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ABSTRACT. We consider a fractional version of the Heston model where the two standard Brow-

nian motions are replaced by two fractional Brownian motions with Hurst parameter H ∈ (1/2, 1).

We show that the stochastic differential equation admits a unique positive solution by adapting and

generalizing some results of Y. Hu, D. Nualart and X. Song on singular equations driven by rough

paths. Moreover, we show that the fractional version of the variance, which is a version of the

fractional Cox-Ingersoll-Ross model, is still a mean-reverting process.
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1. INTRODUCTION

In classical quantitative finance, it is usual to suppose that risky asset price’s

dynamics are driven by Brownian motions, as proposed for the first time by Bachelier

in 1900 in his Ph.D thesis. Developed by Fisher Black, Robert Merton and My-

ron Scholes in the seventies, the famous Black and Scholes model remains popular

nowadays. Indeed, as closed pricing formulae are provided for European call and put

options, the model is easy to implement. Although, the constant volatility assump-

tion of the model [7] contradicts the empirical observations, i.e. the implied volatility

generally depends on time [14, 8]. This led to consider more sophisticated models,

e.g. dynamics with local volatilities [13], but also stochastic volatility models [10, 1].

Despite these improvements, we may observe in practice a long-term correlation

between the underlying asset prices, see [20]. To address this issue for the Heston

model, a natural idea is to replace the two Brownian motions by fractional Brownian

motions (FBM), see [5, 21]. Indeed, heavier tail distributions and long-range depen-

dence are some of the interesting features of the FBM models that confirms their

relevance, see [2, 4]. The fractional Black-Scholes (FBS) model, one of the first FBM

models, appears to be more efficient and flexible than the classical Black and Scholes
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model to reproduce the behaviour of the stock dynamics despite its limited capacity

to fit the market data, see [3].

In this paper, we introduce and study the stochastic differential equation defined

as the fractional version of the Heston model (FHM) when the Hurst parameter

H ∈ (1/2, 1). Precisely, we first recall the definition of a fractional Brownian motion

and we formulate the existence and uniqueness theorem for the stochastic differential

equation in the fractional Heston model. We show that there exists a unique solution

which is positive. The proof is based on singular equations driven by rough paths

which are studied in Section 3. This section generalises results of [11] to a larger class

of drivers. We then deduce the existence of solutions to singular equations driven by

a FBM in Section 4, which is also a generalisation of [11]. Moreover, we show that

these solutions are not necessary stationary. For specific drivers, we give an explicit

expression of the expectation. This allows to deduce an explicit expression of the

expectation of the fractional Cox-Ingersoll-Ross (CIR) process, which may be seen a

generalisation of the case H = 1/2 to the case H > 1/2. In particular, the fractional

CIR process is mean-reverting.

2. FRACTIONAL HESTON MODEL

2.1. Reminder on the fractional Brownian motion. Fractional Brownian mo-

tions were first introduced by Kolmogorov in 1940 [12].

Definition 2.1. A Gaussian stochastic process (BH
t )t≥0 of Hurst parameter H ∈

(0, 1) is called (standard) fractional Brownian motion, if

1. The paths of BH are continuous and satisfy BH
0 = 0.

2. E[BH
t ] = 0 and V ar[BH

t ] = t2H , for any t ≥ 0.

3. The increments of BH are stationary.

4. The process BH admits the covariance function

ρt,s := E[BH
t BH

s ] =
1

2
(|t|2H + |s|2H − |t − s|2H).(2.1)

Existence of such Gaussian processes satisfying (2.1) is discussed in [17]. The

class of FBM processes may be splitted into two categories apart from the standard

Brownian motion, i.e. when H = 1
2
. If H ∈ (1

2
, 1), the increments of FBM are

positively correlated so that the process BH satisfies a long dependence behaviour

useful to describe phenomenon with memory and persistence. When H ∈ (0, 1
2
), as

the increments of BH are negatively correlated, it may be used to model intermittency

and anti-persistency, see [18]. In this paper, we only consider FBM processes with
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Hurst parameter H ∈ (1
2
, 1). In 1968, Mandelbrot and Van Ness [15] gave the following

stochastic integral representation of a FBM process:

BH
t =

1

Γ(H + 1
2
)

(
∫ t

0

(t − s)H− 1
2 dBs +

∫ 0

−∞

[(t − s)H− 1
2 − (−s)H− 1

2 ]dBs

)

, t ≥ 0

(2.2)

where B is a standard Brownian motion. The first term models the current innovation

or shock and the second part contains a moving average of historical shocks, see [15].

We recall the following properties, see [15]:

Theorem 2.2. A fractional Brownian motion BH satisfies the following properties

1. The process BH is self-similar.

2. The trajectories of BH are almost surely nowhere differentiable.

The following definition may be found in [21].

Definition 2.3. A stationary process (Yt)t≥0 with finite variance is said to have long

range dependance if its autocorrelation function Ct(τ) := cor(Yt, Yt+τ ) decays as a

power of the lag τ : Ct(τ) ∼ L(τ)
τα , as τ → ∞, where α ∈ (0, 1) and L is slowly varying

at infinity, i.e. for all a > 0, L(at)/L(t) → 1 as t → ∞.

As shown in [15, 19], a fractional Brownian motion BH such that H ∈ (1
2
, 1)

admits a long-range dependence.

2.2. Main result. Let us consider the following stochastic differential equation:

dSt = µStdt +
√

VtStdB1,H
t , t ∈ [0,∞),(2.3)

dVt = κ(θ − Vt)dt + σ
√

VtdB2,H
t , t ∈ [0,∞),(2.4)

where (B1,H , B2,H) is a two dimensional FBM process with the Hurst parameter

H ∈ (1/2, 1) and κ > 0, θ > 0, µ ∈ R and σ > 0 are constants. We also suppose that

V0 > 0 and S0 > 0 are given. Recall that, as in the classical Heston model, we could

suppose that there exists a constant ρ ≥ 0 satisfying

cov(B1,H
t+dt − B1,H

t , B2,H
t+dt − B2,H

t ) := E(B1,H
t+dt − B1,H

t )(B2,H
t+dt − B2,H

t )

= ρ(dt)2H , t, dt ≥ 0.(2.5)

This implies that the correlation between two increments of B1,H and B2,H per unit

of time is the constant ρ. Nevertheless, we do not need this assumption is this paper.

The following theorem, which is the main goal of this paper, states that the system

of SDEs above admits a unique solution. By definition, we call it the price dynamics

of the risky asset S in the fractional Heston model. Moreover, Equation (2.4) defines a

fractional version of the CIR model. We shall prove below that it is a mean-reverting

stochastic process, i.e. limt→∞ EVt = θ.
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The proof of existence and uniqueness is based on the study of singular equations

driven by rough paths given in Section 3. This generalizes results of [11] that allow

to consider singular equations driven by a FBM as done in Section 4.

Theorem 2.4. The S.D.E’s (2.3) and (2.4) admit unique positive solutions.

Proof. Let us introduce W = σ−2V . Then, (2.4) reads as

dWt = κ(σ−2θ − Wt)dt +
√

WtdB2,H
t , t ∈ [0, T ].

This is the singular equation (4.2) of Section 4 with g(t, x) = κσ−2(θ − σ2x). This

function satisfies the required Condition Cg hence the S.D.E. (2.4) admits a unique

positive solution by Theorem 4.6. Notice that the integral with respect to B2,H is a

pathwise Young integral, see [9]. Moreover, V is almost surely continuous and admits

finite moments of all orders.

In order to show that (2.3) admits a unique positive solution, we shall apply the

results of [16, Section 5.3.3] to the S.D.E.

dYt = µdt +
√

VtdB1,H
t , Y0 = 0.(2.6)

It suffices to verify that the two functions σ(t, x) =
√

Vt and b(t, x) = µ satisfy

[16, Conditions H1, H2, Section 5.3.2] for some constants that may depend on ω ∈ Ω.

The only difficulty is to show that the process
√

V is Hölder continuous of order H .

As V is positive and a.s. bounded on every interval [0, T ], T > 0, this is equivalent to

show that V or W are Hölder continuous of order H . By the proof of Theorem 4.6,

W = X2/4 where X is the positive process

(2.7) Xt = X0 +

∫ t

0

2X−1
s g(s, X2

s/4)ds + B2,H
t , t ∈ [0, T ].

As V is positive and a.s. bounded, the process s 7→ X−1
s g(s, X2

s/4) is a.s. bounded

on [0, T ] hence the integral process in the expression of X is Lipschitz. We deduce

that X is Hölder continuous of same order H than B2,H . Since X is a.s. bounded on

[0, T ], we get that W is Hölder continuous of same order H . We conclude that the

S.D.E. (2.6) admits a unique solution Y on each interval [0, T ] hence it is possible to

conclude on [0,∞).

Therefore, by the change of variable formula [16, Section 5.2.2], we deduce that

the process S := S0e
Y satisfies (2.3) and is positive. Reciprocally, suppose that S is

a.s. positive and satisfies (2.3). Consider ω ∈ Ω such that α(ω) := mint∈[0,T ] St(ω)/S0 >

0 where T > 0. We construct a function γ on R which is twice differentiable and

satisfies γ(x) = log(x) for all x ≥ α(ω). Applying the change of variable for-

mula to the deterministic function γ(S·(ω)/S0), i.e. for ω fixed, we deduce that the

function t 7→ γ(St(ω)/S0) satisfies the same S.D.E. (2.6) than Y in the pathwise

sense hence γ(S(ω)/S0) = Y (ω) by [16, Theorem 5.3.1] and [16, Section 5.3.3]. As
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γ(S(ω)/S0) = log(S(ω)/S0), we deduce that S = S0e
Y a.s. We then conclude as

T → ∞.

In the classical Heston model, the volatility process satisfies the stochastic differ-

ential equation (2.4) with H = 1/2. We then deduce that t 7→ EVt satisfies an o.d.e.

of first order and finally

EVt = (V0 − θ)e−κt + θ, t ≥ 0,

so that θ = limt→∞ EVt. We say that V is mean-reverting. Note that the increments

of V are not weakly stationary by Lemma 4.2. By Corollary 4.8, we deduce the

following result:

Proposition 2.5. The fractional volatility process V , solution to Equation (2.4),

satisfies

(2.8) EVt = (V0 − θ)e−κt + θ + e−κtδH(t),

where δH is a differentiable function which satisfies δH(t) ∈ (0, σ2t2H

2
) for all t ≥ 0.

This implies that the variance V of the fractional Cox-Ingersoll-Ross (CIR) pro-

cess (2.4) is larger when H > 1/2 than it is when H = 1/2. Nevertheless, we still

have limt→∞ EVt = θ.

We leave for further research a deeper study of the FHM regarding long range

dependence, as well as discretization of the process and pricing in finance with this

model.

3. SINGULAR EQUATIONS DRIVEN BY ROUGH PATHS

For any s ≤ t, we consider the Banach space of continuous functions C([s, t])

equipped with the topology of the supremum norm we denote by ‖f‖[s,t], f ∈ C([s, t]).

When a continuous function is defined on a subset I of R, we naturally extend the

notation by denoting its supremum by ‖f‖I . The space of Holder continuous functions

of order β > 0 is denoted by Cβ([s, t]) and its norm is

‖f‖[s,t],β := sup

{ |f(x) − f(y)|
|x − y|β , x, y ∈ [s, t]

}

, f ∈ Cβ([s, t]).

We consider the deterministic differential equation driven by a rough path ϕ of [11]:

(3.1) xt = x0 +

∫ t

0

f(s, xs)ds + ϕ(t), t ∈ [0,∞),

where x0 > 0 is a constant, ϕ is continuous and ϕ(0) = 0. We impose conditions on

f .
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Definition 3.1. We say that a function f = f(t, x), (t, x) ∈ R+ × (0,∞) is locally

Lipschitz with respect to the space variable x on x ∈ (0,∞) if for all c, C > 0 such

that c < C, and T > 0, we have |f(t, x)−f(t, y)| ≤ LT,c,C|x−y| whatever x, y ∈ [c, C]

and t ≤ T for some Lipschitz constant LT,c,C depending on T, c, C.

Condition C1
f :

1. f is a locally Lipschitz function with respect to the space variable x on x ∈
(0,∞).

2. There exists constants m, γ ≥ 0 such that f(t, x) ≥ −m − γx for all x > 0 and

t ≥ 0.

3. The mapping t 7→ f(t, x) is continuous for all x > 0.

Note that the conditions we impose on f are weaker than the conditions of [11].

In particular, f is not necessarily differentiable with respect to x ∈ (0,∞) and x 7→
f(t, x) is not necessarily non increasing. The following condition is also considered

when ϕ ∈ Cβ([0, T ]) for all T ≥ 0, where β ∈ (0, 1), to obtain a solution to (3.1) on

the whole interval [0,∞).

Condition Cβ
f : For every T > 0, there exists ǫ > 0, γ0 > 0, α ∈ (β−1 − 1, β−1)

and positive constants c, d, such that f(t, x) ≥ cx−α − d for all t ∈ [T − ǫ, T ] and

x ∈ (0, γ0].

Theorem 3.2. Let f = f(t, x), (t, x) ∈ R+×(0,∞), be a function satisfying condition

C1
f . Then, there exists a unique positive solution to (3.1) on some maximal interval

[0, T ∗) such that xT ∗ := limt→T ∗ xt = 0 exists if T ∗ < ∞. Moreover, if ϕ ∈ Cβ([0, T ])

for all T > 0, then T ∗ = ∞ under Condition Cβ
f .

Proof. By the assumptions on f , note that for all c, C such that 0 < c ≤ C, and for

all ∆ ≥ 0, we have ‖f‖[0,∆]×[c,C] < ∞. To see it, we use the local Lipschitz property of

f with respect to the space variable as well as the continuity of f with respect to the

time variable. Note that we may reformulate the problem if we replace f by f +m∨d

and ϕ by ϕ̃(t) = ϕ− (m ∨ d)t so that we may assume without loss of generality that

m = d = 0. Let us consider a fixed constant C such that C ≥ 3x0. It is also possible

to find T0 ∈ (0, 1) small enough so that, by uniform continuity, ‖ϕ‖[0,T0] ≤ 4−1x0 and,

as T0 → 0, we have C−1‖f‖[0,1]×[2−1x0,C] ≤ (2T0)
−1 and T0 ≤ x0/(4γC) in the case

where γ > 0 in Condition C1
f . Consider the following iterative scheme:

(3.2) xn+1
t = x0 +

∫ t

0

f(s, xn
s )ds + ϕ(t), t ∈ [0, T0], n ≥ 0

where x0
t = x0 for all t ∈ [0, T0]. Let us show by induction that xn

t ∈ [2−1x0, C] for all

t ∈ [0, T0]. This is the case with n = 0. Suppose that this holds with xn. As xn > 0,
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we deduce by assumption with m = 0 that f(s, xn
s ) ≥ −γxn

s for all s ∈ [0, T0] hence
∫ t

0

f(s, xn
s )ds ≥ −γ

∫ t

0

xn
s ds ≥ −γ

∫ T0

0

xn
s ds ≥ −γCT0 ≥ −4−1x0, t ∈ [0, T0].

Moreover, ϕ(t) ≥ −4−1x0 by construction of T0 hence

xn+1
t ≥ x0 − 4−1x0 + ϕ(t) ≥ 2−1x0.

Let us show that ‖xn‖[0,T0] ≤ C. We have

|xn+1
t | ≤ |x0| + ‖f‖[0,1]×[2−1x0,C]T0 + ‖ϕ‖0,T0,

≤ C

( |x0| + 2−1x0

C
+ T0

‖f‖[0,1]×[2−1x0,C]

C

)

≤ C.

The last inequality is deduced from the conditions imposed on C and T0. Let us

define

gn(t) = |xn+1
t − xn

t |, t ∈ [0, T0], n ≥ 0.

By continuity, note that ‖g1‖[0,T0] < ∞. Since f is locally Lipschitz with respect to

the space variable on (0,∞), let us consider a constant k = k(T0, x0, C) such that

|f(s, x) − f(s, y)| ≤ k|x − y| for all x, y ∈ [2−1x0, C] and s ∈ [0, T0]. By (3.2), we get

that

gn+1(t) ≤ k

∫ t

0

gn(s)ds, t ∈ [0, T0], n ≥ 1.

By induction, we then deduce that gn+1(t) ≤ ‖g1‖[0,T0]k
ntn/n! for all t ∈ [0, T0].

Therefore, the sequence gn+1 = g1 +
∑n

i=0(gi+1 − gi) is absolutely convergent with

respect to the supremum norm hence uniformly converges to x(T0) on [0, T0]. Moreover,

it is trivial that x(T ) satisfies (3.1) on [0, T0].

Let us now prove that the equation (3.1) admits a unique positive solution on

every compact [0, T ], T > 0. To see it, consider two solutions x and y and let us

consider c = cT = min{|xt|, |yt| : t ∈ [0, T ]} > 0 and C = CT = max(‖x‖[0,T ]; ‖y‖[0,T ]).

We then deduce that

‖x − y‖[0,t] ≤ k

∫ t

0

‖x − y‖[0,s]ds,

where k = k(T, c, C) is a constant such that |f(s, x) − f(s, y)| ≤ k|x − y| for all

x, y ∈ [c, C] and s ∈ [0, T ]. By induction, we deduce that ‖x− y‖[0,t] ≤ 2Ckntn/n! for

all t ≤ T . As n → ∞, we get that ‖x − y‖[0,T ] = 0 hence x = y.

Consider the set Λ ∋ T0 of all T > 0 such that (3.1) admits a unique positive

solution x(T ) on [0, T ]. Note that if T1, T2 ∈ Λ satisfy T1 ≤ T2, then x(T1) and x(T2)

coincides on [0, T1] by uniqueness. Therefore, we may define the function xt := x
(t)
t

on t ∈ [0, T ∗) where T ∗ = sup Λ. This function satisfies the equation (3.1) on [0, T ∗)

and is uniquely defined and positive.

If T ∗ = ∞, we may conclude about the lemma. Otherwise, we show that

limt→T ∗ xt exists and limt→T ∗ xt = 0. Indeed, in the contrary case, there exists l > 0
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and a sequence (tn)n≥1 such that tn → T ∗ and xtn → 2l as n → ∞. We may assume

without loss of generality that xtn ∈ (l, 3l). Fix a constant C ≥ 6l and T ∗
0 > 0 small

enough such that T ∗
0 ≤ l(4γC)−1 if γ > 0, such that |ϕ(u)−ϕ(t)| ≤ 4−1l if |t−u| ≤ T ∗

0

and C−1‖f‖[0,T ∗]×[2−1l,C] ≤ (2T ∗
0 )−1. Note that T ∗

0 does not depend on n. Consider

an arbitrary n ≥ 1. Let us introduce the following scheme: x0 = xtn and for m ≥ 1:

(3.3) xm+1
t = xtn +

∫ t

tn

f(s, xm
s )ds + ϕ(t) − ϕ(tn), t ∈ [tn, tn + T ∗

0 ], n ≥ 0.

As above, we may show by induction that xm
t ∈ [2−1l, C] for all t ∈ [tn, tn + T ∗

0 ] and

all m ≥ 1. Then, we also deduce that the sequence (xm)m≥1 uniformly converges to

some function zn on [tn, tn + T ∗
0 ] such that

(3.4) zn
t = xtn +

∫ t

tn

f(s, zn
s )ds + ϕ(t) − ϕ(tn), t ∈ [tn, tn + T ∗

0 ], n ≥ 0.

We then define x̃n
t = xt1[0,tn)(t)+ zn

t 1[tn,tn+T ∗

0 ](t) on [0, tn +T ∗
0 ] where we recall that x

is the solution to Equation (3.1) on [0, T ∗). Note that x̃n satisfies Equation (3.1) on

[0, tn + T ∗
0 ]. Therefore, by definition of T ∗, we deduce that tn + T ∗

0 ≤ T ∗ for all n. As

T ∗
0 does not depend on n, we deduce as n → ∞ that T ∗

0 ≤ 0 hence a contradiction.

Let us now suppose that Condition Cβ holds and T ∗ < ∞. Then, xT ∗ = 0 and,

as xt ∈ (0, γ0) if t ∈ [T ∗ − ǫ, T ∗), for some ǫ > 0, we get that f(s, xs) ≥ 0 for all

s ∈ [T ∗ − ǫ, T ∗) since we assume without loss of generality that d = 0. We deduce a

contradiction by repeating the arguments in the proof of [11, Theorem 2.1].

We may reproduce the proof of [11, Theorem 2.1] under our assumptions and

under a weaker assumption than [11, (iii)]:

Condition C2
f : For all T > 0, there exists positive constants hT and ǫ1

T , ǫ2
T > 0

such that |f(t, x)| ≤ hT (x−1 + 1) for all x ∈ (0, ǫ1
T ) and |f(t, x)| ≤ hT (x + 1) for all

x ∈ (ǫ2
T ,∞) and t ≤ T .

Theorem 3.3. Let f be a function defined on R+× (0,∞) which satisfies Conditions

Cβ and Ci
f , i = 1, 2. Then, for any γ > 2 and for all T > 0, the unique solution x to

(3.1) satisfies

(3.5) ‖x‖[0,T ] ≤ C1,γ,β,T (1 + x0) exp

{

C1,γ,β,T (1 + ‖ϕ‖
γ

β(γ−1)

[0,T ],β )

}

,

where C1,γ,β,T and C1,γ,β,T are constants depending on γ, β, T and f .

Proof. We exactly follow the proof of [11, Theorem 2.1] but we do not use the as-

sumption (iii) of [11]. With y = xγ , recall that (iii) is used in [11] to obtain the

following inequality: |f(u, y
1
γ
u )y

1− 1
γ

u | ≤ c(y
1− 2

γ
u + y

1− 1
γ

u ) where c is a constant de-

pending on the function h of (iii). Instead, since f is locally Lipschitz, there exists

under Conditions Ci
f , i = 1, 2, a constant LT,f depending on f and T such that

|f(t, x)| ≤ LT,f(x + 1) for all x ∈ [ǫ1
T ,∞) and t ≤ T . Therefore, we deduce that



FRACTIONAL HESTON MODEL 543

|f(u, y
1
γ
u )y

1− 1
γ

u | ≤ LT,f(yu + y
1− 1

γ
u ) if y

1
γ
u ≥ ǫ1

T . Otherwise, if y
1
γ
u ≤ ǫ2

T , we have the

inequality |f(u, y
1
γ
u )y

1− 1
γ

u | ≤ hT (y
1− 2

γ
u + y

1− 1
γ

u ). Finally, for all u ≤ T , we deduce

the inequality |f(u, y
1
γ
u )y

1− 1
γ

u | ≤ L(f, T )(yu + y
1− 2

γ
u + y

1− 1
γ

u ) for some constant L(f, T )

depending on f and T . This implies that, in the proof of [11, Theorem 2.1], we

replace ‖y‖1− 2
γ

[s,t] by the sum ‖y‖1− 2
γ

[s,t] + ‖y‖[s,t]. This substitution does not change the

desired inequality because, as in the proof of [11, Theorem 2.1], we use the inequality

xα ≤ 1 + x for all α ∈ (0, 1) to bound from above the three terms ‖y‖[s,t], ‖y‖
1− 2

γ

[s,t] and

‖y‖1− 1
γ

[s,t] by 1 + ‖y‖[s,t].

4. SINGULAR EQUATIONS DRIVEN BY A FRACTIONAL

BROWNIAN MOTION WITH HURST PARAMETER H ∈ (1/2, 1)

Let us consider the singular stochastic differential equation

(4.1) Xt = x0 +

∫ t

0

f(s, Xs)ds + BH
t , t ≥ 0,

where x0 > 0, BH is a fractional Brownian motion with Hurst parameter H ∈ (1/2, 1)

and f is function which satisfies Conditions Cβ and Ci
f , i = 1, 2. Repeating the proof

of [11, Theorem 3.1] with the results of Section 3, we obtain the following:

Theorem 4.1. Suppose that x0 > 0 and f is a function which satisfies Conditions Cβ

and Ci
f , i = 1, 2. Then, there exists a unique positive pathwise solution X to Equa-

tion (4.1) such that E(‖X‖p
[0,T ]) < ∞ for all p > 0 and T ≥ 0.

The following result is classical; we use it to show Theorem 4.3, which implies

that the increments of X are not stationary at least when f(0, X0) < 0.

Lemma 4.2. Let X be an integrable process on R+ and consider the function ϕ(t) =

EXt−X0, t ≥ 0. If the increments are weakly stationary, then ϕ is additive.Therefore,

if ϕ is continuous on R+, ϕ(t) = αt for all t ≥ 0 where α is a constant.

Proof. As the increments are weakly stationary, we easily deduce that ϕ is additive,

i.e. ϕ(t+h) = ϕ(t)+ϕ(h). By induction , we deduce that ϕ(nt) = nϕ(t) for all n ∈ N.

If a, b ∈ N, with b > 0, we get that bϕ((a/b)t) = ϕ(at) = aϕ(t). This implies that

ϕ(qt) = qϕ(t) for all non negative rational numbers q. We then conclude by density

and continuity with ϕ(1) = α.

Theorem 4.3. Suppose that x0 > 0 and f is a function which satisfies Conditions Cβ

and Ci
f , i = 1, 2. Consider the positive solution X to Equation (4.1). If the increments

of X are weakly stationary and, if the mapping t 7→ Ef(t, Xt) is continuous at 0, then

EXt = X0 + f(0, X0)t for all t ≥ 0. In particular, f(0, X0) ≥ 0.
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Proof. The function ϕ defined by

ϕ(t) := E

∫ t

0

f(s, Xs)ds =

∫ t

0

Ef(s, Xs)ds

is differentiable at zero and we have ϕ′(0) = f(0, X0). Moreover, EXt = X0+ϕ(t). As

E(‖X‖[0,T ]) < ∞ for all T ≥ 0, we deduce that the mapping t 7→ EXt is continuous

and so is ϕ. Suppose that the increments of X are weakly stationary. By Lemma 4.2,

ϕ is linear hence we have ϕ(t) = f(0, x0)t for all t ≥ 0.

Note that the mapping t 7→ Ef(t, Xt) is continuous at 0 in the following case.

Corollary 4.4. Suppose that f(t, x) = f(x) = ax−1 − bx where a > 0 and b ∈ R.

Then, the mapping t 7→ Ef(t, Xt) is continuous at 0. Therefore, when b > 0 and

x2
0 > ab−1, the increments are not weakly stationary.

Proof. As E(‖X‖[0,T ]) < ∞ for all T ≥ 0, we deduce that the mapping t 7→ EXt

is continuous at zero. Moreover, following the arguments used in the proof of [11,

Proposition 3.4], we get that EX−1
t ≤ X−1

0 if t ∈ [0, t0] where t0 > 0 is small enough.

Indeed, it suffices to notice that f ′(x) is bounded from above, which implies that

the Malliavin derivative (DsXt)0≤s≤t is a bounded process so that Proposition 3.4 is

still valid in our more general case. Finally, by the Jensen inequality, we get that

(EXt)
−1 ≤ EX−1

t ≤ X−1
0 if t ∈ [0, t0]. Since the mapping t 7→ EXt is continuous

at zero, we finally deduce that limt→0 EX−1
t = X−1

0 . This implies that the mapping

t 7→ Ef(t, Xt) is continuous at 0. When b > 0 and x2
0 > ab−1, we get that f(x0) < 0

so that the increments are not weakly stationary by Theorem 4.3.

Remark 4.5. In the case where t 7→ EX−1
t is continuous and f(t, x) = f(x) =

ax−1 − bx, we may show that

EXt = x0e
−bt + ae−bt

∫ t

0

EX−1
u ebudu, t ≥ 0.

Let us now consider the singular stochastic differential equation

(4.2) Yt = y0 +

∫ t

0

g(s, Ys)ds +

∫ t

0

√

YsdBH
s , t ≥ 0,

where y0 > 0 and g is a function which satisfies the following conditions denoted

by Condition Cg. Notice that the conditions imposed on g in [11] are not correctly

formulated as the authors made a small error when defining f in terms of g. When

corrected, our conditions remain weaker.

Condition Cg:

1. The mapping t 7→ g(t, x) is continuous on [0,∞) for all x > 0.
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2. The function g is locally Lipschitz with respect to the space variable x on x ∈
(0,∞) and there exists constant m, α ≥ 0 such that g(t, x) ≥ −mx1/2 − αx for

all x > 0 and t ≥ 0.

3. For every T > 0, there exists ǫ > 0, γ0 > 0, α ∈ (β−1 − 1, β−1) and positive

constants c, d, such that g(t, x) ≥ cx
1−α

2 − dx1/2 for all t ∈ [T − ǫ, T ] and

x ∈ (0, γ0].

4. For all T > 0, there exists positive constants hT and ǫ1
T , ǫ2

T such that we have

|g(t, x)| ≤ hT (1 + x1/2) for all x ∈ (0, ǫ1
T ), and |g(t, x)| ≤ hT (x + x1/2) for all

x ∈ (ǫ2
T ,∞) and t ≤ T .

Theorem 4.6. Let g be a function satisfying Condition Cg. Then, Equation (4.2)

admits a unique positive pathwise solution Y such that E(‖Y ‖p
[0,T ]) < ∞ for all p > 0.

Proof. Let us consider the function f g(t, x) = 2x−1g(t, x2/4) for all t ≥ 0 and x > 0,

i.e. g(t, y) = f g(t, 2y1/2)y1/2. Using the change of variable x = 2y1/2, the chain rule for

young integrals yields that Y is a positive solution to (4.2) if and only if X = 2Y 1/2 is

a positive solution to (4.1) with the driver function f g. As f g satisfies the conditions

of Theorem 3.2 as well as Conditions Cβ and Cf if and only if g satisfies Condition Cg,

we deduce that Equation (4.2) admits a unique positive pathwise solution Y given by

Y = X2/4 where X is the unique positive solution to (4.1) with the driver function

f g.

Note by [16, Proposition 5.2.3], under Condition Cg, we may estimate the expec-

tation of Yt as follows:

EYt = y0 +

∫ t

0

Eg(r, Yr)dr + δ(t), δ(t) :=
H(2H − 1)

2

∫ t

0

p(r)dr,(4.3)

p(r) :=

∫ r

0

EDsXr(r − s)2H−2ds, t, r ≥ 0,(4.4)

where D is the Malliavin derivative operator, X = 2
√

Y is the solution of Equa-

tion (4.1) with f = f g and

f g(t, x) = 2x−1g(t, x2/4), t ≥ 0, x > 0.

Moreover, if f g(t, x) = f(x) is differentiable, we have

(4.5) DsXt = exp

{
∫ t

s

f ′(Xr)dr

}

1s≤t.

We deduce the following:

Theorem 4.7. Let g = g(x) be a function satisfying Condition Cg and let Y be

the unique positive solution to Equation (4.2). Suppose that the derivative of f g is

bounded from above and the mapping t 7→ Eg(Yt) is continuous at zero. Then, if

the increments of Y are weakly stationary, we necessarily have EYt = y0 + νt for all

t ≥ 0, where 0 ≤ ν ≤ g(Y0).
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Proof. As E(‖Y ‖p
[0,T ]) < ∞ for every T ≥ 0, the function ϕ(t) = EYt − X0, t ≥ 0 is

linear hence EYt = y0 + νt for some ν ≥ 0 by Lemma 4.2. Moreover, by (4.3) and

(4.5), we deduce a constant C > 0 such that EYt ≤ y0 +
∫ t

0
Eg(Yr)dr + Ct2H for all

t ≤ 1. We divide this inequality by t > 0 so that

ν ≤ 1

t

∫ t

0

Eg(Yr)dr + Ct2H−1, t > 0.

As t → 0, we deduce that ν ≤ g(y0).

The following result implies that the increments of Y are not weakly stationary

if g is an affine function such that g(0) > 0.

Lemma 4.8. Suppose that g(x) = α − βx, x > 0, where α > 0 and β ∈ R. Then,

(4.6) EYt = y0e
−βt +

α

β
(1 − e−βt) + e−βtδ(t),

with the convention (1− e−βt)/β = t when β = 0. Moreover, when β ≥ 0, 0 ≤ δ(t) ≤
2−1t2H for all t ≥ 0.

Proof. Note that the derivative of f g(x) = ax−1−bx, a = 2α and b = 2−1β is bounded

from above on (0,∞). We deduce that (DsXt)s≤t is bounded on any interval [0, T ],

T > 0. Moreover, note that t 7→ DsXt is continuous except at the point t = s. By

the dominated convergence theorem, we deduce that the mapping p is continuous

on any interval [0, T ]. Therefore, δ is differentiable and δ′ = p. Moreover, by (4.3),

ϕ(t) = EYt satisfies the o.d.e. ϕ′(t) + βϕ(t) = p(t) + α. We then conclude. When

β ≥ 0, 0 ≤ DsXt ≤ 1 hence we deduce that 0 ≤ δ(t) ≤ 2−1t2H for all t ≥ 0.
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