
Dynamic Systems and Applications 26 (2017) 453-472

STOCHASTIC MULTICULTURAL DYNAMIC NETWORKS

KRISTINA B. HILTON AND G. S. LADDE

Department of Mathematic and Statistics, University of South Florida,
Tampa, Florida 33620-5700 USA

ABSTRACT. In this work, we seek to study the cohesive properties of a dynamic multi-cultural
network under random environmental perturbations. By considering a multi-agent dynamic net-
work, we seek to model a social structure and find conditions under which cohesion and coexistence
is maintained. Utilizing Lyapunov’s Second Method and the comparison method, we present a
prototype illustration which serves the significance of the framework and approach. Moreover, the
explicit sufficient conditions in terms of system parameters are given to exhibit when the network
is cohesive. The sufficient conditions are algebraically simple, easy to verify, and robust. Further,
we decompose the cultural state domain into invariant sets and consider the behavior of members
within each set. We also demonstrate how conservative the estimates are using Euler-Maruyama
type numerical approximation schemes based on the given illustration.
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1. INTRODUCTION

The goal of this work is to explore the cohesive properties of a dynamic network

under random environmental perturbations [6]. Cohesion within a social network is

a current topic of great interest, and many authors have done research in this area

[8, 4]. The concepts of cohesion, coordination, and cooperation within a group are

often multi-faceted, dynamic and complex, but are important concepts when trying

to better understand how nations or communities function [3]. As Knoke and Yang

note [15], it is social cohesion which enables information to spread and allows a group

to act as a unit rather than individuals.

Another concept studied using a dynamic social network is that of consensus

[7, 9, 21, 1]. In such models, the conditions under which a group collectively comes

to an agreement are studied. Another question of interest for such a network is

when the group may divide into subgroups with an agreement reached within the

subgroup but never reaching a consensus at an overall group level. Such dynamic

network models are useful in many areas. For example, studies in economics, finance,

engineering, management sciences, and biological networks consider such large scale

dynamic models to investigate connectivity, stability and convergence [20, 19, 2, 22].
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Using these ideas, much of the work done in these areas seek to develop consensus

seeking algorithms and consider long term stability of the network in consideration

[5, 23, 12, 13].

We use the term multi-cultural social network to describe a social network in

which the agents have a diverse cultural background and are actively seeking to main-

tain diversity. In such a network, the goal of agents is not in arriving at a consensus

but rather creating an environment in which members live and work cooperatively

with one another. For example, consider a population in an area in which there exists

a sub-populace of immigrants. In such a situation, the subgroup of immigrants desire

to become an integrated part of the society while retaining their cultural diversity.

We seek to model such a situation and better understand the social dynamics

of a group seeking to find such a balance. In doing so, we are interested in better

understanding the cohesive properties of a multi-cultural social network. We present

a simple stochastic dynamic model for which we explore the features of the a network.

The presented example is used to exhibit the quantitative and qualitative properties

of the network. Further, the techniques used are computationally attractive and

algebraically simple relating with the underlying network parameters.

In Section 2, we present the general problem under consideration and the under-

lining assumptions. We then present an example of such a network in Section 3. Using

an appropriate energy function and the comparison method, upper and lower esti-

mates on cultural states are established in Sections 4 and 5, respectively. In Section

6, the long-term behavior of the solutions to the comparison equations are examined.

Then, in Section 7, we explore the study of the cultural state invariant sets in the

context of the illustration presented in Section 3 and using the long-term behavior

of the comparison solutions described in Section 6. In Section 8, we use numerical

simulations to model the network and better understand to what extent the estimates

in Sections 4, 5, and 6 are feasible. Using the cohesive property of the network, we

examine the dynamic properties of the network in Section 9.

2. PROBLEM FORMULATION

The network consists of m agents whose position at time t is represented by

xi(t), i ∈ I(1,m) = {1, 2, . . . ,m}, with xi(t) ∈ Rn. In our model, this vector does

not represent a geographical location but rather a cultural state position of the ith

member. That is to say, the vector xi is a numerical representation of the ith member’s

beliefs or background on certain cultural or ethnic characteristics relevant to the

network and question being considered. Further, we assume that ξij, i, j ∈ I(1,m) is

a normalized Wiener process with ξij = ξji and for j 6= k, ξij and ξik are independent.

We then consider a cultural state stochastic dynamic model described by a system of
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Itô-Doob type stochastic differential equation:

(2.1) dxi =
m∑

j=1

f(t, xi − xj)dt+
m∑

j 6=i

σ(t, xi − xj, η)dξij(t),

where i ∈ I(1,m); f and σ are drift and diffusion rate coefficient functions, respec-

tively. We will also make the following assumptions:

Assumption H1: For t0 ∈ [0,∞),

(i) xi(t0) = xi,0 is an n-dimensional initial cultural state random vector defined on

the complete probability space (Ω, F, P );

(ii) For t ≥ t0, Ft is an increasing family of sub-σ algebras of σ-algebra F ;

(iii) For i, j ∈ I(1,m), ξi(t) = (ξi1, ξi2, . . . , ξim)T is a m-dimensional normalized

Wiener process of independent increments for i ∈ I(1,m);

(iv) ξij(t) is Ft-measurable for t ≥ t0 and xi(t0) is Ft0 measurable;

(v) xi(t0) and ξij(t) are independent for each t ≥ t0 for i 6= j, i, j ∈ I(1,m).

We wish to consider the cohesive properties of such a network. Further, we will

explore the behavior of a member of the network based on the distance between the

cultural state of a network member and the center of the network. To this end, we

introduce the following definitions. We say a network is cohesive with probability 1

(or almost surely) if there exist non-negative functions r1(t), r2(t) for t ∈ [0,∞), such

that

(2.2) r1(t) ≤ ‖xi(t)− xj(t)‖ ≤ r2(t),

for all i, j ∈ I(1,m). We further use the term relative cultural state affinity to be the

value ‖xi(t)− xj(t)‖ for t ≥ t0.

3. PROTOTYPE DYNAMIC MODEL

Let us define a prototype multicultural network dynamic model under the sto-

chastic environmental perturbations described by the Itô-Doob type stochastic system

of differential equations

dxi =

[
a
∑m

j=1 xij − q ‖|xi − x̄‖2∑m
j=1 xij

+b sin ‖xi − x̄‖
∑m

j=1 xij exp
[
−‖xij‖2

c

]]
dt

+β sin ‖xi − x̄‖
∑m

j=1 xij exp
[
−‖xij‖2

c

]
dξij,

xi(t0) = xi0,

(3.1)

where a, q, b, c and β are positive real numbers; and ξij’s are Weiner processes that

are mutually independent for i 6= j, for i, j ∈ I(1,m), and

(3.2) xij = xi − xj.
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Here, x̄ is the center of the multicultural dynamic system (3.1) defined by:

(3.3) x̄ =
1

m

m∑
j=1

xj,

and note that by substituting xi = x̄ into (3.1),

dx̄ =

[
a

m∑
j=1

(x̄− xj)− q ‖x̄− x̄‖2
m∑

j=1

(x̄− xj)(3.4)

+b sin ‖x̄− x̄‖
m∑

j=1

(x̄− xj) exp

[
−‖x̄− xj‖2

c

]]
dt

+β sin ‖x̄− x̄‖
m∑

j=1

(x̄− xj) exp

[
−‖x̄− xj‖2

c

]
dξx̄j,

= amx̄− a
m∑

j=1

xj

= amx̄− amx̄

= 0,

and thus x̄ defined in (3.3) is a stationary center of the multicultural dynamic network.

We define the transformation zi = xi − x̄ and observe that xij = zi − zj = zij. Then

the transformed network dynamic model corresponding to (3.1) is reduced to:
dzi =

[
amzi − q ‖zi‖2mzi + b sin ‖zi‖

∑m
j=1 zij exp

[
−‖zij‖2

c

]]
dt

+β sin ‖zi‖
∑m

j=1 zij exp
[
−‖zij‖2

c

]
dξij,

zi(t0) = zi0.

(3.5)

The center x̄ of the multicultural dynamic model (3.1) is reduced to the center

zero in (3.5). It exhibits both attractive and repulsive forces that are centered at the

center of the network. The magnitude of the repulsive force is described by am ‖zi‖.
Repulsive forces are attributes that create some desire for individuals to leave or

be less involved in the group or to preserve some personal identity from one other

with their individual magnitude of inner repulsive force. A desire to retain a sense

of individuality, economic or emotional cost, interpersonal conflict within the group,

or disagreement with parts of the overall philosophies of the group are forces that

may be considered as repulsive forces. The magnitude of the long range deterministic

attractive force is characterized by b
∥∥∥∑ zij exp

[
−‖zij‖2

c

]∥∥∥. Attractive influences can

be thought of as attributes that bring people to active membership within the group.

Social acceptance, gaining social status, economic opportunity, career growth, com-

mon purpose and membership, personal development, and a sense of mutual respect,

trust and understanding are examples of attractive influences within a social cultural

network. Further, sin ‖zi‖ is the sine-cyclical influence of the ith member’s relative
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distance to the center of the network. The stochastic term represents the environ-

mental influence due to long-range attractive forces. In particular, in the case of a

multi-cultural network, the noise captures the uncertainty generated due to the mem-

bership interactions and deliberations under the influence of the long-range cultural

forces.

In order to study the multicultural dynamics (3.5), we use Lyapunov’s Second

Method in conjunction with the comparison method [18]. These methods are com-

putationally attractive and provide a means of better understanding the movement

and behavior of the cultural state memberships of the network. By utilizing these

methods, we are able to establish conditions for which we have both upper and lower

estimates on the members cultural state positions.

4. UPPER COMPARISON EQUATION

Using Lyapunov’s Second Method and differential inequalities, we first seek a

function r(t, t0, u0) such that

(4.1) ‖zi(t)‖ ≤ r(t, t0, r0).

From (2.2), relation (4.1) generates a concept of a upper-cohesive cultural network in

the almost sure sense.

To this end, let us choose an energy function V as:

(4.2) V (zi) = ‖zi‖ =
(
zT

i zi

) 1
2 ,

and let us denote

(4.3) φ1(zi) = amzi − q ‖zi‖2mzi + b sin ‖zi‖
m∑

j=1

zij exp

[
−‖zij‖2

c

]
,

and

(4.4) φ2(zij) = β sin ‖zi‖ zij exp

[
−‖zij‖2

c

]
.

Then applying Itô-Doob differential formula [16]to (4.2), the differential of V in the

direction of the vector field represented by (3.5) is

dV =
zT

i dzi

‖zi‖
+

1

2

[
dzT

i dzi

‖zi‖
−
(
zT

i dzi

)2

‖zi‖3

]
(4.5)

=
zT

i

(
φ1(zi)dt+

∑m
j=1 φ2(zij)dξij

)
‖zi‖

+

(
φT

1 (zi)dt+
∑m

j=1 φ
T
2 (zij)dξij

)(
φ1(zi)dt+

∑m
j=1 φ2(zij)dξij

)
2 ‖zi‖
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−

(
zT

i

(
φ1(zi)dt+

∑m
j=1 φ2(zij)dξij

))2

2 ‖zi‖3

=
zT

i

∑m
j=1 φ2(zij)dξij

‖zi‖
+ LV (zi)dt,

where

LV (zi) =
zT

i φ1(zi)dt

‖zi‖
+

∑m
j=1 φ

T
2 (zij)φ2(zij)

2 ‖zi‖
−

(
zT

i

∑m
j=1 φ2(zij)

)2

2 ‖zi‖3(4.6)

=

[
am ‖zi‖ − qm ‖zi‖3 +

b sin ‖zi‖
‖zi‖

m∑
j=1

zT
i zij exp

[
−‖zij‖2

c

]

+
β2 sin2 ‖zi‖

∑m
j=1 z

T
ijzij exp

[
−2‖zij‖2

c

]
2 ‖zi‖

−
β2 sin2 ‖zi‖

∑
j=1m(zT

i zij)
2 exp

[
−2‖zi‖2

c

]
2 ‖zi‖3

]
dt.

We seek constraints on the parameters a, b, c, q and β for which we have an upper

estimate on the first moment of V (zi). Thus, let us consider an upper estimate on

LV defined in (4.6). We first note that the function

(4.7) f(r) = r exp

[
−r

2

c

]
has a maximum value of

√
c
2

exp
[
−1

2

]
when r =

√
c
2
. Further the function

(4.8) g(r) = r2

(
exp

[
−r

2

c

])2

= r2 exp

[
−2r2

c

]
that has a maximum value of c

2
exp [−1] when r =

√
c
2
. Therefore, from (4.6),

LV ≤ am ‖zi‖ − qm ‖zi‖3 +
b sin ‖zi‖
‖zi‖

m∑
j 6=i

zT
i zij exp

[
−‖zij‖2

c

](4.9)

+
β2 sin2 ‖zi‖

2 ‖zi‖

m∑
j 6=i

‖zij‖2 exp

[
−‖zij‖2

c

]

≤ am ‖zi‖ − qm ‖zi‖3 + b

m∑
j 6=i

‖zi‖ ‖zij‖ exp

[
−‖zij‖2

c

]

+
β2 ‖zi‖ sin2 ‖zi‖

2 ‖zi‖2

m∑
j 6=i

‖zij‖2 exp

[
−‖zij‖2

c

]

≤ am ‖zi‖ − qm ‖zi‖3 + b ‖zi‖
m∑

j 6=i

‖zij‖ exp

[
−‖zij‖2

c

]
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+
β2 ‖zi‖

2

m∑
j 6=i

‖zij‖2 exp

[
−‖zij‖2

c

]

≤ am ‖zi‖ − qm ‖zi‖3 + b ‖zi‖ (m− 1)

√
c

2
exp

[
−1

2

]
+
β2 ‖zi‖ (m− 1) c exp [−1]

4

= ‖zi‖
(
am+ b (m− 1)

√
c

2
exp

[
−1

2

]
+
β2 (m− 1) c exp [−1]

4

)
−qm ‖zi‖3

= qm ‖zi‖

(
a

q
+

4b (m− 1)
√

c
2

exp
[
−1

2

]
+ β2 (m− 1) c exp [−1]

4qm
− ‖zi‖2

)
= qmV

(
η2 − V 2

)
= qmV (η − V ) (η + V ) ,

where

(4.10) η =

(
a

q
+

4b (m− 1)
√

c
2

exp
[
−1

2

]
+ β2 (m− 1) c exp [−1]

4qm

) 1
2

.

In the following, we present a fundamental result that will be used subsequently.

Lemma 4.1. Let V be the energy function defined in (4.2) and zi be a solution of

the initial value problem defined in (3.5). Then, for each i ∈ I(1,m),

(4.11) E [V (zi(t+ ∆t))− V (zi(t))|Ft] = LV (zi(t))∆t,

where E stands for the conditional expected value for given Ft and ∆t, a positive

increment to t.

Proof. Let zi(t, t0, zi(t0)) be the solution process of (3.5). Let Ft be an increasing

family of sub-σ algebras as previously defined and set

(4.12) m (t) = E [V (zi (t)) |Ft] = V (zi (t)) ,

where the last equality holds as zi(t) is Ft measurable. Similarly, we set

(4.13) m (t+ ∆t) = E [V (zi (t+ ∆t)) |Ft] ,

for all ∆t > 0. We consider

m (t+ ∆t)−m (t) = E
[
V
(
zi (t+ ∆t)− V

(
z(t)
))
|Ft

]
(4.14)

= E

[
∂V

∂z
(zi (t)) ∆zi(t)

+
1

2
tr

(
∂2V

∂z2
(∆zi(t)) (∆zi(t))

T

)
|Ft

]
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= E [dV (zi(t)) |Ft] .

This together with (4.5) yields

m (t+ ∆t)−m (t) = E [LV (zi(t)) ∆t|Ft](4.15)

= LV (zi(t)) ∆t,

as zi(t) is Ft measurable. We note that for small ∆t, we have

(4.16) dm(t) = LV (zi(t)) dt.

From (4.12) and (4.13), (4.16) reduces to (4.11). This completes the proof of the

Lemma.

From inequality (4.9) in conjunction with the comparison method [18] and

Lemma 4.1, we establish the following lemma. The presented result establishes not

only an upper bound but also the upper cohesive property almost surely. Hereafter,

all inequalities and equalities are assumed to be valid with probability one.

Lemma 4.2. Let V be the energy function defined in (4.2) and zi be a solution of

the initial value problem defined in (3.5). Let

(4.17) du = [qmu (η − u) (η + u)] dt, r(t0) = u0,

where η is as defined in (4.10). For each V (zi), i ∈ I(1,m) satisfying the differential

inequality (4.9) and V (zi(t0)) ≤ u0, it follows that the multicultural dynamic network

(3.1) is upper cohesive and

(4.18) V (zi(t)) ≤ r(t, t0, u0),

where r(t) is the maximal solution of the comparison random initial value problem

(4.17).

Proof. From (4.9), Lemma 4.1, and following the standard argument used in proofs

of comparison theorems in the frame-work of the Lyapunov method, with probability

1, it follows that

(4.19) V (zi(t)) ≤ r(t, t0, u0),

whenever V (zi(t0)) ≤ u0. We note that the maximal solution of (4.17) is an upper

bound. Hence, the network is upper cohesive almost surely.
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5. LOWER COMPARISON EQUATION

Using Lyapunov’s Second Method and differential inequalities, we next seek a

function ρ(t, t0, u0) such that

(5.1) ‖zi(t)‖ ≥ ρ(t, t0, ρ0).

Again, from (2.2), relation (5.1) initiates a notion of a lower cohesive cultural dynamic

network in the almost sure sense.

Using the energy function defined in (4.2) and relation (4.6), it follows that

LV ≥ am ‖zi‖ − qm ‖zi‖3 − b
m∑

j 6=i

‖zi‖ ‖zij‖ exp

[
−‖zij‖2

c

]
(5.2)

− β2

2 ‖zi‖

m∑
j 6=i

‖zi‖2 ‖zij‖2 exp

[
−2 ‖zij‖2

c

]

= am ‖zi‖ − qm ‖zi‖3 − b ‖zi‖
m∑

j 6=i

‖zij‖ exp

[
−‖zij‖2

c

]

−β
2 ‖zi‖

2

m∑
j 6=i

‖zij‖2 exp

[
−2 ‖zij‖2

c

]

≥ amV − qmV 3 − V (m− 1)b

√
c

2
exp

[
−1

2

]
−β

2(m− 1)c exp [−1]

4
V

= qmV

(
a

q
−

4(m− 1)b
√

c
2

exp
[
−1

2

]
+ β2c(m− 1) exp [−1]

4qm
− V 2

)
.

Assumption H2: Assume there exists a positive number α such that

(5.3) α ≤

(
a

q
−

4(m− 1)b
√

c
2

exp
[
−1

2

]
+ β2(m− 1)c exp [−1]

4qm

) 1
2

.

From (5.2), and noticing the fact that assumption H2 implies

(5.4)
a

q
>

4 (m− 1) b
√

c
2

exp
[
−1

2

]
+ β2 (m− 1) exp [−1]

4qm
,

it follows that

(5.5) LV ≥ qmV (α− V )(α + V ).

From inequality (5.5) in conjunction with the comparison method [18] and Lemma 4.1,

we establish the following lemma. The presented result provides the lower estimate

which in turn establishes the lower cohesive property of (3.5).
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Lemma 5.1. Let V be the energy function defined in (4.2) and zi be a solution of

the initial value problem defined in (3.5). Let

(5.6) du = qmu (α− u) (α + u) dt, u(t0) = u0,

where α as defined in (5.3). For each V (zi), i ∈ I(1,m) satisfying the differential

inequality (5.5) and ‖zi(t0)‖ ≥ u0, it follows that

(5.7) V (zi(t)) ≥ ρ(t, t0, u0),

where ρ(t) is the minimal solution of the comparison random initial value problem

(5.6).

Proof. From equation (5.5) in conjunction with Lemma 4.1 and the imitating the

outline of the proof of Lemma 4.2, it follows that

(5.8) V (zi(t)) ≥ ρ(t, t0, u0)

provided that V (zi(t0)) ≥ u0. As the minimal solution of (5.6) is a lower bound, the

network is lower cohesive almost surely.

We note that comparison differential equations (4.17) and (5.6) each have a

unique solution process. Therefore the maximal and minimal solutions of (4.17) and

(5.6) are indeed the unique solution of the respective random initial value problems.

6. LONG-TERM BEHAVIOR OF THE COMPARISON

DIFFERENTIAL EQUATION

To appreciate the role and scope of Lemmas 4.2 and 5.1, we seek to better under-

stand the long-term behavior of the network. For this purpose, we find the closed form

solutions of the comparison random initial value problems (4.17) and (5.6). Moreover,

we analyze the qualitative properties of the solutions to the comparison equations.

Using the comparison method [18], we are able to establish, computationally, the

overall long-term behavior of both individual member cultural dynamic states within

the network as well as multicultural network state as a whole.

Let us first begin with the solution of the comparison differential equation

(6.1) du = qmu (ν − u) (ν + u) dt, u(t0) = u0,

where ν is a positive real number. Following the method of finding the closed form

solution process of the initial value problem [16], the solution of (6.1) is represented

by

(6.2) u(t, t0, u0) =
u0ν√

u2
0 + (ν2 − u2

0) exp [−2ν2qm(t− t0)]
.
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We note that both ν and u0 in (6.2) are positive. If ν > u0, then ν2 > u2
0, and hence

the term under the radical is positive. Suppose it is the case that ν < u0. Then we

note that

(6.3) 0 < exp
[
−2ν2qm(t− t0)

]
< 1,

for t > t0. From (6.2) and (6.3), it follows that

u2
0 +

(
ν2 − u2

0

)
exp

[
−2ν2qm(t− t0)

]
= u2

0 − u2
0 exp

[
−2ν2qm(t− t0)

]
(6.4)

+ν2 exp
[
−2ν2qm(t− t0)

]
= u2

0

(
1− exp

[
−2ν2qm(t− t0)

])
+ν2 exp

[
−2ν2qm(t− t0)

]
> 0.

Hence, the term under the radical in (6.2) is positive in both cases: ν > u0 and

ν < u0. Thus, under either of the conditions, ν > u0 or ν < u0,

lim
t→∞

u(t, t0, u0) = lim
t→∞

u0ν√
u2

0 + (ν2 − u2
0) exp [−2ν2qm(t− t0)]

(6.5)

= ν

From (4.10) and Lemma 4.2 in conjunction with (6.5), for ν = η it follows that

the limit of the upper comparison solution r(t) as t grows large is

(6.6) η =

a
q

+
4b (m− 1)

√
1
2

exp
[
−1

2

]
+ β2 (m− 1) c exp [−1]

4qm


1
2

.

Similarly, from (5.3) and Lemma 5.1 in conjunction with (6.5), for ν = α, the limit

of the lower comparison solution ρ(t) as t grows large is α, where,

(6.7) α ≤

(
a

q
−

4(m− 1)b
√

c
2

exp
[
−1

2

]
+ β2(m− 1)c exp [−1]

4qm

) 1
2

.

From the solution of the comparison equations in conjunction with Lemmas 4.2

and 5.1, we establish the following theorem.

Theorem 6.1. Let the hypotheses of Lemmas 4.2 and 5.1 be satisfied. Then the

network is cohesive in the almost sure sense.

Proof. From Lemmas 4.2 and 5.1,

(6.8) ρ(t, t0, ρ0) ≤ V (zi(t)) ≤ r(t, t0, r0)

with probability 1. Moreover, as the solution to the upper comparison equation is

bounded above by η and the solution to the lower comparison equation is bounded

below by α, the network is cohesive almost surely.
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In the following section, we provide various characterizations of cultural state

dynamics. This is achieved by the nature of the initial cultural state parameters and

the behavior of the upper and lower comparison cultural state dynamic processes.

7. INVARIANT SETS

In this section, we analyze various types of invariant states of the multicultural

dynamic network. This is achieved by using the behavior of the solutions to both the

upper and lower comparison equations. Let us denote

(7.1) r2 =

(
a

q
−

4(m− 1)b
√

c
2

exp
[
−1

2

]
+ β2(m− 1)c exp [−1]

4qm

) 1
2

and

(7.2) r1 =

(
a

q
+

4b (m− 1)
√

c
2

exp
[
−1

2

]
+ β2 (m− 1) c exp [−1]

4qm

) 1
2

We note that the parameters a, b, q, c, and β imply the following relation:

(7.3) r2 < r1.

Further, let us define the following sets:
A = B (0, r2)

B = Bc (0, r2) ∩B (0, r1)

C = Bc (0, r1)

(7.4)

Under the obvious relation (7.3), we develop and establish the following result.

Theorem 7.1. Let the hypotheses of Lemmas 4.2 and 5.1 be satisfied. Then, in the

almost sure sense,

(i) the set A ∪B is conditionally invariant relative to A;

(ii) the set B is self-invariant;

(iii) the set B ∪ C is conditionally invariant relative to C.

Proof. For zi ∈ C, i ∈ I(1,m), the hypotheses of Lemmas 4.2 and 5.1 are satisfied.

Thus by the application of these Lemmas, we have

(7.5) ρ(t, t0, ρ0) ≤ V (zi(t, t0, z0)) ≤ r(t, t0, r0),

for t > t0, zi0 ∈ B̄c(0, r1), and ρ(t, t0, , ρ0) and r(t, t0, r0) are the minimal and max-

imal solutions of the comparison differential equations (5.6) and (4.17) respectively.

Moreover, for zi ∈ Bc(0, r1), with r0 = ρ0 = V (zi0) = ‖zi0‖, the solutions r(t, t0, r0)

and ρ(t, t0, ρ0) are both monotonically decreasing and approaching to r1 and r2 re-

spectively. Hence, we have

(7.6) ρ(t, t0, ρ0) ≤ ‖zi(t, t0, zi,0)‖ ≤ r(t, t0, r0),
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for t ≥ t0. From the definitions of self-invariant and conditionally invariant sets [17],

it follows that statement (iii) is valid. The proofs of (i) and (ii) follow by imitating

the argument used in the proof of (iii). For zi0 ∈ B, we note that ρ(t, t0, ρ0) is

monotonically decreasing and r(t, t0, r0) is monotonically increasing to r2 and r1 as

t→∞, respectively. This establishes that zi(t, t0, zi0) ∈ B proving statement (ii). For

zi0 ∈ A, the solutions to the comparison equation (5.6), ρ(t, t0, ρ0) is monotonically

increasing to r2 as t→∞. Therefore zi(t, t0, zi0) ∈ A ∪B proving statement (i).

Let us examine the results of Theorems 7.1. First, we note that this theorem

provides sufficient conditions for the qualitative and quantitative behavior of the

cultural state dynamics. In particular, the model is cohesive and simultaneously, it

does not reach a cultural consensus.

We introduce the definition of cultural threshold bound to describe the boundary

between two cultural state sets. It is based on the degree of individual versus com-

munity level interaction domains of the cultural states. Suppose zi ∈ A. It is the case

that the individual member cultural state is pushed out/repulsed from the cultural

state center x̄ at some time T ≥ t0. That is to say, the membership of the social

network will support and then maintain a relative cultural affinity between members

and the cultural center that is bounded below by the quantity r2. Once the state of

the ith member zi has moved away from the center, it is the case that the state zi

moves to the cultural state set B, at which time the agent’s cultural state behavior

will follow that of another category of membership described by the cultural state set

B discussed below.

Suppose that the ith member initial cultural state zi of the transformed social

network is such that zi ∈ B. Then by Theorem 7.1, over time, zi may stay in B,

approaching the cultural threshold bounds of sets C and/or A. However, if zi ∈ B,

even though it may approach the cultural bound of A and/or C, it will never cross

either of the boundaries. In terms of a given social network, this implies that members

with a distinct enough cultural states from the weighted average of cultural states will

retain that distinctiveness of culture while maintaining a certain level of closeness to

the average cultural state. Thus, if the relative cultural affinity between a member xi

and the center of the network is at least r2 and less than r1, initially, then the relative

cultural state affinity will always be at least the quantity r2 but no more than the

value r1.

If it is the case that zi is a member of the transformed network such that zi ∈ C.

By Theorem 7.1, zi may either cross the cultural boundary of B or the members

cultural state will approach asymptotically to the cultural state network boundary of

B. Thus, for agents xi within the network whose initial relative cultural state affinity

with respect to the cultural state center is sufficiently large, as t → ∞, the relative



466 K. B. HILTON AND G. S. LADDE

cultural affinity will remain large and although the agent is attracted back towards

the center of the network, the relative cultural state affinity is bounded below by r2.

8. NUMERICAL SIMULATIONS

In this section, we consider numerical simulations for the multicultural dynamic

network governed by the stochastic differential equation (3.5) using a Euler-Maruyama

[14, 10, 11] type numerical approximation scheme. We consider a network of fifty

members, using the same initial position and varying the parameters a, b, q, c, and β.

Further, we consider the case such that ξij(t) for i, j ∈ I(1, 50) are a one dimensional

Brownian motion process with mean of zero and variance of 1 over the interval [0, 1].

To generate each member state cultural trajectory, we average the position for fifty

simulations for each of the various cases, and then plot the average position, zi(t) for

each member.

In order to consider the effects of changing the parametric value β, we consider

various models for which a = 2, b = 1, and c = 2 are held constant and we vary both

β and q. First, in Figure 1, we consider a network in which q = 2
1.7

and β = .5.

With the given parameters, r1 ≈ 1.5 and r2 ≈ 1.1. Therefore, using the upper and

lower limits of the comparison equations, the long run behavior of the network has

the approximate bounds given by

(8.1) 1.1 ≤ ‖zi‖ ≤ 1.5,

as demonstrated in Figure 1. In the simulation, we see that members whose cultural

state start close to the center shift away from the center over time. Further, in

the simulation, members whose cultural state start farther away from the center are

attracted back towards the center over time.

Next, in Figure 2, we consider the case with the parameters q = 2
5.4

and β = 1.

In this case, r1 ≈ 2.7, and r2 ≈ 1.8. In this case, using the bounds on the limits of

the solutions of the comparison equations yield the approximate bounds on the long

term behavior of the network

(8.2) 1.8 ≤ ‖zi‖ ≤ 2.7.

We note that in this case by increasing β and decreasing q, the upper and lower

bounds, as well as the distance between them, increase. In the simulation, we observe

a similar behavior of members within the network; those starting close to the center

are repulsed away and those starting away from the center are attracted back towards

it. In Figure 3, we consider the case with parameters q = 1
12

and β = 2. Further, we

note that in this case, r1 ≈ 6.3, and r2 ≈ 2.9. In this case, the approximate bounds

on the long term behavior of the network are given by

(8.3) 2.9 ≤ ‖zi‖ ≤ 6.3.
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Figure 1. Euler-Maruyama approximation of the differential equation

given by (3.5) with fifty members and parameters a = 2, b = 1, c = 2,

q = 2
1.7

, and β = .5.

By increasing β and decreasing q, we have again increased the values of the upper and

lower bounds as well as the distance between the bounds. Further, in the simulations,

we see a strong repulsion from the center of the network and that over time, the

memberships cultural states settle relatively far from the cultural state of the center.

We now consider the case with the parameters q = 1
7

and β = 2. In this case,

r1 ≈ 4.8, and r2 ≈ 2.2. We note that using the limits of the upper and lower

comparison equations, we compute the long term approximate bounds as

(8.4) 2.2 ≤ ‖zi‖ ≤ 4.8,

as seen in Figure 4. By increasing q in this simulation, the upper and lower bounds

are smaller than those from Figure 3. We also note that the distance between the

bounds has decreased from that in Figure 3.
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Figure 2. Euler-Maruyama approximation of the differential equation

given by (3.5) with fifty members and parameters a = 2, b = 1, c = 2,

q = 2
5.4
, and β = 1.

9. CONCLUSION

Maintaining diversity while simultaneously fostering a sense of community mem-

bership, individual cultural identity, and cohesion is currently a goal among commu-

nities worldwide. It is important for members in society to both feel as a part of the

community in which they live and interact as well as feel free to embrace a strong

sense of self and individuality. We seek to better understand the factors that play

a role in obtaining such a balance by considering the impact of the repulsive and

attractive forces influencing the multicultural network. The goal of the presented

multicultural dynamic network is model the balance sought by members of the net-

work in achieving these type of objectives. By doing so, we can consider the impact

that policies and environmental factors may have on such a network.

We have considered requirements on the parameters that allow the perturbed

multicultural dynamic network to remain cohesive while retaining a cultural state

that is distinctive from the cultural state center of the network. We established qual-

itative and quantitative conditions that are computationally attractive and verifiable.
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Figure 3. Euler-Maruyama approximation of the differential equation

given by (3.5) with fifty members and parameters a = 2, b = 1, c = 2,

q = 1
12
, and β = 2.

Further, we have analyzed cultural state invariant sets and long-term cultural states of

members within the multicultural dynamic network. We also conducted simulations

of the multicultural network that exhibit the influence of the random perturbations

as well as demonstrate the long-term behavior of the multicultural network.

We are interested in further exploring similar multicultural networks in the con-

text of better understanding the relative cultural state affinity ‖xij‖ between members

within the network and not just the relative cultural state affinity between the cul-

tural state of a member relative to the center of the network. The goal is to better

understand the environmental factors that help to foster a sense of individuality and

diversity between all members within the network while maintaining a cohesive struc-

ture.
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Figure 4. Euler-Maruyama approximation of the differential equation

given by (3.5) with fifty members and parameters a = 2, b = 1, c = 2,

q = 1
7
, and β = 2.
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