2
,

the hypothesis (B2) holds. Furthermore, g(t, x, y) = g(t, x) is nondecreasing in x and

y for all t ∈ J , and thus hypothesis (B3) is satisfied.

Similarly, the function k satisfies the hypothesis (C1) with ψk(r) = 1

2
· r

1+ξ2 for

every 0 < ξ < r. To see this, we have

0 ≤ k(t, x1, x2) − k(t, y1, y2) ≤
1

2
·

1

1 + ξ2
· (x1 − y1)

for all x1, y1 ∈ R, x1 ≥ y1 and x1 > ξ > y1. Moreover, the function k is bounded on

J × R with bound Mk = π
4

and so the hypothesis (C2) is satisfied.

Also, we have
(

V T q ‖h‖L2

Γ(q)

)

ψf (r) + ψk(r) ≤
r

1 + ξ2
< r

for every r > 0. Thus, condition (3.4) of Theorem 3.4 is held. Finally, the QFIE

(4.1) has a lower solution u(t) = 0 on J . Thus all the hypotheses of Theorem 3.4

are satisfied. Hence, we apply Theorem 3.4 and conclude that the QFIE (4.1) has a

solution x∗ defined on J and the sequence {xn}n∈N defined by

xn+1(t) =
1

4

[

4 + arctanxn(t) + arctanXn(t)
]

×

(

1

Γ(3/2)

∫ t

0

(t− s)1/2

t2 + 1
·
[1 + tanhxn(s)]

4
ds

)
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+
1

4

[

arctan xn(t) + arctanXn(t)
]

,(4.2)

for all t ∈ J , where x0 = 0, converges monotonically to x∗.

Example 4.2. Given a closed and bounded interval J = [0, 1], consider the QFIE,

x(t) =
1

2

[

2 + arctanX(t)
]

(

1

Γ(3/2)

∫ t

0

(t− s)1/2

t2 + 1
·
[1 + tanhX(s)]

4
ds

)

+ arctanX(t) + 1(4.3)

for t ∈ J , where X(t) = max0≤ξ≤t x(ξ).

Now following the arguments similar to those given in Example 4.1, it is proved

that the nonlinear quadratic fractional integral equation (4.3) has a positive solution

x∗ defined on J and the sequence {xn}n∈N defined by

xn+1(t) =
1

2

[

2 + arctanXn(t)
]

(

1

Γ(3/2)

∫ t

0

(t− s)1/2

t2 + 1
·
[1 + tanhXn(s)]

4
ds

)

+ arctanXn(t) + 1,(4.4)

for all t ∈ J , where x0 = 0, converges monotonically to x∗.
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