
Dynamic Systems and Applications 26 (2017) 499-516

HOMOGENIZATION OF BSDES WITH TWO REFLECTING
BARRIERS, VARIATIONAL INEQUALITY

AND STOCHASTIC GAME

ABOUBAKARY DIAKHABY AND YOUSSEF OUKNINE
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ABSTRACT. In this paper, we study the limit of semilinear variational inequality with bilateral

constraints and stochastic differential games of mixed type. By a penalization method, we first

study homogenization properties for system of two barriers reflected backward stochastic differential

equation in the Markovian setting. This result together with certain techniques from stochastic

calculus is then applied to show that the unique solution of the homogenized problem is also the

value function of certain stochastic differential games of mixed type. Then using standard results

from the theory of viscosity solutions, we show that the value function of this stochastic differential

game with continuous control is the unique viscosity solution of the corresponding limit semilinear

variational inequalities too.
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1. INTRODUCTION

Backward stochastic differential equations (BSDE’s in short) is an interesting

subject in stochastic calculus developed since the pioneering works of Pardoux and

Peng [27], [28]. The application of such equations to finance theory and nonlinear

partial differential equations has motivated many efforts to establish existence and

uniqueness of the solution (see [1], [3], [9], [13], [16], [23], [26] and the references

given there). In [11], El Karoui et al have introduced the notion of one barrier

reflected BSDE, which is a backward equation but the solution is forced to stay above

a given continuous obstacle. Moreover, the authors have established the existence and

uniqueness of the solution via a penalization as well as Picard’s iteration methods.

The notion of double barriers reflected BSDE has been introduced by Cvitanic and

Karatzas [7] where the solution is forced to remain between two described upper and

lower barriers U and L. As is well known, BSDE provide probabilistic formulae for the

viscosity solution of semilinear partial differential equations (PDE) (see for instance

Pardoux and Peng [28], Pardoux [26] and references therein). In the present work,
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we wish to consider a more general problem, homogenization of two barriers reflected

BSDE when the solutions are forced to stay between an upper and lower obstacles,

and also provide a probabilistic formulae to limit of system of variational inequalities

with two obstacles.

In this paper, we use a penalization method to show the existence and uniqueness

of the weak solution for the homogenized problem associated to the reflected BSDE

(3.4) when the upper barrier U and the lower barrier L are smooth Itô processes.

Such equations appear when one studies the notion of zero-sum mixed problems [15]

or American game options [8]. Variational inequality theory was introduced by Hart-

man and Stampacchia [20], as a tool for the study of partial differential equations

with applications principally drawn from mechanics. Such variational inequalities

were infinite-dimensional rather than finite-dimensional as we will be studying here.

Equilibrium is a central concept in numerous disciplines including economics, man-

agement science, operations research, and engineering. Variational inequality theory

is a powerful unifying methodology for the study of equilibrium problems. This type

of inequalities also arises in zero sum stochastic differential games of mixed type where

each player uses both continuous control and stopping times.

A probabilistic approach of the homogenization property has been developed

since the early article of Freidlin [12] (see also [5, Chapter 3]) parallel to analytical

one. The link between BSDE’s and homogenization of semilinear PDE’s are given

since 1996 by the work of Pardoux [26].

The paper is organized as follows. The BSDE problem with reflecting barriers as

well as some preliminary results are described in Section 2. In Section 3, we prove

existence and uniqueness of the solution in the Markovian case. The homogenization

problem is treated in Section 4 by using the result of Section 3. The last section

is devoted to the homogenization problem for variational inequality and stochastic

differential games of mixed type.

2. NOTATIONS AND PRELIMINARY RESULTS

Let (Ω,F ,P,Ft,Wt, t ∈ [0, T ]) be a complete Wiener space in Rd, i.e. (Ω,F ,P)

is a complete probability space, (Ft, t ∈ [0, T ] ) is a right continuous increasing family

of complete sub σ-algebras of F , (Wt, t ∈ [0, T ] ) is a standard Wiener process in Rd

with respect to (Ft, t ∈ [0, T ] ) . We assume that

Ft = σ [Ws, s ≤ t] ⊗N

where N denotes the totality of P-null sets and σ1 ⊗ σ2 denotes the σ-field generated

by σ1 ∪ σ2. Let P be the σ-field of predictable subsets of Ω x [0, T ].

Let us introduce the following spaces:
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• L2 of FT -measurable, real-valued random variables ξ, E [|ξ|2] < +∞.

• S2 of continuous (Ft)-adapted real-valued processes (Yt)t≤T , E
[
supt≤T |Yt|2

]
<

∞.

• H2,k of (Ft)-progressively measurable processes, valued in Rk, E

[
T∫
0

|Zs|2ds
]
<

∞.

• A2 of continuous, real-valued, increasing, (Ft)-adapted process (Kt)0≤t≤T such

that K(0) = 0 and E |KT |2 < +∞.

Finally, given:

(A1): a terminal value ξ ∈ L2

(A2): a coefficient “f” which is a map f : Ω × [0, T ] × R1+d −→ R such that

1. f is P ×B(R1+d)-measurable and satisfies: (f(t, 0, 0))t≤T belongs to L2(Ω×
[0, T ], dP ⊗ dt) i.e.,

(2.1) E

∫ T

0

|f(t, 0, 0)|2 dt < +∞

2. f is uniformly Lipschitz with respect to (y, z), i.e., there exists a constant

k ≥ 0 such that for any y, y′, z, z′ ∈ R,

(2.2) P-a.s., |f(ω, t, y, z)− f(ω, t, y′, z′)| ≤ k(|y − y′| + |z − z′|).

and

(A3): two reflecting barriers L, U ∈ S2, i.e. real valued and P-measurable processes

satisfying

(2.3) E

[
sup

0≤t≤T
Ut

2

]
< +∞ and E

[
sup

0≤t≤T
Lt

2

]
< +∞,

we shall always assume that

∀ 0 ≤ t ≤ T, Lt ≤ Ut and LT ≤ ξ ≤ UT , P-a.s.

2.1. On one barrier. Let f : Ω× [0, T ]×R1+d −→ R which has the property (A2),

and only the lower barrier in (A3).

Definition 2.1. A solution for one barrier reflected BSDE associated with (f, ξ, L)

is a P-measurable process (Y, Z,K) := (Yt, Zt, Kt)t≤T valued in R1+d ×R+ and which

satisfies:




(i) Y ∈ S2, Z ∈ H2,d; K ∈ A2,

(ii) Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds+KT −Kt −

∫ T

t
ZsdWs, t ≤ T ,

(iii) ∀t ≤ T, Yt ≥ Lt and
∫ T

0
(Yt − Lt)dKt = 0 P-a.s.

The following result established by El Karoui et al. [11] is concerned with the

existence and uniqueness of a solution for a single barrier reflected BSDE associated

with (f, ξ, L).
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Theorem 2.2. Suppose that the assumptions (A1)–(A2)and (A3) hold for (f, ξ, L),

then there exists a unique P-measurable process (Y, Z,K) solution of the one barrier

reflected BSDE associated with (f, ξ, L) has a unique solution. Furthermore the fol-

lowing inequality holds

(2.4) E

[
sup

0≤t≤T
|Yt|2 +

∫ T

0

|Zs|2 ds+ |KT |2
]
<∞

We need also a comparison result given in the same paper, our assumptions are

rather strong than required. Unfortunately we need those assumptions for homoge-

nization purpose.

Theorem 2.3. Let (f, ξ, L) and (f ′, ξ′, L′) be two sets of data, each one satisfying

all assumptions (A1), (A2), (A3) and such that P-a.s. ξ ≤ ξ′; Lt ≤ L′
t; and

f(t, y, z) ≤ f ′(t, y, z) dt ⊗ dP-a.e. ∀(y, z) ∈ R1+d. Then Yt ≤ Y ′
t , 0 ≤ t ≤ T P-a.s.

and dK ≥ dK ′.

2.2. Double barriers reflected BSDE. Let us now introduce our double barriers

reflected BSDE (DRBSDE in short )

Definition 2.4. The process
(
Yt, Zt, K

+
t , K

−
t

)
t≤T

, with value in R1+d × R+ × R+, is

called a solution for the double barriers DRBSDE associated to (f, ξ, L, U) if




(i) Y ∈ S2, Z ∈ H2,d and K± ∈ A2

(ii) Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs

+(K+
T −K+

t ) − (K−
T −K−

t ), ∀t ≤ T

(iii) ∀t ≤ T, Lt ≤ Yt ≤ Ut and∫ T

0
(Yt − Lt)dK

+
t =

∫ T

0
(Ut − Yt)dK

−
t = 0 P-a.s.

Remark 2.5. Since our coefficient is Lipschitz in (y, z) uniformly in (ω, t), the ex-

istence and uniqueness of a solution was proved (with some additional conditions)

in Cvitanic and Karatzas [7] (Corollary 5.5, Theorem 6.1 or Theorem 6.5), see also

Hamadène and Hassani [14], Peng and Xu [29].

3. MARKOVIAN CASE

Let {Xǫ
t ; t ≥ 0} a diffusion process with values in Rd and generator Lε, such that

Xǫ =⇒ X in C([0, T ],Rd) equipped with the topology of convergence on compact

subsets of R+, where X itself is a diffusion with generator L0. We suppose that the

martingale problem associated to X is well posed, and there exist p, q ≥ 0 such that

(3.1) sup
ǫ

E

(
|Xǫ

t |2p +

∫ T

0

|Xǫ
s|2q ds

)
<∞.

We assume moreover that
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1. g : Rd −→ R, f : [0, T ] × Rd × R −→ R are continuous, which are such that for

some C > 0, K > 0 and for all x ∈ Rd, y, y′ ∈ R

(3.2)





|g(x)| ≤ C(1 + |x|p),
|f(t, x, 0)| ≤ C(1 + |x|q), and

|f(t, x, y) − f(t, x, y′)| ≤ K|y − y′|.
2. The barriers

(L(s,Xǫ
s))s≤T and (U(s,Xǫ

s))s≤T ∈ S2.

where the function U(s, x) and L(s, x) are in C1,2
(
[0, T ] × Rd; R

)
such that for

U (resp. L),

(3.3)

∣∣∣∣
∂U

∂t

∣∣∣∣+
∣∣∣∣
∂U

∂x

∣∣∣∣+
∣∣∣∣
∂2U

∂x2

∣∣∣∣ ≤ C(1 + |x|p).

We consider the following double barriers reflected BSDE associated to

(f(s,Xǫ
s, ·), g(Xǫ

T ), L(·, Xǫ
· ), U(·, Xǫ

· ))

that is

(3.4)





Y ǫ
s = g(Xε

T ) +
∫ T

s
f(r,Xε

r , Y
ǫ
r )dr −

∫ T

s
Zǫ

rdBr

+
(
K+ǫ

T −K+ǫ
s

)
−
(
K−ǫ

T −K−ǫ
s

)
,

∀t ≤ T, L(t, Xε
t ) ≤ Y ǫ

t ≤ U(t, Xε
t ) and∫ T

0
(Y ǫ

t − L(t, Xε
t ))dK

+ε
t =

∫ T

0
(U(t, Xε

t ) − Yt)dK
−ε
t = 0.

We need the following a priori estimates, to prove the existence and uniqueness result

for (3.4)

Lemma 3.1. For each ε > 0,

E

[
sup
t≤T

|Y ǫ
t |2
]
<∞ and E

[
sup
t≤T

|f(t, Xǫ
t , Y

ǫ
t )|2

]
<∞.

Proof. The first inequality is a consequence of existence theorem in Lepeltier and San

Martin ([22, Theorem 1]), since our assumptions are sufficient (see Remark 1 in [22]).

Now using (3.2), we have |f(t, Xǫ
t , Y

ǫ
t )|2 ≤ C1(1 + |Xǫ

t |2q + |Y ǫ
t |2), for some C1 > 0.

By (3.1), we obtain the second.

We can now give existence and uniqueness result for the system (3.4).

Proposition 3.1. For each ε > 0, the DRBSDE (3.4) has a unique solution (Y ε, Zε,

K+ε, K−ε), also K+ε and K−ε are absolutely continuous with respect to the Lebesgue

measure.

Proof. Recall that the barriers are smooth Itô processes (in S2) by assumption and

the process (f(s,Xǫ
s, Y

ǫ,n
s ))0≤s≤T ∈ S2 from Lemma 3.1. The result follows from

Theorem 6.1 in [7].
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3.1. Connection with Dynkin games. As shown by Cvitanic and Karatzas ([7,

Theorems 4.1 and 6.5]) see also Hamadène and Hassani [14], the existence of a solution

(Y ε, Zε, K+ε, K−ε) to (3.4) implies that Y ε is the value of a certain stochastic game

of stopping. Let us recall the corresponding stochastic game.

We define

Mt,θ := {τ ∈ M�t ≤ τ ≤ θ a.s.} for 0 ≤ t ≤ θ ≤ T

where M is the class of F -stopping times τ : Ω −→ [0, T ], and let h(t) := f(Xǫ
t , Y

ǫ
t ).

For any ε > 0, 0 ≤ t ≤ T and any two stopping times σ, τ ∈ Mt,T , consider the payoff

(3.5)

Rε
t (σ, τ) :=

∫ σ∧τ

t

h(s)ds+ g(Xǫ
T )1{σ∧τ=T} + L(τ,Xǫ

τ )1{τ<T,τ≤σ} + U(σ,Xǫ
σ)1{σ<τ},

as well as the upper and the lower values, respectively,

(3.6)
V

ε

t = ess supσ∈Mt,T
ess infτ∈Mt,T

E [Rε
t (σ, τ)�Ft] ,

V ε
t = ess infτ∈Mt,T

ess supσ∈Mt,T
E [Rε

t (σ, τ)�Ft]

of the corresponding stochastic game. This game has value V ε
t , given by the state-

process Y ǫ the first component of the solution to DRBSDE (3.4), that is,

(3.7) V ε
t = V

ε

t = V ε
t = Y ǫ

t a.s. ∀0 ≤ t ≤ T ,

as well as saddle-point (σ̂, τ̂) ∈ Mt,T ×Mt,T given by

(3.8)
σ̂t := inf {s ∈ [t, T )�Y ǫ

s = U(s,Xǫ
s)} ∧ T,

τ̂t := inf {s ∈ [t, T )�Y ǫ
s = L(s,Xǫ

s)} ∧ T,

namely

(3.9)
E [Rε

t (σ̂t, τ)�Ft] ≤ E [Rε
t (σ̂t, τ̂t)�Ft]

= Y ǫ
t ≤ E [Rε

t (σ, τ̂t)�Ft] a.s.

for every (σ, τ) ∈ Mt,T ×Mt,T (see [7, Theorem 4.1]).

3.2. Link with variational inequality. Let us recall some known results about

this link.

Let x ∈ Rd and {X t,x,ǫ
s ; 0 ≤ t ≤ s ≤ T} the diffusion process defined as above,

starting at x at time t. We denote by ({Y t,x,ǫ
s , Zt,x,ǫ

s , Kt,x,+ǫ
s , Kt,x,−ǫ

s }; 0 ≤ t ≤ s ≤ T )

be the unique solution associated to DRBSDE (f(s,X t,x,ǫ
s , ·), g(X t,x,ǫ

T ), L(·, X t,x,ǫ
· ),

U(·, X t,x,ǫ
· )). We assume moreover the polynomial growth condition on the barriers

(3.10) |U(t, x)| + |L(t, x)| ≤ C(1 + |x|p)
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for any t ∈ [0, T ] and the constants C and p are already used in (3.2). Let us consider

the following double obstacles variational inequality:

(3.11){
min

(
(uǫ − L) ; max

[
(uǫ − U) ;

(
−∂uǫ

∂t
− Lǫ

tu
ǫ
)
− f(·, ·, uǫ)

])
(t, x) = 0

uǫ(T, x) = g(x).

Definition 3.2. Let uǫ be a function which belongs to C
(
[0, T ] × Rd; R

)
; uǫ is said

to be a viscosity

(i) subsolution of (3.11) if uǫ(T, ·) ≤ g(·) and for any φ ∈ C1,2
(
[0, T ] × Rd; R

)
and

any local maximum point (t, x) ∈ [0, T ] × Rd of uǫ − φ, we have

min

(
(uǫ − L) ; max

[
(uǫ − U) ;

(
−∂φ
∂t

− Lǫ
tφ

)
− f(·, ·, uǫ)

])
(t, x) ≤ 0

(ii) supersolution of (3.11) if uǫ(T, ·) ≥ g(·) and for any φ ∈ C1,2
(
[0, T ] × Rd; R

)

and any local minimum point (t, x) ∈ [0, T ] × Rd of uǫ − φ, we have

min

(
(uǫ − L) ; max

[
(uǫ − U) ;

(
−∂φ
∂t

− Lǫ
tφ

)
− f(·, ·, uǫ)

])
(t, x) ≥ 0

(iii) solution of (3.11) if it is both a viscosity subsolution and supersolution.

Since in our setting, the generator f do not depend on z, by virtue of Hamadène

and Hassani ([14, Theorem 7.2]), the function uǫ : [0, T ] × Rd −→ R defined by

uǫ(t, x) = Y t,x,ǫ
t , is a viscosity solution of (3.11).

4. THE DRBSDE HOMOGENIZATION RESULT

Let {(Y ǫ
s , Z

ǫ
s, K

+ǫ
s , K−ǫ

s ); 0 ≤ s ≤ t} the unique solution of double barriers re-

flected BSDE (3.4). We want to prove that (Xǫ, Y ǫ, Zǫ, K+ǫ, K−ǫ) converge in law

to (X, Y, Z,K+, K+) where (Y, Z,K+, K+) is the unique solution of double barriers

reflected BSDE.

(4.1)





Ys = g(XT ) +
∫ T

s
f(r,Xr, Yr)dr −

∫ T

s
ZrdBr +

(
K+

T −K+
s

)
−
(
K−

T −K−
s

)

∀t ≤ T, L(t, Xt) ≤ Yt ≤ U(t, Xt)

and
∫ T

0
(Yt − L(t, Xt))dK

+
t =

∫ T

0
(U(t, Xt) − Yt)dK

−
t = 0 P-a.s.

We give now a useful Lemmas, the first give us some tightness criteria for sequence

of quasi-martingales.

Lemma 4.1 (See Meyer-Zheng [25] or Kurtz [24]). The sequence of quasi-martingale

{V n
s ; 0 ≤ s ≤ T} defined on the filtered probability space {Ω;Fs, 0 ≤ s ≤ T ; P} is tight

whenever

sup
n

(
sup

0≤s≤T
E|V n

s | + CVT (V n)

)
< +∞,
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where CVT (V n), denotes the “conditional variation of V n on [0, T ]” defined by

CVT (V n) = sup E

(
∑

i

|E
(
V n

ti+1
− V n

ti
/Fti)|

)
,

with “sup” meaning that the supremum is taken over all partitions of the interval

[0, T ].

We use the penalization method to prove the convergence result. This second

Lemma is the core, which explain each step.

Lemma 4.2. Let U ǫ be a family of random variables defined on the same probability

spaces. For each ǫ ≥ 0, we assume the existence of a family of random variables

(U ǫ,n)n, such that

• U ǫ,n =⇒ U0,n as ǫ goes to zero.

• U ǫ,n =⇒ U ǫ as n→ +∞, uniformly in ǫ.

• U0,n =⇒ U0 as n→ +∞
then, U ǫ converge in distribution to U0.

Proof. This lemma is a simplified version of Theorem 3.2 in Billingsley [2, p. 28].

We put

M ǫ
t = −

∫ t

0

Zǫ
sdBr.

We denote by

• C([0, T ],Rd) the space of functions of [0, T ] with values in Rd equipped with the

topology of uniform convergence.

• D([0, T ],Rk) is the space of càdlàg functions of [0, T ] with values in Rk equipped

with the topology of Meyer-Zheng.

Theorem 4.3. Under the above conditions, as ǫ tends to zero, the family of pro-

cesses (Xǫ, Y ǫ,M ǫ, K+ǫ, K−ǫ) converge in law to the processes (X, Y,M,K+, K−) in

C([0, t],Rd) × D([0, t],R2) × (C[0, t],R) × (C[0, t],R).

The proof of this theorem follow the above Lemma. We first need some extra

lemmas.

Let define

k+ε,n
t (y) = n(L(t, Xε

t ) − yt)
+k−ε,n

t (y) = n(yt − U(t, Xε
t ))

+

k+0,n
t (y) = n(L(t, Xt) − yt)

+k−0,n
t (y) = n(yt − U(t, Xt))

+

and

K±ε,n
t (y) =

∫ t

0

k±ε,n
s (y)dsKε,n = K+ε,n −K−ε,nkε,n = k+ε,n − k−ε,n
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K±0,n
t (y) =

∫ t

0

k±0,n
s (y)dsK0,n = K+0,n −K−0,nk0,n = k+0,n − k−0,n.

Consider the backward stochastic differential equation

(4.2) Y ǫ,n
s = g(Xǫ

T ) +

∫ T

s

f(r,Xǫ
r , Y

ǫ,n
r )dr −

∫ T

s

Zǫ,n
r dBr +

∫ t

s

kε,n
r (Y ǫ,n)dr,

and let (Y n, Zn), be the unique solution of the backward stochastic differential equa-

tion

(4.3) Y n
s = g(XT ) +

∫ T

s

f(r,Xr, Y
n
r )dr −

∫ T

s

Zn
r dBr +

∫ T

s

k0,n
r (Y n)dr.

We set

M ǫ,n
t = −

∫ t

0

Zǫ,n
r dBr, and Mn

t = −
∫ t

s

Zn
r dBr.

Lemma 4.4. Under the above conditions, we have for each n > 0

sup
ǫ

E

[
sup
t≤T

|Y ǫ,n
t |2

]
<∞ and sup

ǫ
E

[
sup
t≤T

|f(t, Xǫ
t , Y

ǫ,n
t )|2

]
<∞.

Proof. Let (Y ǫ,n, Zǫ,n
r ) and (Y

ǫ,n
, Z

ǫ,n

r ) be the solution of the following BSDE

Y ǫ,n
s = g(Xǫ

T ) +

∫ T

s

f(r,Xǫ
r , Y

ǫ,n
r )dr −

∫ T

s

k−ε,n
r (Y ǫ,n)dr −

∫ T

s

Zǫ,n
r dBr

Y
ǫ,n

s = g(Xǫ
T ) +

∫ T

s

f(r,Xǫ
r , Y

ǫ,n

r )dr +

∫ T

s

k+ε,n
r (Y

ǫ,n
)dr −

∫ T

s

Z
ǫ,n

r dBr

then by the comparison theorem for BSDE we have for all n > 0, ε > 0,

Y ǫ,n ≤ Y ǫ,n ≤ Y
ǫ,n
.

Since fn(t, x, y) ∈ {f(t, x, y)−n(y−U(t, y))+, f(t, x, y)+n(L(t, x)−y)+} is Lipschitz

in y uniformly in (ω, t, x), so using (3.1), we have supǫ E
[
supt≤T |Y ǫ,n

t |2
]
< ∞ and

supǫ E
[
supt≤T |Y ǫ,n

t |2
]
<∞. Hence

sup
ǫ

E

[
sup
t≤T

|Y ǫ,n
t |2

]
≤ max

{
sup

ǫ
E

[
sup
t≤T

|Y ǫ,n
t |2

]
, sup

ǫ
E

[
sup
t≤T

|Y ǫ,n

t |2
]}

<∞.

From (3.2) and (3.1) we have supǫ E[supt≤T |f(t, Xǫ
t , Y

ǫ,n
t )|2] <∞.

Lemma 4.5. There exists a constant C such that for each n > 0,

E

[
sup

0≤r≤T
k+ε,n

r (Y ǫ,n)2

]
≤ C and E

[
sup

0≤r≤T
k−ε,n

r (Y ǫ,n)2

]
≤ C.

Proof. For proof, see the proof of the following lemma.

Lemma 4.6. Under the above conditions, we have for each n > 0,

sup
ε

E
[
(K+ε,n

T (Y ǫ,n))2 + (K−ε,n
T (Y ǫ,n))2

]
<∞.



508 A. DIAKHABY AND Y. OUKNINE

Proof. Recall that the barriers are smooth Itô processes (in S2) and from Lemma 4.4

(f(s,Xǫ
s, Y

ǫ,n
s ))0≤s≤T ∈ S2. For each n ≥ 0, let Y

ε,n
:= Y ε,n−U , f ∗(s) := f(s,Xε

s , Y
ε,n
s )

and Ut := U0 +
∫ t

0
usds+

∫ t

0
vsdWs, recall that

∃M > 0/E

[
sup

0≤t≤T
|us| +

∫ T

0

|vs|2 ds
]
< M,

then

Y
ε,n

t = g(Xε
T ) − U(T,Xε

T ) +

∫ T

t

(f ∗(s) − us) ds−
∫ T

t

(Zε,n
s − vs) dWs

− n

∫ T

t

(
Y

ε,n

s

)+
ds+ n

∫ T

t

(
Y

ε,n

s − (L(s,Xε
s ) − U(s,Xε

s ))
)−
ds.

For each n ∈ N, let Dn the class of P-measurable processes z : Ω × [0, T ] −→ [0, n].

For ν ∈ Dn and µ ∈ Dn, by applying Itô’s formula to the product of Y
ε,n

and

exp (−
∫ ·.

0
(µ(r) + ν(r))dr) and using the same arguments as in Cvitanic and Karatzas

[7] (see also Matoussi et al [16]), one can show that

Y
ε,n

t = ess sup
µ∈Dn

ess inf
ν∈Dn

E

{
(ξ − UT ) exp

(
−
∫ T

t

(µ(r) + ν(r))dr

)

+

∫ T

t

exp

(
−
∫ s

t

(µ(r) + ν(r))dr

)
[f ∗(s) − us + µ(s)(Ls − Us)] ds/Ft

}
a.s.

Therefore

Y
ε,n

t = ess sup
µ∈Dn

ess inf
ν∈Dn

E

{∫ T

t

exp

(
−
∫ s

t

(µ(r) + ν(r))dr

)
|f ∗(s) − us|ds/Ft

}

≤ ess sup
µ∈Dn

E

{∫ T

t

exp

(
−
∫ s

t

(µ(r) + n)dr

)
|f ∗(s) − us|ds/Ft

}

≤ E

{∫ T

t

exp (−n(s− t))|f ∗(s) − us|ds/Ft

}

≤ 1

n
E

{∫ T

t

sup
0≤s≤T

|f ∗(s) − us|ds/Ft

}
,

since sup0≤s≤T |f ∗(s) − us| ∈ L2, from Doob’s maximal inequality, we have

E sup
0≤t≤T

([
Y

ε,n

t

]+)2

= E sup
0≤t≤T

[
k−ε,n

t (Y ε,n)

n

]2

≤ C

n2

where C is a constant which is independent in ε and can change line by line, so

sup
ε

E
[
K−ε,n

T (Y ε,n)
]2 ≤ CT.

A similar analysis yields

E sup
0≤s≤T

k+ε,n
t (Y ε,n)2 ≤ C, and so sup

ε
E
[
K+ε,n

T (Y ε,n)
]2 ≤ CT.

Thus

sup
ε

E
[
K−ε,n

T (Y ǫ,n)
]2

+ sup
ε

E
[
K+ε,n

T (Y ǫ,n)
]2 ≤ C.



HOMOGENIZATION OF REFLECTED BSDE AND APPLICATIONS 509

The above proof, give us also the following

Lemma 4.7. There exists a constant C > 0 such that for all n > 0,

sup
ε

E

(
sup

0≤t≤T
|Y ǫ,n

t |2 + E

∫ T

0

|Zǫ,n
s |2 ds+K−ε,n

T (Y ǫ,n)2 +K+ε,n
T (Y ǫ,n)2

)
< C.

This (uniform in ε) a priori estimate lead to

Proposition 4.1. Under the above conditions, the family of processes (Y ǫ,n,M ǫ,n)

which converge in law to the the family of processes (Y n,Mn) on D([0, T ],R)2.

Proof. Step 1: Tightness.

Clearly

CVT (Y ǫ,n) ≤ E

[∫ T

0

(
|f(r,Xǫ

r , Y
ǫ,n
r )| + k+ε,n

r (Y ǫ,n) + k−ε,n
r (Y ǫ,n)

)
dr

]
< C,

and it follows from Lemma 4.4 and assumptions that

sup
ǫ

(
CVT (Y ǫ,n) + E sup

0≤s≤T
|Y ǫ,n

s |2 +

∫ T

0

|Zǫ,n
r |2 dr

)
< C,

hence the sequence {(Y ǫ,n
s ,M ǫ,n

s ); 0 ≤ s ≤ T} satisfy Meyer-Zheng’s tightness criterion

for quasi-martingales under P.

Step 2: Convergence in law.

By tighness, there exists a subsequence (which we still denote (Y ǫ,n,M ǫ,n)) such

that

(Xǫ, Y ǫ,n,M ǫ,n) =⇒ (X, Y n,Mn),

on C([0, T ],Rd) × (D([0, T ],R))2, where the first factor is equipped with the topol-

ogy of uniform convergence, and the second with the topology of convergence in ds

measure. Clearly, for each 0 ≤ s ≤ T , (x, y) −→
∫ T

s
f(x(r), y(r))dr is continu-

ous for C([0, T ],Rd) × D([0, T ],R)2 equipped with the same topology as above, and

y −→
∫ T

s
(k+ε,n

r − k−ε,n
r ) (y)dr is continuous in D([0, T ],R) as ǫ goes to 0. We can

now take the limit in (4.2), yielding

Y n
s = g(Xs) +

∫ T

s

f(r,Xr, Y
n
r )dr +Mn

t −Mn
s +

∫ T

s

(
k+0,n

r − k−0,n
r

)
(Y n)dr.

Moreover, for any 0 ≤ s1 < s2 ≤ T , φ ∈ C∞
b and ψs a functional of Xǫ

r , Y
ǫ,n
r , Kǫ,n

r

0 ≤ r ≤ T , bounded and continuous in C([0, T ],Rd) × D([0, T ],Rk) × C([0, T ],Rd),

we have

E

(
ψs1

(Xǫ, Y ǫ,n)φ(Xǫ
s2

) − φ(Xǫ
s1

) −
∫ s2

s1

Lφ(Xǫ
r)dr

)
−→ 0 as ε→ 0,

and for each ε > 0,

E(ψs1
(Xǫ, Y ǫ,n)

∫ α

0

(M ǫ,n
s2+r −M ǫ,n

s1+r)dr) = 0.
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From weak convergence, the fact that E(sup0≤s≤T |M ǫ,n
s |2) < +∞, dividing the second

identity by α and for α→ 0, we have

E

[
ψs1

(X, Y n)

(
φ(Xs2

) − φ(Xs1
) −

∫ s2

s1

Lφ(Xr)dr

)]
= 0,

E
(
ψs1

(X, Y n)(Mn
s2
−Mn

s1
)
)

= 0.

Therefore, both Mn and MX (the martingale part of X) are FX,Y n

t martingales. It

follows from the first statement that the process X satisfies the martingale problem

with respect to the filtration FX,Y n

t , hence MX is FX,Y n

t -martingale.

Step 3: Identification of the limit.

Since the martingale problem in Step 2 is well-posed, let (Y
n
, U

n
) denote the

unique solution of the BSDE

Y
n

s = g(Xt) +

∫ t

s

f(r,Xr, Y
n

r )dr −
∫ t

s

U
n

rdM
X
r +

∫ t

s

k0,n
r (Y

n
)dr,

satisfying ETr
∫ t

s
U

n

r 〈MX〉rUn

r < +∞, and let M̃n
s =

∫ s

0
U

n

rdM
X
r . Since Y

n
and U

n

are FX
t adapted, and MX is FX,Y n

t martingale, M̃n is FX,Y n

t martingale. It follows

from Itô formula that

E|Y n

s − Y n
s |2 + E[Mn − M̃n]t − E[Mn − M̃n]s

= 2

∫ t

s

〈f(r,Xr, Y
n
r ) − f(r,Xr, Y

n

r ), Y
n

r − Y n
r 〉dr

+ 2

∫ t

s

〈k0,n
r (Y n) − k0,n

r (Y
n
), Y

n

r − Y n
r 〉dr

≤ CnE

∫ t

s

|Y n

r − Y n
r |2dr

(we use the fact that the operator is n-Lipschitz). Hence from Gronwall’s lemma

Y
n

r = Y n
r , 0 ≤ s ≤ t, and Mn = M̃n, and so all sequence converge.

Now we deal with the uniform convergence of the process (Y ǫ,n,M ǫ,n, Kǫ,n)n to

(Y ǫ,M ǫ, Kǫ) as n goes to +∞.

Proposition 4.2. The family of processes (Y ǫ,n,M ǫ,n, Kǫ,n)n converges uniformly of

ǫ ∈ [0, 1] in probability to the family of processes (Y ǫ,M ǫ, Kǫ) as n goes to +∞.

Proof. By the same proof as in Lemma 4.4, we have (since one can choose all constants

independently on ε and n),

sup
ε

sup
n

E

(
sup

0≤t≤T
|Y ǫ,n

t |2 + E

∫ T

0

|Zǫ,n
s |2 ds+K−ε,n

T (Y ǫ,n)2 +K+ε,n
T (Y ǫ,n)2

)
<∞.
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Now, let us prove the convergence of (Y ǫ,n, Zǫ,n)n for every (n,m) ∈ N∗ × N∗. By

Itô’s formula, one has

|Y ǫ,n
s − Y ǫ,m

s |2 +

∫ T

s

|Zǫ,n
r − Zǫ,m

r |2dr

= 2

∫ T

s

(Y ǫ,n
r − Y ǫ,m

r )(f(r,Xǫ
r , Y

ǫ,n
r − f(r,Xǫ

r , Y
ǫ,m
r ))dr

+ 2

∫ T

s

(Y ǫ,n
r − Y ǫ,m

r )(Zǫ,n
r − Zǫ,m

r )dBr

− 2

∫ T

s

(Y ǫ,n
r − Y ǫ,m

r )(kε,n
r (Y ǫ,n) − kε,m

r (Y ǫ,m))dr,

using (3.2), we deduce that

E|Y ǫ,n
s − Y ǫ,m

s |2 + E

∫ T

s

|Zǫ,n
r − Zǫ,m

r |2dr

≤ 2K

∫ T

s

|Y ǫ,n
r − Y ǫ,m

r |2dr − 2E

∫ T

s

(Y ǫ,n
r − Y ǫ,m

r )(kε,n
r (Y ǫ,n) − kε,m

r (Y ǫ,m))dr.

Using Schwartz inequality, we have

|E
∫ T

s

(Y ǫ,n
r − Y ǫ,m

r )(kε,n
r (Y ǫ,n) − kε,m

r (Y ǫ,m))dr|

≤
(

E

∫ T

s

(Y ǫ,n
r − Y ǫ,m

r )2

)1/2(
E

∫ T

s

(kε,n
r (Y ǫ,n) − kε,m

r (Y ǫ,m))2

)1/2

≤
√
T

(
E sup

0≤r≤T
(Y ǫ,n

r − Y ǫ,m
r )2

)1/2(
E

∫ T

s

(kε,n
r (Y ǫ,n) + kε,m

r (Y ǫ,m))2

)1/2

≤ C

[(
E sup

0≤r≤T
(Y

ε,n

r )2

)1/2

+

(
E sup

0≤r≤T
(Y

ε,m

r )2

)1/2
]

≤ C

(
1

n
+

1

m

)
.

We let C to be a constant changing line by line and we have used the facts that√
a+ b ≤ √

a+
√
b, (Y ǫ,n

r − Y ǫ,m
r ) = Y

ε,n

r − Y
ε,m

r , 2ab ≤ a2 + b2 and Lemma 4.5.

Hence, from Gronwall’s lemma and above Lemmas, we deduce that

sup
0≤s≤T

E

(
|Y ǫ,n

s − Y ǫ,m
s |2 +

∫ T

0

|Zǫ,n
r − Zǫ,m

r |2dr
)

≤ C

(
1

n
+

1

m

)
.

Using Bulkholder-Davis-Gundy inequality, we obtain

sup
ǫ

E

(
sup

0≤s≤T
|Y ǫ,n

s − Y ǫ,m
s |2 +

∫ T

0

|Zǫ,n
r − Zǫ,m

r |2dr
)

≤ C

(
1

n
+

1

m

)
.

We set

lim
n→+∞

Y ǫ,n = Y
ǫ
, lim

n→+∞
Zǫ,n = Z

ǫ
.
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If we return to the equation satisfied by the (Y ǫ,n, Zǫ,n), we find also that (Kǫ,n)n

converges uniformly in L2(Ω) to the limit K
ǫ

where

K
ǫ

t = lim
n

∫ t

0

kε,n
r (Y ǫ,n)dr.

We have shown

sup
ǫ,n

E‖Kǫ,n‖2
H1([0,T ],R) <∞,

where H1([0, T ],Rd) is the Sobolev space. Hence the sequence (Kǫ,n)n is bounded

independently of ǫ in L2(Ω;H1([0, T ],Rd)) and there exist a subsequence of (Kǫ,n)n

which converges weakly. The limiting process K
ǫ

belong to L2(Ω;H1([0, T ],Rd)),

hence K
ǫ

is absolutely continuous. By uniqueness of solution of the reflected BSDE,

we can find that Y
ǫ
= Y ǫ, Z

ǫ
= Zǫ, K

ǫ
= Kǫ.

Proposition 4.3. Under the assumption of the above lemma, the family of processes

(Y n,Mn, Kn) converge in probability to (Y,M,K) as n goes to +∞.

Proof. Similar to the above one.

Proof of Theorem 4.3. Combining the above lemmas, we find that (Xǫ, Y ǫ,M ǫ,

Kǫ) converge in law to (X, Y,M,K) in the sense defined as above, where

Ys = g(XT ) +

∫ T

s

f(r,Xr, Yr)dr −
∫ T

s

ZrdBr +KT −Ks.

Corollary 4.1. Under the assumptions of theorem, {Y ǫ
0 } converge to Y0 as ǫ goes to

0.

Proof. Since Y ǫ
0 is deterministic, we have

Y ǫ
0 = E

[
g(Xǫ

T ) +

∫ T

0

f(s,Xǫ
s, Y

ǫ
s )ds+Kǫ

T

]
.

Put

Aǫ = g(Xǫ
T ) +

∫ T

0

f(s,Xǫ
s, Y

ǫ
s )ds+Kǫ

T ,

we have

E |Aǫ|2 ≤ (C +K)E

(
1 + |Xǫ

T |2p +

∫ T

0

[
|Y ǫ

s |2 + |Xǫ
s|2q] ds

)
+ E |Kǫ

T |2 ,

by above assumptions and estimates, we have

sup
ǫ

E |Aǫ|2 <∞,

and Aǫ converge in law, as ǫ goes to 0, toward

g(XT ) +

∫ T

0

f(r,Xr, Yr)dr +KT ,
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the uniform integrability of Aǫ implies that

lim
ǫ→0

E(Aǫ) = E
(
lim
ǫ→0

Aǫ

)
,

this means that Y ε
0 converge to

Y0 = g(XT ) +

∫ T

0

f(r,Xr, Yr)dr +KT .

We applied the previous results to the homogenization of a class of variational

inequality as well as to stochastic game.

5. APPLICATIONS

Let uǫ : [0, T ] × R −→ R be a solution of the variational inequality (3.11) The

homogenization problem consists in computing the limit as ǫ ↓ 0 of uǫ(t, x).

Theorem 5.1. If the barriers satisfies also the polynomial growth conditions (3.10),

then

uǫ(t, x) −→ u(t, x), as ǫ goes to 0,

where u is the solution of the solution (in the viscosity sense) of the variational in-

equality

(5.1)

{
min

(
(u− L) ; max

[
(u− U) ;

(
−∂u

∂t
− L0

tu
)
− f(·, ·, u)

])
(t, x) = 0,

u(T, x) = g(x).

For any ε > 0, 0 ≤ t ≤ T and any two stopping times σ, τ ∈ Mt,T , consider the

pay off of the stochastic game Rε
t (σ, τ), its value function V ε

t (see (3.5), (3.7)). The

homogenization problem consists also in computing the limit as ǫ ↓ 0,

Theorem 5.2. For any 0 ≤ t ≤ T and any two stopping times σ, τ ∈ Mt,T

Rε
t (σ, τ) −→ Rt(σ, τ) as ǫ goes to 0,

V ε
t −→ Vt as ǫ goes to 0,

where

Rt(σ, τ) =

∫ σ∧τ

t

h(s)ds+ g(XT )1{σ∧τ=T} + L(τ,Xτ )1{τ<T,τ≤σ} + U(σ,Xσ)1{σ<τ}

is the payoff of a stochastic game, which value function Vt is given by the state-process

Y given in the Theorem 4.3.
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