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ABSTRACT. In this paper, we mainly consider the uniform asymptotic behavior for the finite-

time ruin probabilities of a two-dimensional insurance model. In this model, the insurance company

operates two classes of insurance business, whose claims occur in pairs and share a same claim arrival

process. In the obtained result, the claim distributions cover most of the common subexponential

distributions. The risk model with dependent inter-arrival times as well as the one with Brownian

motion diffusions are also investigated.
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1. INTRODUCTION

The multi-dimensional risk models were initially investigated by Hult et al. (2005).

Since then, many researchers have been devoted to the research of this field and have

obtained many meaningful results, see, for instance, Yuen et al. (2006), Li et al.

(2007), Chen et al. (2011), Zhang and Wang (2012), Chen et al. (2013), Gao and

Yang (2014), Yang and Li (2014), Jiang et al. (2015), Lu and Zhang (2016) and Yang

and Yuen (2016), and so on.

Among the above-mentioned results, Chen et al. (2011) considered a two-dimen-

sional insurance model satisfying the following assumptions.
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Assumption 1.1. The claims come in pairs and the claim amounts {Xin, n ≥ 1},

i = 1, 2 form two sequences of independent, identically distributed (i.i.d.) and non-

negative random variables (r.v.s) with finite means and distributions F1 and F2 re-

spectively.

Assumption 1.2. The claims of the two classes of insurance business share the same

claim arrival process

N(t) = inf

{
n :

n∑

i=1

θi ≤ t

}
, t ≥ 0,(1.1)

where the claim inter-arrival times {θn, n ≥ 1} are i.i.d. r.v.s with a common finite

positive mean λ−1. Namely, {N(t), t ≥ 0} is a renewal counting process. We always

assume that {X1n, n ≥ 1}, {X2n, n ≥ 1} and {N(t), t ≥ 0} are mutually independent.

Assumption 1.3. The premium rates of the two classes of insurance business are

two positive constants c1 and c2 such that the following safety loading conditions

hold:

µi = λ−1ci −EXi1 > 0, i = 1, 2.

With the initial surplus vector of the insurance company ~x =

(
x1

x2

)
> ~0, the ruin

probability by time t, t ≥ 0 can be defined as

ψa(~x, t) = P

(
2⋂

i=1

{
sup

0≤s≤t
Li(s) > xi

})

or

ψb(~x, t) = P

(
2⋃

i=1

{
sup

0≤s≤t
Li(s) > xi

})
,

where

(1.2)

(
L1(t)

L2(t)

)
=

N(t)∑

j=1

(
X1j

X2j

)
−

(
c1t

c2t

)
, t ≥ 0

is the aggregate loss process of the insurance company. See Lu and Zhang (2016) for

some other definitions of the ruin probabilities.

Before introducing a brief review and our main result on the two-dimensional ruin

probabilities, we need some notions and notation. For a r.v. X with a distribution

F , we denote its tail by F , namely, F (x) := P (X > x) for any −∞ < x < ∞.

We say that X is bounded above if there exists some −∞ < C < ∞ such that

F (C) = 1, and unbounded above otherwise. Hereafter, we always suppose that X

is unbounded above. We say that X (or F ) is long-tailed, denoted by F ∈ L, if

limx→∞
F (x−1)

F (x)
= 1; we say that X (or F ) is dominatedly-varying tailed, denoted by

F ∈ D, if lim supx→∞
F (xy)

F (x)
< ∞ for some 0 < y < 1; we say that X (or F ) is



ASYMPTOTIC RUIN PROBABILITIES OF A TWO-DIMENSIONAL RISK MODEL 519

consistently-varying tailed, denoted by F ∈ C, if limy↑1 lim supx→∞
F (xy)

F (x)
= 1; we say

that X (or F ) is subexponential, denoted by F ∈ S, if F ∈ L and limx→∞
F ∗2(x)

F (x)
= 2,

where F ∗2 is the two-fold convolution of F ; We say that F is strongly subexponential,

denoted by F ∈ S∗, if
∫∞

0
F (x)dx < ∞ and lim supx→∞ sup1≤u<∞

∣∣F ∗2
u (x)

Fu(x)
− 1
∣∣ = 0,

where

Fu(x) =





min{1,
∫ x+u

x
F (t)dt}, if x > 0;

1, if x ≤ 0.

If
∫∞

0
F (x)dx <∞, then we have the following inclusion relationships:

C ⊆ L ∩ D ⊆ S∗ ⊆ S ⊆ L,

see, for instance, Cline et al. (1994), Korshunov (2002) and Denisov et al. (2004),

among many others.

Now we return to the main topic of this paper. Based on the one-dimensional

results of Tang (2004), Chen et al. (2011) derived uniform asymptotics of ψa(~x, t) and

ψb(~x, t) under the condition that the claim distributions belonged to the class C. Chen

et al. (2013) generalized this model by enlarging the class of the claim distributions

from the class C to the class L ∩ D. Besides, they allowed the claim inter-arrival

times to be dependent according to certain dependence structure. More recently,

Lu and Zhang (2016) obtained uniform asymptotics for ψa(~x, t), ψb(~x, t) and ruin

probabilities of some other forms by assuming that the claim distributions belonged

to the class S∗. However, they needed some extra conditions.

This paper aims to remove the limitations in Lu and Zhang (2016). More con-

cretely, we will establish the following uniform asymptotics for ψa(~x, t), ψb(~x, t) for

general strongly subexponential claims. For notational convenience, for two functions

a(x, t) and b(x, t), we write a(x, t) . b(x, t), if lim sup(x,t)→(∞,∞) a
−1(x, t)b(x, t) ≤ 1;

a(x, t) & b(x, t), if lim inf(x,t)→(∞,∞) a
−1(x, t)b(x, t) ≥ 1 and a(x, t) ∼ b(x, t), if both

a(x, t) . b(x, t) and a(x, t) & b(x, t). Hereafter, unless otherwise stated, the limit pro-

cedure is to let (x1 ∧ x2, t) → (∞,∞) but with κx1 ≤ x2 ≤ κ−1x1 for some positive

constant κ ∈ (0, 1), where x1 ∧ x2 = min{x1, x2}.

With the above set-up, we are now ready to state our main result which gives

asymptotic estimates of the finite-time ruin probabilities ψa(~x, t) and ψb(~x, t).

Theorem 1.4. Consider the two-dimensional risk model whose aggregate loss process

is defined by (1.2). Suppose that Assumptions 1.1–1.3 hold. If F1, F2 ∈ S∗, then

ψa(~x, t) ∼
2∏

i=1

µ−1
i

∫ xi+µiλt

xi

Fi(y)dy(1.3)
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and

ψb(~x, t) ∼

2∑

i=1

µ−1
i

∫ xi+µiλt

xi

Fi(y)dy.(1.4)

By Theorem 1.4, we immediately obtain the following result, which generalizes

Theorem 2 of Chen et al. (2011) and Theorem 3.1 of Lu and Zhang (2016).

Corollary 1.5. Let the conditions of Theorem 1.4 be valid. Then for any function

f(·) : [0,∞) 7→ [0,∞) such that f(x) → ∞ as x→ ∞,

lim sup
x1∧x2→∞

sup
t≥f(x1∧x2)

∣∣∣∣∣
ψa(~x, t)∏2

i=1 µ
−1
i

∫ xi+µiλt

xi
Fi(y)dy

− 1

∣∣∣∣∣ = 0

and

lim sup
x1∧x2→∞

sup
t≥f(x1∧x2)

∣∣∣∣∣
ψb(~x, t)∑2

i=1 µ
−1
i

∫ xi+µiλt

xi
Fi(y)dy

− 1

∣∣∣∣∣ = 0.

The rest of this paper is organized as follows. In Section 2 we first develop some

lemmas, then prove the main result given in Section 1. In Section 3, we extend the

two-dimensional risk model to one with Brownian motion diffusions.

2. Proof of Theorem 1.4

2.1. Some Lemmas. In order to prove Theorem 1.4, we need some lemmas. The

first lemma investigates some properties of long-tailed distributions, which has its

own independent interest.

Lemma 2.1. Let F ∈ L. Then for any ε > 0, there exists some x0 > 0 such that for

all x > x0 and all 0 ≤ u < x− x0,

eε(u−1)F (x) ≤ F (x− u) ≤ eε(u+1)F (x).

Proof. We only prove the inequality on the right-hand side, and the one on the left-

hand side can be proved similarly.

For any ε > 0, by F ∈ L, we may choose some x0 > 0 such that for all x > x0,

F (x− 1) ≤ eεF (x).

Then for all x>x0 and all positive integer n such that x− n+ 1 > x0, we have

F (x− n)

F (x)
=

F (x− n)

F (x− n + 1)
·
F (x− n+ 1)

F (x− n+ 2)
· · ·

F (x− 1)

F (x)
≤ eεn.(2.1)

For any non-negative number u such that 0 ≤ u < x−x0, let nu be the largest integer

which is no larger than u, then u − 1 < nu ≤ u < nu + 1. Therefore, for all x > x0

and all 0 ≤ u < x− x0, we have x− (nu + 1) + 1 = x− nu > x0, thus by (2.1),

F (x− u)

F (x)
≤
F (x− (nu + 1))

F (x)
≤ eε(nu+1) ≤ eε(u+1).
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This completes the proof. �

Lemma 1 and Theorem 1 of Korshunov (2002) stated the following uniform as-

ymptotic result for the maximum of a random walk with a negative mean, which plays

an important role in this paper. Here we make the convention that a summation over

an empty set of indices is zero.

Lemma 2.2. Let {Xn, n ≥ 1} be a sequence of i.i.d. r.v.s with a common distribution

F and a common mean −µ < 0. Let {Sn =
∑n

k=1Xk, n ≥ 0} be the random walk

generated by {Xn, n ≥ 1}.

(i) If F ∈ L, then

lim inf
x→∞

inf
n≥1

P (max1≤k≤n Sk > x)

µ−1
∫ x+nµ

x
F (y)dy

≥ 1.

(ii) If F ∈ S∗, then

lim sup
x→∞

sup
n≥1

∣∣∣∣∣
P (max1≤k≤n Sk > x)

µ−1
∫ x+nµ

x
F (y)dy

− 1

∣∣∣∣∣ = 0.

The following Lemma is due to Lemma 3.3 of Leipus and S̆iaulys (2007). The

readers are referred to Lemma 4.4 of Wang et al. (2012) for a more general form in

the dependent case.

Lemma 2.3. Let {Xn, n ≥ 1} be a sequence of i.i.d. r.v.s with a common mean

−µ < 0 and {Sn, n ≥ 0} be the random walk generated by {Xn, n ≥ 1}. If X1 is

bounded above, then there exist two constants r,M > 0 such that for all x > 0,

P

(
max
n≥1

Sn > x

)
≤Me−rx.

The following Lemma is due to Theorem 1(i) of Koc̆etova et al. (2009). See

Lemma 4.6 of Wang et al. (2012) for its generalization to the dependent case.

Lemma 2.4. Consider the renewal counting process {N(t), t ≥ 0} introduced in (1.1).

For any a > λ, there exists some b > 1 such that

lim
t→∞

∑

k>at

P (N(t) ≥ k)bk = 0.

The last lemma is due to (3.2) of Chen et al. (2011).

Lemma 2.5. Let f(x) be a non-increasing function defined on [a, c], a < c. If

a < b < c, then

∫ c

a

f(x)dx ≤ (b− a)−1(c− a)

∫ b

a

f(x)dx.
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2.2. Proof of (1.3). In this subsection, we prove (1.3) in Theorem 1.4. It’s sufficient

to prove the following result:

2∏

i=1

µ−1
i

∫ xi+µiλt

xi

Fi(y)dy . ψa(~x, t) .

2∏

i=1

µ−1
i

∫ xi+µiλt

xi

Fi(y)dy.(2.2)

2.2.1. Proof of the upper limit part in (2.2). For any ε > 0, let

ψa(~x, t) =

(
sup

0≤k≤N(t)

k∑

j=1

(X1j − c1θj) > x1,

sup
0≤k≤N(t)

k∑

j=1

(X2j − c2θj) > x2, N(t) ≤ λt(1 + ε)

)

+ P

(
sup

0≤k≤N(t)

k∑

j=1

(X1j − c1θj) > x1,

sup
0≤k≤N(t)

k∑

j=1

(X2j − c2θj) > x2, N(t) > λt(1 + ε)

)

:= ψa1(~x, t) + ψa2(~x, t).(2.3)

We first deal with ψa2(~x, t). By Lemma 2.4, there exists some β > 0 such that

lim sup
t→∞

∑

n>λt(1+ε)

P (N(t) ≥ n)e2βn = 0.(2.4)

Furthermore, by Fi ∈ S∗ and Kesten’s inequality, there exists some K := K(β) > 0

such that for all x ≥ 0 and all n ≥ 1,

F ∗n
i (x) ≤ KeβnFi(x), i = 1, 2.(2.5)

We know by (2.4) that there exists some t′1 > 0 such that for all t ≥ t′1,

µiλt > 1, i = 1, 2(2.6)

and

K2
∑

n>λt(1+ε)

P (N(t) ≥ n)e2βn < ε.(2.7)

By (2.5) and (2.7), it holds for all t ≥ t′1 and x1, x2 ≥ 0 that

ψa2(~x, t) ≤
∑

n>λt(1+ε)

P

(
n∑

j=1

X1j > x1,

n∑

j=1

X2j > x2, N(t) = n

)

≤ K2F1(x1)F2(x2)
∑

n>λt(1+ε)

e2βnP (N(t) = n)

≤ εF1(x1)F2(x2).(2.8)
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Still by F ∈ S∗, there exists some x′0 sufficiently large such that for all x > x′0,

Fi(x+ 1) ≥
1

2
Fi(x), i = 1, 2.(2.9)

By (2.6), (2.8) and (2.9), it holds for x1 ∧ x2 > x′0 and t > t′1 that

ψa2(~x, t) ≤
εF1(x1)F2(x2)∏2

i=1 µ
−1
i

∫ xi+1

xi
Fi(y)dy

2∏

i=1

µ−1
i

∫ xi+µiλt

xi

Fi(y)dy

≤ 4εµ1µ2

2∏

i=1

µ−1
i

∫ xi+µiλt

xi

Fi(y)dy.(2.10)

Next, we deal with ψa1(~x, t). Let c = c1 ∨ c2 = max{c1, c2}. For any 0 <

δ < min{1, λc−1(µ1 ∧ µ2)}, we write ξij(δ) = Xij − λ−1ci(1 − δ), µiδ = −Eξij(δ) =

µi − λ−1ciδ, Si(t, δ) = sup0≤k≤λt(1+ε)

∑k
j=1 ξij(δ), ηj(δ) = λ−1(1 − δ) − θj , j ≥ 1,

i = 1, 2 and η(δ) = c supk≥0

∑k
j=1 ηj(δ). For any fixed δ > 0, since {ηj(δ), j ≥ 1} is

bounded above, it follows from Lemma 2.3 that there exists some 0 < γ1 := γ1(δ) < ε

such that

Ee2γ1η(δ) <∞.

Hence there exists some l1 > 0 such that

Ee2γ1η(δ)1(η(δ) > l1) < ε,(2.11)

where 1(A) is the indicator function of the event A.

For some fixed 0 < σ < 2−1, we have

ψa1(~x, t) ≤ P (S1(t, δ) + η(δ) > x1, S2(t, δ) + η(δ) > x2)

≤ P (S1(t, δ) > x1 − l1)P (S2(t, δ) > x2 − l1)

+ P (S1(t, δ) + η(δ) > x1, S2(t, δ) + η(δ) > x2, l1 < η(δ) ≤ σ(x1 ∧ x2))

+ P (η(δ) > σ(x1 ∧ x2))

:= ψa11(~x, t) + ψa12(~x, t) + ψa13(~x, t).(2.12)

Firstly, we deal with ψa11(~x, t). By F ∈ S∗, there exists some x′1 ≥ x′0 such that

for all x > x′1,

(1 − ε)Fi(x) ≤ Fi(x± l1) ≤ (1 + ε)Fi(x), i = 1, 2.(2.13)

Moreover, by Lemma 2.2(ii), we may assume that x′1 is sufficiently large such that for

all x ≥ x′1 and all t > 0,

P (Si(t, δ) > x) ≤ (1 + ε)µ−1
iδ

∫ x+µiδλt(1+ε)

x

Fi(u+ λ−1ci(1 − δ))du

≤ (1 + ε)µ−1
iδ

∫ x+µiδλt(1+ε)

x

Fi(u)du, i = 1, 2.(2.14)
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We know by (2.14), (2.13) and Lemma 2.5 that when x1 ∧ x2 ≥ x′2 := x′1 + l1 and

t > 0,

P (Si(t, δ) > xi − l1) ≤ (1 + ε)µ−1
iδ

∫ xi−l1+µiδλt(1+ε)

xi−l1

Fi(y)dy

= (1 + ε)µ−1
iδ

∫ xi+µiδλt(1+ε)

xi

Fi(z − l1)dz

≤ (1 + ε)3µ−1
iδ

∫ xi+µiδλt

xi

Fi(y)dy, i = 1, 2.(2.15)

Plugging (2.15) into ψa11(~x, t), we obtain that when x1 ∧ x2 ≥ x′2 and t > 0,

ψa11(~x, t) ≤ (1 + ε)6
2∏

i=1

µ−1
iδ

∫ xi+µiδλt

xi

Fi(y)dy

≤ (1 + ε)6
2∏

i=1

µ−1
iδ

∫ xi+µiλt

xi

Fi(y)dy.(2.16)

Secondly, we deal with ψa12(~x, t). In view of Lemma 2.1, we know that for

sufficiently large x′2, the following relations hold for all x ≥ x′2 and any 0 ≤ u < x−x′2:

Fi(x− u) ≤ eγ1(u+1)Fi(x), i = 1, 2.(2.17)

It’s clear that

ψa12(~x, t) =

∫ σ(x1∧x2)

l1

P

(
2⋂

i=1

{Si(t, δ) > xi − u}

)
dP (η(δ) ≤ u).(2.18)

Take x′3 sufficiently large such that (1−σ)x′3 ≥ x′2, then we have xi−u ≥ (1−σ)x′3 ≥

x′2, i = 1, 2 for all l1 ≤ u ≤ σ(x1∧x2) if x1∧x2 ≥ x′3. Therefore, it follows from (2.14)

that when x1 ∧ x2 ≥ x′3 and t > 0, it holds uniformly for all l1 ≤ u ≤ σ(x1 ∧ x2) that

P

(
2⋂

i=1

{Si(t, δ) > xi − u}

)
≤ (1 + ε)2

2∏

i=1

µ−1
iδ

∫ xi−u+µiδλt(1+ε)

xi−u

Fi(y)dy

= 1 + ε)2

2∏

i=1

µ−1
iδ

∫ xi+µiδλt(1+ε)

xi

Fi(ω − u)dω.(2.19)

Combining (2.18)–(2.19) and Fubini’s theorem, when x1 ∧x2 ≥ x′3 and t > 0, we have

ψa12(~x, t) ≤ (1 + ε)2

∫ σ(x1∧x2)

l1

∫∫

(ω1,ω2)∈D(t,ε,δ)

2∏

i=1

µ−1
iδ Fi(ωi − u)dω1dω2dP (η(δ) ≤ u)

≤ (1 + ε)2

∫∫

(ω1,ω2)∈D(t,ε,δ)

∫ σ(x1∧x2)

l1

2∏

i=1

µ−1
iδ Fi(ωi − u)dP (η(δ) ≤ u)dω1dω2,(2.20)

whereD(t, ε, δ) := {(ω1, ω2) : x1 ≤ ω1 ≤ x1+µ1δλt(1+ε), x2 ≤ ω2 ≤ x2+µ2δλt(1+ε)}.

Noting that when x1 ∧ x2 ≥ x′3, we have ωi − u ≥ (1 − σ)xi≥ x′2 for all xi ≤ ωi ≤
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xi + µiδλt(1 + ε), i = 1, 2 and l1 ≤ u ≤ σ(x1 ∧ x2). Therefore, by (2.17) and (2.11),

when x1 ∧ x2 ≥ x′3 and t > 0, we have

∫ σ(x1∧x2)

l1

2∏

i=1

Fi(ωi − u)dP (η(δ) ≤ u) ≤

∫ σ(x1∧x2)

l1

e2γ1(u+1)dP (η(δ) ≤ u)

2∏

i=1

Fi(ωi)

≤ e2γ1Ee2γ1η(δ)1(η(δ) > l1)

2∏

i=1

Fi(ωi)

≤ εe2εF1(ω1)F2(ω2).(2.21)

Plugging (2.21) into (2.20) and using Lemma 2.5, we see that when x1 ∧ x2 ≥ x′3 and

t > 0,

ψa12(~x, t) ≤ ε(1 + ε)2e2ε

∫ x1+µ1δλt(1+ε)

x1

∫ x2+µ2δλt(1+ε)

x2

2∏

i=1

µ−1
iδ Fi(ωi)dω1dω2

≤ ε(1 + ε)4e2εµ−1
1δ µ

−1
2δ

∫ x1+µ1δλt

x1

F1(y)dy

∫ x2+µ2δλt

x2

F2(y)dy

≤ ε(1 + ε)4e2ε

2∏

i=1

µ−1
iδ

∫ xi+µiλt

xi

Fi(y)dy.(2.22)

At last, we deal with ψa13(~x, t). By Lemma 2.3, there exist two constants M :=

M(δ) and r := r(δ) such that for all x1, x2 > 0 and t > 0,

ψa13(~x, t) ≤Me−rσ(x1∧x2).

Recall that there is some 0 < κ < 1 such that κx1 ≤ x2 ≤ κ−1x1, so we have

x1 ∧ x2 ≥ 2−1κ(x1 + x2). Thus when x1 ∧ x2 > 0 and t > 0,

ψa13(~x, t) ≤Me−2−1rσκx1 · e−2−1rσκx2 .(2.23)

Since Fi ∈ S∗, we conclude by the proof of Lemma 1 of Embrechts et al. (1979) that

any exponential function with negative parameters is a higher-order infinitesimal of

Fi(x), i = 1, 2. Hence it is implied by (2.23) that there exists a constant x′4 ≥ x′3 such

that when x1 ∧ x2 ≥ x′4 and t > 0,

ψa13(~x, t) ≤ εF1(x1)F2(x2).

Using the same idea in the argument (2.8)–(2.10), we know that when x1 ∧ x2 ≥ x′4

and t ≥ t′1,

ψa13(~x, t) ≤ 4εµ1µ2

2∏

i=1

µ−1
i

∫ xi+µiλt

xi

Fi(y)dy.(2.24)

Plugging (2.16), (2.22) and (2.24) into (2.12), we see that when x1 ∧ x2 ≥ x′4 and

t ≥ t′1,

(2.25) ψa1(~x, t) ≤
(
(1 + ε)6 + ε(1 + ε)4e2ε + 4εµ1µ2

) 2∏

i=1

µ−1
iδ

∫ xi+µiλt

xi

Fi(y)dy.
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Therefore, we conclude from (2.3), (2.10) and (2.25) that when x1 ∧ x2 ≥ x′4 and

t ≥ t′1,

ψa(~x, t) ≤
(
(1 + ε)6 + ε(1 + ε)4e2ε + 8εµ1µ2

) 2∏

i=1

µ−1
iδ

∫ xi+µiλt

xi

Fi(y)dy.

Thus we prove the upper limit in (2.2) due to the arbitrariness of ε and δ. �

2.2.2. Proof of the lower limit part in (2.2). Recall that c = c1 ∨ c2. For any

δ > 0, let ξ̃ij(δ) = Xij − λ−1ci(1 + δ), µ̃iδ = −Eξ̃ij(δ) = µi + λ−1ciδ, S̃i(n, δ) =

max0≤k≤n

∑k
j=1 ξ̃ij(δ), η̃j(δ) = λ−1(1 + δ) − θj , j ≥ 1, i = 1, 2, and η̃(δ) =

c infk≥0

∑k
j=1 η̃j(δ).

Noting that Eη̃1(δ) > 0, so η̃(δ) is proper. Thus for any 0 < ε < 2−1, there exists

some l2 > 0 large enough such that

P (η̃(δ) > −l2) > 1 − ε.(2.26)

By Lemma 2.2(i) and F1, F2 ∈ S∗, there exists some x′5 > 0 such that when x1∧x2 ≥ x′5

and t > 0, it holds uniformly for all n ≥ λt(1 − δ) that

P
(
S̃i(n, δ) > xi + l2

)
≥ (1 − ε)(µ̃iδ)

−1

∫ xi+l2+neµiδ

xi+l2

Fi(y + λ−1ci(1 + δ))dy

≥ (1 − ε)(µ̃iδ)
−1

∫ xi+λt(1−δ)eµiδ

xi

Fi

(
u+ l2 + λ−1ci(1 + δ)

)
du

≥ (1 − ε)2(1 − δ)(µ̃iδ)
−1

∫ xi+λteµiδ

xi

Fi(u)du, i = 1, 2,

where in the last step we used the long-tailed property of F1, F2 and Lemma 2.5.

Thus by the independence of {X1n, n ≥ 1} and {X2n, n ≥ 1}, it holds uniformly for

all x1 ∧ x2 ≥ x′5, t > 0 and n ≥ λt(1 − δ) that

P
(
S̃1(n, δ) > x1 + l2, S̃2(n, δ) > x2 + l2

)

≥ (1 − ε)4(1 − δ)2(µ̃1δµ̃2δ)
−1

∫ x1+eµ1δλt

x1

F1(u)du

∫ x2+eµ2δλt

x2

F2(u)du.(2.27)

Since {N(t), t ≥ 0} is a renewal counting process, we know that there exists some

t′2 > 0 sufficiently large such that for all t ≥ t′2,

P (N(t) > (1 − δ)λt) > 1 − ε.(2.28)

Thus by (2.26) and (2.28), for all t ≥ t′2,

∑

n>(1−δ)λt

P (N(t) = n, η̃(δ) > −l2) ≥ P (N(t) > (1 − δ)λt) − P (η̃(δ) ≤ −l2)

≥ 1 − 2ε.(2.29)
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Therefore, by (2.27), (2.29) and Lemma 2.5, when x1 ∧ x2 ≥ x′5 and t ≥ t′2,

ψa(~x, t)

= P

(
sup

0≤k≤N(t)

k∑

j=1

(
ξ̃1j(δ) + c1η̃j(δ)

)
> x1, sup

0≤k≤N(t)

k∑

j=1

(
ξ̃2j(δ) + c2η̃j(δ)

)
> x2

)

≥ P
(
S̃1(N(t), δ) > x1 + l2, S̃2(N(t), δ) > x2 + l2, η̃(δ) > −l2, N(t) ≥ λt(1 − δ)

)

≥ (1 − ε)4(1 − 2ε)(1 − δ)2(µ̃1δµ̃2δ)
−1

∫ x1+eµ1δλt

x1

F1(u)du

∫ x2+eµ2δλt

x2

F2(u)du

≥ (1 − ε)4(1 − 2ε)(1 − δ)2
2∏

i=1

(µ̃iδ)
−1

∫ xi+µiλt

xi

Fi(y)dy.

Since ε and δ are arbitrarily fixed, we prove the lower limit in (2.2). �

2.3. Proof of (1.4). Obviously, we have

ψb(~x, t) = P

(
sup

0≤s≤t
L1(s) > x1

)
+ P

(
sup

0≤s≤t
L2(s) > x2

)
− ψa(~x, t).(2.30)

For any 0 < ε < 3−1, by (1.3) and the finiteness of EX11, there exists some x′6 > 0

and t′3 > 0 large enough such that when x1 ∧ x2 > x′6 and t ≥ t′3,

ψa(~x, t) ≤ (1 + ε)

2∏

i=1

µ−1
i

∫ xi+µiλt

xi

Fi(y)dy

≤ ε(1 + ε)µ−1
2

∫ x2+µ2λt

x2

F2(y)dy.(2.31)

By Corollary 2.1 of Wang et al. (2012), for sufficiently large x′6 and t′3, when x1∧x2 >

x′6 and t ≥ t′3,

(1 − ε)µ−1
i

∫ xi+µiEN(t)

xi

Fi(y)dy ≤ P

(
sup

0≤s≤t
Li(s) > xi

)

≤ (1 + ε)µ−1
i

∫ xi+µiEN(t)

xi

Fi(y)dy, i = 1, 2.(2.32)

Since {N(t), t ≥ 0} is a renewal counting process, for sufficiently large t′3, we know

that

(1 − ε)λt ≤ EN(t) ≤ (1 + ε)λt for all t ≥ t′3.(2.33)

Combining (2.32), (2.33) and Lemma 2.5, we know that when x1∧x2 > x′6 and t > t′3,

(1 − ε)2µ−1
i

∫ xi+µiλt

xi

Fi(y)dy ≤ P

(
sup

0≤s≤t
Li(s) > xi

)

≤ (1 + ε)2µ−1
i

∫ xi+µiλt

xi

Fi(y)dy.(2.34)
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By (2.30), (2.31) and (2.34), when x1 ∧ x2 > x′6 and t > t′3,

ψb(~x, t) ≤ (1 + ε)2

(
µ−1

1

∫ x1+µ1λt

x1

F1(y)dy + µ−1
2

∫ x2+µ2λt

x2

F2(y)dy

)

and

ψb(~x, t) ≥ (1 − ε)2µ−1
1

∫ x1+µ1λt

x1

F1(y)dy + (1 − 3ε)µ−1
2

∫ x2+µ2λt

x2

F2(y)dy.

Therefore, we prove (1.4) by the arbitrariness of ε. �

Remark 2.6. Chen et al. (2013) considered a risk model with extended negatively

orthant dependent (ENOD, see Liu et al. (2009) for its definition) inter-arrival times

{θn, n ≥ 1}, and obtained a similar result to Theorem 1.4 under the condition that

the claim distributions belonged to the distribution class L ∩ D. We see that if the

inter-arrival times are ENOD, then Lemma 2.3 still holds by Lemma 4.4 of Wang et

al. (2012), which implies that (2.11) and (2.23) are true; and by Lemma 4.6 of Wang

et al. (2012), Lemma 2.4 holds, which implies (2.4); and by Theorem 4.2 of Chen

et al. (2010), (2.28) holds true. Thus Theorem 1.4 still holds if Assumption 1.2 is

replaced by the following Assumption 1.2∗.

Assumption 1.2∗. The inter-arrival claim times {θn, n ≥ 1} are ENOD and identi-

cally distributed r.v.s with a common finite mean λ−1.

3. The case with Brownian motion diffusions

In this section, we extend the two-dimensional risk model introduced in Section 1

to one with Brownian motion diffusions. By definition, a standard Brownian motion

{B(t), t ≥ 0} is a random process with independent increments and almost-surely

continuous paths, and for each given t, B(t) is a centered Gaussian r.v. with variance

t. We consider such a risk model that its aggregate loss process has the following

form:

(3.1)

(
L̃1(t)

L̃1(t)

)
=

N(t)∑

j=1

(
X1j

X2j

)
−

(
c1t

c2t

)
−

(
σ1B1(t)

σ2B2(t)

)
, t ≥ 0,

where the two diffusion processes {Bi(t), t ≥ 0}, i = 1, 2 are mutually independent

standard Brownian motions, σi, i = 1, 2 are positive constants and the other quantities

are the same as in Section 1. The corresponding ruin probability can be defined as

ψ̃a(~x, t) = P

(
2⋂

i=1

{
sup

0≤s≤t
L̃i(s) > xi

})

or

ψ̃b(~x, t) = P

(
2⋃

i=1

{
sup

0≤s≤t
L̃i(s) > xi

})
.
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Our main result is as follows.

Theorem 3.1. Consider the risk model introduced above. Suppose that Assump-

tions 1.1–1.3 hold. Suppose that {(B1(t), B2(t))
T , t ≥ 0} is independent of {(X1n, X2n)T ,

n ≥ 1} and {θn, n ≥ 1}. If F1, F2 ∈ S∗, then

ψ̃a(~x, t) ∼

2∏

i=1

µ−1
i

∫ xi+µiλt

xi

Fi(y)dy(3.2)

and

ψ̃b(~x, t) ∼
2∑

i=1

µ−1
i

∫ xi+µiλt

xi

Fi(y)dy.(3.3)

By Theorem 3.1, we immediately obtain the following result.

Corollary 3.2. Consider the two-dimensional risk model whose aggregate loss process

is defined by (3.1). Suppose that Assumptions 1.1–1.3 hold. If F1, F2 ∈ S∗, then for

any function f(·) : [0,∞) 7→ [0,∞) such that f(x) → ∞ as x→ ∞,

lim sup
x1∧x2→∞

sup
t≥f(x1∧x2)

∣∣∣∣∣
ψ̃a(~x, t)∏2

i=1 µ
−1
i

∫ xi+µiλt

xi
Fi(y)dy

− 1

∣∣∣∣∣ = 0

and

lim sup
x1∧x2→∞

sup
t≥f(x1∧x2)

∣∣∣∣∣
ψ̃b(~x, t)∑2

i=1 µ
−1
i

∫ xi+µiλt

xi
Fi(y)dy

− 1

∣∣∣∣∣ = 0.

In order to prove Theorem 3.1, we need the following lemma, which is due to

Theorem 3.1 of Chapter X of Rolski et al. (1999).

Lemma 3.3. Let {B(t), t ≥ 0} be a standard Brownian motion. Then for any σ, δ > 0

and x > 0,

P

(
sup

0≤s<∞

{−δs + σB(s)} > x

)
= e−2δx/σ2

.

Recall that if {B(t), t ≥ 0} is a standard Brownian motion, then {−B(t), t ≥ 0}

is also a standard Brownian motion. Hence according to Lemma 3.3, we have the

following result

P

(
sup

0≤s<∞

{−δs− σB(s)} > x

)
= e−2δx/σ2

.(3.4)

and

P

(
inf

0≤s<∞
{δs− σB(s)} ≤ −x

)
= e−2δx/σ2

(3.5)
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Proof of Theorem 3.1. The proof of (3.3) is based on (3.2) and similar to that of (1.4),

so we only prove (3.2). It suffices to prove

ψ̃a(~x, t) .

2∏

i=1

µ−1
i

∫ xi+µiλt

xi

Fi(y)dy(3.6)

and

ψ̃a(~x, t) &

2∏

i=1

µ−1
i

∫ xi+µiλt

xi

Fi(y)dy.(3.7)

For any δ > 0 and i = 1, 2, we set aiδ = λ−1(ci−δ)−EXi1 and biδ = λ−1(ci+δ)−EXi1.

Since limδ→0 aiδ = µi > 0, there exists some δ0 > 0 such that aiδ > 0 for all 0 < δ < δ0.

For simplicity, we write L+
i (δ, t) = Li(t) + δt, L−

i (δ, t) = Li(t) − δt, B+
i (δ, t) =

−σiBi(t) + δt, B−
i (δ, t) = −σiBi(t) − δt, t ≥ 0, i = 1, 2.

By (3.4) and (3.5), for any ε > 0 and 0 < δ < δ0, there exists some l3 > 0 and

0 < γ2 < 2δ(σ−2
1 ∧ σ−2

2 ) such that

P

(
inf

0≤s<∞
B+

i (δ, s) ≥ −l3

)
> 1 − ε(3.8)

and

E exp

{
γ2 sup

0≤s<∞

B−
i (δ, s)

}
1

(
sup

0≤s<∞

B−
i (δ, s) > l3

)
< ε, i = 1, 2.(3.9)

We first prove (3.6). By Theorem 1.4, there exists some x′7 > l3 and t′4 > 0 such

that for all x1 ∧ x2 ≥ x′7 and t ≥ t′4,

P

(
2⋂

i=1

{
sup

0≤s≤t
L+

i (δ, s) > xi

})
< (1 + ε)

2∏

i=1

a−1
iδ

∫ xi+aiδλt

xi

Fi(y)dy(3.10)

and

P

(
2⋂

i=1

{
sup

0≤s≤t
L−

i (δ, s) > xi

})
> (1 − ε)

2∏

i=1

b−1
iδ

∫ xi+biδλt

xi

Fi(y)dy.(3.11)

We may assume that x′7 is sufficiently large such that for all x ≥ x′7,

(1 − ε)Fi(x) ≤ Fi(x± l3) ≤ (1 + ε)Fi(x), i = 1, 2.(3.12)

Hereafter, denote Eit = sup0≤s≤t L̃i(s) > xi, i = 1, 2. For some fixed 0 < σ < 2−1.

Choose some x′8 > σ−1x′7, when x1 ∧ x2 > x′8, we decompose ψ̃a(~x, t) as follows.

ψ̃a(~x, t) ≤ P

(
2⋂

i=1

Eit,

2⋂

i=1

{
sup

0≤s≤t
B−

i (δ, s)≤ l3

})

+ P

(
2⋂

i=1

Eit,

2⋂

i=1

{
l3 < sup

0≤s≤t
B−

i (δ, s) ≤ σ(x1 ∧ x2)

})

+ P

(
2⋂

i=1

Eit, sup
0≤s≤t

B−
2 (δ, s) ≤ l3 < sup

0≤s≤t
B−

1 (δ, s) ≤ σ(x1 ∧ x2)

)



ASYMPTOTIC RUIN PROBABILITIES OF A TWO-DIMENSIONAL RISK MODEL 531

+ P

(
2⋂

i=1

Eit, sup
0≤s≤t

B−
1 (δ, s) ≤ l3 < sup

0≤s≤t
B−

2 (δ, s) ≤ σ(x1 ∧ x2)

)

+ P

(
2⋃

i=1

{
sup

0≤s≤t
B−

i (δ, s) > σ(x1 ∧ x2)

})

:=
5∑

i=1

Ji(~x, t).(3.13)

Recall that x′7 > l3, so if x1 ∧ x2 > x′8, then xi − l3 > x′7, i = 1, 2. Thus by (3.10) and

(3.12), when x1 ∧ x2 > x′8 and t ≥ t′4,

J1(~x, t) ≤ P

(
2⋂

i=1

{
sup

0≤s≤t
L+

i (δ, s) > xi − l3

})

≤ (1 + ε)
2∏

i=1

a−1
iδ

∫ xi−l3+aiδλt

xi−l3

Fi(y)dy

= (1 + ε)
2∏

i=1

a−1
iδ

∫ xi+aiδλt

xi

Fi(y − l3)dy

≤ (1 + ε)2
2∏

i=1

a−1
iδ

∫ xi+aiδλt

xi

Fi(y)dy.(3.14)

Recall that κx1 ≤ x2 ≤ κ−1x1 for some positive constant 0 < κ < 1, so when

x1 ∧ x2 > x′8 and l3 ≤ yi ≤ σ(x1 ∧x2), i = 1, 2, we have (x1 − y1)∧ (x2 − y2) > x′7 and

(1−σ)κ ≤ (x1−y1)
−1(x2−y2) ≤ (1−σ)−1κ−1. Thus by Theorem 1.4 and Lemma 2.1,

there exists some x′9 > x′8 and t′5 > t′4 such that when x1 ∧ x2 > x′9 and t ≥ t′5, it

holds uniformly for all l3 ≤ yi ≤ σ(x1 ∧ x2), i = 1, 2 that

P

(
2⋂

i=1

{
sup

0≤s≤t
L+

i (δ, s) > xi − yi

})
≤ (1 + ε)

2∏

i=1

a−1
iδ

∫ xi+aiδλt

xi

Fi(u− yi)du

≤ (1 + ε)
2∏

i=1

a−1
iδ e

γ2(yi+1)

∫ xi+aiδλt

xi

Fi(u)du.(3.15)

Hereafter, denote byGit(yi) the distribution of sup0≤s≤tB
−
i (δ, s), i = 1, 2 andGt(y1, y2) =

G1t(y1)G2t(y2). Then combining (3.15) with (3.9), we get

J2(~x, t) ≤

∫∫

l3<y1,y2≤σ(x1∧x2)

P

(
2⋂

i=1

{
sup

0≤s≤t
L+

i (δ, s) > xi − yi

})
dGt(y1, y2)

≤ (1 + ε)e2γ2

2∏

i=1

a−1
iδ

∫ xi+aiδλt

xi

Fi(u)du

∫∫

l3<y1,y2≤σ(x1∧x2)

eγ(y1+y2)dGt(y1, y2)

≤ (1 + ε)e2γ2ε2
2∏

i=1

a−1
iδ

∫ xi+aiδλt

xi

Fi(y)dy.(3.16)
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Furthermore, by replacing y2 with l3 in (3.15) and using Lemma 2.1 and (3.12), we

know that when x1∧x2 > x′9 and t > t′5, it holds uniformly for all l3 ≤ y1 ≤ σ(x1∧x2)

that

P

(
sup

0≤s≤t
L+

1 (δ, s) > x1 − y1, sup
0≤s≤t

L+
2 (δ, s) > x2 − l3

)

≤ (1 + ε)a−1
1δ a

−1
2δ

∫ x1+a1δλt

x1

Fi(u− y1)du

∫ x2+a2δλt

x2

F2(u− l3)du

≤ (1 + ε)2eγ2(y1+1)
2∏

i=1

a−1
iδ

∫ xi+aiδλt

xi

Fi(u)du.

Thus when x1 ∧ x2 > x′9 and t > t′5, we have

J3(~x, t) ≤ P

(
E1t, sup

0≤s≤t
L+

2 (δ, s) > x2 − l3, l3 ≤ sup
0≤s≤t

B−
1 (δ, s) ≤ σ(x1 ∧ x2)

)

≤

∫ σ(x1∧x2)

l3

P

(
sup

0≤s≤t
L+

1 (δ, s) > x1 − y1, sup
0≤s≤t

L+
2 (δ, s) > x2 − l3

)
dG1t(y1)

≤ (1 + ε)2eγ2

2∏

i=1

a−1
iδ

∫ xi+aiδλt

xi

Fi(u)du

∫ σ(x1∧x2)

l3

eγ2y1dG1t(y1)

≤ ε(1 + ε)2eγ2

2∏

i=1

a−1
iδ

∫ xi+aiδλt

xi

Fi(y)dy,(3.17)

where (3.9) are used in the last step. Similarly, when x1 ∧ x2 > x′9 and t > t′5, we

have

J4(~x, t) ≤ ε(1 + ε)2eγ2

2∏

i=1

a−1
iδ

∫ xi+aiδλt

xi

Fi(y)dy.(3.18)

Recall that x1 ∧ x2 ≥ 2−1κ(x1 + x2) since κx1 ≤ x2 ≤ κ−1x1, so by (3.4), for all ~x

such that xi > 0, i = 1, 2, we have

J5(~x, t) ≤
2∑

i=1

P

(
sup

0≤s≤t
B−

i (δ, s) > σ(x1 ∧ x2)

)

≤
2∑

i=1

exp
{
−2δσ−2

i σ(x1 ∧ x2)
}

≤ 2 exp
{
−δ(σ−2

1 ∧ σ−2
2 )σκ(x1 + x2)

}
.(3.19)

Suppose that t′5 and x′9 are sufficiently large, then by (3.19) and similar argument to

(2.23)–(2.24), we know that when x1 ∧ x2 > x′9 and t ≥ t′5,

J5(~x, t) ≤ ε

2∏

i=1

a−1
iδ

∫ xi+aiδλt

xi

Fi(u)du, i = 1, 2.(3.20)

Combining (3.13), (3.14), (3.16)–(3.18) and (3.20), we pove (3.6) by the arbitrariness

of ε and δ.
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Next, we prove (3.7). By (3.11) and (3.12), when x1 ∧ x2 > x′7 and t ≥ t′4,

P

(
2⋂

i=1

{
sup

0≤s≤t
L−

i (δ, s) > xi + l3

})
> (1 − ε)

2∏

i=1

b−1
iδ

∫ xi+l3+biδλt

xi+l3

Fi(y)dy

= (1 − ε)

2∏

i=1

b−1
iδ

∫ xi+biδλt

xi

Fi(y + l3)dy

≥ (1 − ε)3

2∏

i=1

b−1
iδ

∫ xi+biδλt

xi

Fi(y)dy.(3.21)

Combining (3.8) and (3.21), we have

ψ̃a(~x, t) ≥ P

(
2⋂

i=1

{
sup

0≤s≤t
L−

i (δ, s) > xi + l3

}
,

2⋂

i=1

{
inf

0≤s≤t
B+

i (δ, s) ≥ −l3

})

≥ (1 − ε)5
2∏

i=1

b−1
iδ

∫ xi+µiλt

xi

Fi(y)dy,

which implies (3.7) by the arbitrariness of ε and δ. �
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