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1. INTRODUCTION

In this paper we present general results for homotopies H for which the maps

Ht may be defined in different domains. Conditions are put not only to guarantee

the existence of a coincidence point but also to guarantee that the coincidence set

contains a continuum (i.e. a compact connected set) which intersects a given set. Our

theory is based on the notion of Φ-essentiality (see [1, 10] and the references therein).

The results in this paper were motivated in part by results in [1, 3, 4, 8, 9, 11].

2. PRELIMINARIES

We recall some results from the literature. Let X be a completely regular topo-

logical space and V an open subset of X.

We consider classes A and B of maps.

Definition 2.1. We say F ∈ MA(V , X) (respectively F ∈ B(V , X)) if F : V →

2X and F ∈ A(V , X) (respectively F ∈ B(V , X)); here 2X denotes the family of

nonempty subsets of X and V denotes the closure of V in X.

Fix a Ψ ∈ B(V , X).

Definition 2.2. We say F ∈ MA∂V (V , X) if F ∈ MA(V , X) with F (x) ∩ Ψ(x) = ∅

for x ∈ ∂V ; here ∂V denotes the boundary of V in X.
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Definition 2.3. Let F ∈ MA∂V (V , X). We say F : V → 2X is Ψ-essential in

MA∂V (V , X) if for every map J ∈ MA∂V (V , X) with J |∂V = F |∂V there exists

x ∈ V with J(x) ∩ Ψ(x) 6= ∅.

The following result was established in [5, 10].

Theorem 2.4. Let X be a completely regular (respectively normal) topological space,

V an open subset of X and let F ∈ MA∂V (V , X) be Ψ-essential in MA∂V (V , X).

Suppose there exists a map H : V × [0, 1] → 2X with H(·, η(·)) ∈ MA(V , X) for

any continuous function η : V → [0, 1] with η(∂V ) = 0, Ψ(x) ∩ Ht(x) = ∅ for any

x ∈ ∂V and t ∈ (0, 1], H0 = F and
{

x ∈ V : Ψ(x) ∩ H(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact (respectively closed). Then there exists x ∈ V with Ψ(x)∩H1(x) 6= ∅; here

Ht(x) = H(x, t).

Next we present a homotopy result for Ψ-essential maps. To achieve this we need

to change Definition 2.3 (see Definition 2.6 below).

Definition 2.5. Let X be a completely regular (respectively normal) topological

space, and V an open subset of X. Let F, G ∈ MA∂V (V , X). We say F ∼= G in

MA∂V (V , X) if there exists a map H : V × [0, 1] → 2X with H(·, η(·)) ∈ MA(V , X)

for any continuous function η : V → [0, 1] with η(∂V ) = 0, Ht(x) ∩ Ψ(x) = ∅ for any

x ∈ ∂V and t ∈ [0, 1], H1 = F , H0 = G and
{

x ∈ V : Ψ(x) ∩ H(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact (respectively closed); here Ht(x) = H(x, t).

The following conditions will be assumed in our next result:

(2.1) ∼= is an equivalence relation in MA∂V (V , X),

and for any map Λ ∈ MA∂V (V , X) we have

(2.2)


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
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

if there exists a map J ∈ MA∂V (V , X) with J ∼= Λ

in MA∂V (V , X)and J(x) ∩ Ψ(x) = ∅ for all x ∈ V

and if H : V × [0, 1] is a map with H(·, η(·)) ∈ MA(V , X)

for any continuous function η : V → [0, 1] with η(∂V ) = 0,

Ht(x) ∩ Ψ(x) = ∅ for any x ∈ ∂V and t ∈ [0, 1], H1 = Λ, H0 = J

and
{

x ∈ V : Ψ(x) ∩ H(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact (respectively closed) and if µ : V → [0, 1] is a

continuous map with µ(∂V ) = 0, then
{

x ∈ V : ∅ 6= Ψ(x) ∩ H(x, tµ(x)) for some t ∈ [0, 1]
}

is closed.

Definition 2.6. Let F ∈ MA∂V (V , X). We say F : V → 2X is Ψ-essential in

MA∂V (V , X) if for every map J ∈ MA∂V (V , X) with J |∂V = F |∂V and J ∼= F in

MA∂V (V , X) there exists x ∈ V with J(x) ∩ Ψ(x) 6= ∅.
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The following result was established in [10].

Theorem 2.7. Let X be a completely regular (respectively normal) topological space,

V an open subset of X and assume (2.1) and (2.2) hold. Suppose F and G are

two maps in MA∂V (V , X) with F ∼= G in MA∂V (V , X). Then F is Ψ-essential in

MA∂V (V , X) if and only if G is Ψ-essential in MA∂V (V , X).

Remark 2.8. Another homotopy result without conditions (2.1) and (2.2) can be

found in [6]: Let X be a completely regular (respectively normal) topological space,

V an open subset of X, F ∈ MA∂V (V , X) and let G ∈ MA∂V (V , X) be Ψ-essential

in MA∂V (V , X) (Definition 2.3). For any map R ∈ MA∂V (V , X) with R|∂V = F |∂V

assume there exists a map HR : V × [0, 1] → 2X with HR(·, η(·)) ∈ MA(V , X) for

any continuous function η : V → [0, 1] with η(∂V ) = 0, Ψ(x)∩HR
t (x) = ∅ for any x ∈

∂V and t ∈ (0, 1) and
{

x ∈ V : Ψ(x) ∩ HR(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact

(respectively closed) and HR
0 = G, HR

1 = R; here HR
t (x) = HR(x, t). Then F is Ψ-

essential in MA∂V (V , X). There is an analogue result also in [6] if G ∈ MA∂V (V , X)

is Ψ-essential in MA∂V (V , X) (Definition 2.3) is changed to G ∈ MA∂V (V , X) is

Ψ-essential in MA∂V (V , X) (Definition 2.6).

Remark 2.9. The ideas presented in this paper could be applied to other natural

situations. Let X be a Hausdorff topological vector space, Y a topological vector

space, and V an open subset of X. Also let L : dom L ⊆ X → Y be a linear (not

necessarily continuous) single valued map; here dom L is a vector subspace of X.

Finally T : X → Y will be a linear single valued map with L + T : dom L → Y

a bijection; for convenience we say T ∈ HL(X, Y ). We say F ∈ MA(V , Y ; L, T )

(respectively F ∈ B(V , Y ; L, T )) if F : V → 2Y and (L + T )−1(F + T ) ∈ MA(V , X)

(respectively (L + T )−1(F + T ) ∈ B(V , X)). Fix a Φ ∈ B(V , Y ; L, T ). We say

F ∈ MA∂V (V , Y ; L, T ) if F ∈ MA(V , Y ; L, T ) with (L + T )−1(F + T )(x) ∩ (L +

T )−1(Ψ + T )(x) = ∅ for x ∈ ∂V . Now F ∈ MA∂V (V , Y ; L, T ) is (L, T )Ψ-essential in

MA∂V (V , Y ; L, T ) if for every map J ∈ MA∂V (V , Y ; L, T ) with J |∂V = F |∂V there

exists x ∈ V with (L + T )−1(J + T )(x) ∩ (L + T )−1(Ψ + T )(x) 6= ∅ (this is the

analogue of Definition 2.3). There are analogues of Theorem 2.4, Theorem 2.7 and

Remark 2.8 in this situation; see [5, 6, 10] where the results and proofs are presented.

For example the analogue of Theorem 2.4 in this situation is: Let X be a topological

vector space (so automatically completely regular), Y a topological vector space, V an

open subset of X, L : dom L ⊆ X → Y a linear single valued map and T ∈ HL(X, Y ).

Let F ∈ MA∂V (V , Y ; L, T ) be (L, T )Ψ-essential in MA∂V (V , Y ; L, T ). Suppose there

exists a map H : V × [0, 1] → 2Y with (L + T )−1(H(·, η(·)) + T (·)) ∈ MA(V , X) for

any continuous function η : V → [0, 1] with η(∂V ) = 0, (L + T )−1(Ht + T )(x) ∩ (L +

T )−1(Ψ+T )(x) = ∅ for any x ∈ ∂V and t ∈ (0, 1], H0 = F (here Ht(x) = H(x, t)) and

D = {x ∈ V : (L + T )−1(Ψ + T )(x)∩ (L + T )−1(Ht + T )(x) 6= ∅ for some t ∈ [0, 1]} is
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compact. Then there exists x ∈ V with (L+T )−1(H1+T )(x)∩(L+T )−1(Ψ+T )(x) 6= ∅.

If X is a normal topological vector space then the assumption that D is compact, can

be replaced by D is closed. It is easy to state and prove analogues of the results in

Section 3 in this situation; we leave the details to the reader.

Remark 2.10. It is of interest also to note other general classes of maps in the

literature. Consider classes A,B and D of maps. We say F ∈ D(V , X) (respectively

F ∈ B(V , X)) if F : V → 2X and F ∈ D(V , X) (respectively F ∈ B(V , X)). We

say F ∈ A(V , X) if F : V → 2X and F ∈ A(V , X) and there exists a selection

θ ∈ D(V , X) of F . There are analogues of Theorem 2.4 and Remark 2.8 for these

maps; see for example [7].

Recall a compact connected set is called a continuum. Whyburn’s lemma from

topology can be stated as follows.

Theorem 2.11. Let A and B be disjoint closed subsets of a compact Hausdorff topo-

logical space K such that no connected component of K intersects both A and B.

Then there exists a partition K = K1 ∪ K2 where K1 and K2 are disjoint compact

sets containing A and B respectively.

An easy consequence of Theorem 2.11 is the following (see [3]).

Theorem 2.12. Let X be a metric space and K a compact subset of X. Assume

that A and B are two disjoint closed subsets of K such that no connected component

of K intersects both. Then there exists an open bounded set U such that

A ⊂ U, U ∩ B = ∅ and ∂U ∩ K = ∅.

3. MAIN RESULTS

In many applications results are needed for homotopies H for which the maps

Ht may be defined on different domains. The idea is to reduce the study of this

family to that of a new family (of course depending on the old one) defined on the

same domain. For notational purposes let Z be a topological space and Ω a subset of

Z × [0, 1]. We write Ωλ = {x ∈ Z : (x, λ) ∈ Ω} to denote the section of Ω at λ.

In our next results we assume E is a completely regular topological space and U

an open subset of E× [0, 1] (note E× [0, 1] is a completely regular topological space).

We begin by presenting some results which guarantee the existence of a coincidence

point.

Theorem 3.1. Let E be a completely regular topological space and U an open subset

of E × [0, 1]. Suppose N ∈ MA(U, E) and fix Φ : U → 2E with Φ⋆ ∈ B(U, E × [0, 1]);

here Φ⋆(x, λ) = (Φ(x, λ), λ) for (x, λ) ∈ U . Let H : U × [0, 1] → 2E×[0,1] be given
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by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U and µ ∈ [0, 1] and assume H(·, ·, η(·)) ∈

MA(U, E × [0, 1]) for any continuous function η : U → [0, 1] with η(∂U) = 0. Also

suppose the following conditions are satisfied:

(3.1)

{

D =
{

(x, λ) ∈ U : Φ⋆(x, λ) ∩ H(x, λ, µ) 6= ∅ for some µ ∈ [0, 1]
}

is compact

(3.2)

{

H0 is Φ⋆-essential in MA∂U (U, E × [0, 1]) (Definition 2.3);

here H0(x, λ) = H(x, λ, 0) = (N(x, λ), 0) for (x, λ) ∈ U

and

(3.3) Φ(x, λ) ∩ N(x, λ) = ∅ for (x, λ) ∈ ∂U.

Then there exists x ∈ U1 = {y ∈ E : (y, 1) ∈ U} with Φ(x, 1) ∩ N(x, 1) 6= ∅.

Proof. Suppose there exists (x0, λ0) ∈ ∂U and µ0 ∈ [0, 1] with Φ⋆(x0, λ0)∩H(x0, λ0, µ0) 6=

∅ i.e. (Φ(x0, λ0), λ0)∩(N(x0, λ0), µ0) 6= ∅. Then µ0 = λ0 and Φ(x0, λ0)∩N(x0, λ0) 6= ∅,

which contradicts (3.3). Thus

Φ⋆(x, λ) ∩ H(x, λ, µ) = ∅ for (x, λ) ∈ ∂U and µ ∈ [0, 1].

Now Theorem 2.4 (with X = E × [0, 1], V = U and Ψ = Φ⋆) guarantees that there

exists (x, λ) ∈ U with Φ⋆(x, λ) ∩H(x, λ, 1) 6= ∅ i.e. (Φ(x, λ), λ) ∩ (N(x, λ), 1) 6= ∅ i.e.

Φ(x, λ) ∩ N(x, λ) 6= ∅ and λ = 1 i.e. x ∈ U1 and Φ(x, 1) ∩ N(x, 1) 6= ∅.

Remark 3.2. If E × [0, 1] is a normal topological space then (3.1) can be changed

to: D is closed.

Theorem 3.3. Let E be a completely regular topological space and U an open subset

of E × [0, 1]. Suppose N ∈ MA(U, E) and fix Φ : U → 2E with Φ⋆ ∈ B(U, E ×

[0, 1]); here Φ⋆(x, λ) = (Φ(x, λ), λ) for (x, λ) ∈ U . Also suppose (2.1) and (2.2)

hold with X = E × [0, 1], V = U and Ψ = Φ⋆. Let H : U × [0, 1] → 2E×[0,1]

be given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U and µ ∈ [0, 1] and assume

H(·, ·, η(·)) ∈ MA(U, E × [0, 1]) for any continuous function η : U → [0, 1] with

η(∂U) = 0. In addition assume (3.1), (3.2) (with Definition 2.6) and (3.3) hold.

Then H1 is Φ-essential in MA∂U (U, E × [0, 1]) (in particular there exists x ∈ U1 with

Φ(x, 1) ∩ N(x, 1) 6= ∅); here H1(x, λ) = H(x, λ, 1) = (N(x, 1), 1) for (x, λ) ∈ U .

Proof. As in Theorem 3.1 note

Φ⋆(x, λ) ∩ H(x, λ, µ) = ∅ for (x, λ) ∈ ∂U and µ ∈ [0, 1].

Also the conditions in the statement of Theorem 3.3 guarantees that H0
∼= H1 in

MA∂U (U, E× [0, 1]). Theorem 2.7 guarantees that H1 is Φ-essential in MA∂U (U, E×

[0, 1]).
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Remark 3.4. If E × [0, 1] is a normal topological space then (3.1) can be changed

to: D is closed.

Remark 3.5. We now consider the situation in Remark 2.9. Let E be a Hausdorff

topological vector space, Y a topological vector space, and U an open subset of

E × [0, 1]. Also let L : dom L ⊆ E → Y be a linear (not necessarily continuous)

single valued map. Now let L : domL = dom L × [0, 1] → Y × [0, 1] be given by

L(y, λ) = (Ly, λ). Let T : E → Y be a linear single valued map with L + T :

dom L → Y a bijection and let T : E × [0, 1] → Y × [0, 1] be given by T(y, λ) =

(Ty, 0). Notice (L + T)−1(y, λ) = ((L + T )−1y, λ) for (y, λ) ∈ Y × [0, 1]. There

are analogues of Theorem 3.1 and Theorem 3.3 in this situation. For example the

analogue of Theorem 3.1 is: Suppose N ∈ MA(U, Y ; L, T ) and fix Φ : U → 2Y

with Φ⋆ ∈ B(U, Y × [0, 1];L,T); here Φ⋆(x, λ) = (Φ(x, λ), λ) for (x, λ) ∈ U . Let

H : U × [0, 1] → 2Y ×[0,1] be a map given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U

and µ ∈ [0, 1] and assume (L + T)−1(H(·, ·, η(·)) + T) ∈ MA(U, E × [0, 1]) for any

continuous function η : U → [0, 1] with η(∂U) = 0. Also suppose the following

conditions are satisfied:

(3.4)











D = {(x, λ) ∈ U : (L + T)−1(Φ⋆ + T)(x, λ)∩

(L + T)−1(Hµ + T)(x, λ) 6= ∅ for some µ ∈ [0, 1]}

is compact

(3.5)

{

H0 is (L,T)Φ⋆-essential in MA∂U (U, Y × [0, 1];L,T); here

H0(x, λ) = H(x, λ, 0) = (N(x, λ), 0) for (x, λ) ∈ U

and

(3.6)

{

(L + T )−1(Φ + T )(x, λ) ∩ (L + T )−1(N + T )(x, λ) = ∅

for (x, λ) ∈ ∂U ; here (N + T )(x, λ) = N(x, λ) + T (x).

Then there exists x ∈ U1 = {y ∈ E : (y, 1) ∈ U} with (L + T )−1(Φ + T )(x, 1) ∩

(L + T )−1(N + T )(x, 1) 6= ∅. If E × [0, 1] is a normal topological vector space then D

compact above can be changed to D closed.

Next we discuss the topological structure of the coincidence set.

Theorem 3.6. Let E be a completely regular topological space and U an open subset

of E × [0, 1]. Suppose N ∈ MA(U, E) and fix Φ : U → 2E with Φ⋆ ∈ B(U, E × [0, 1]);

here Φ⋆(x, λ) = (Φ(x, λ), λ) for (x, λ) ∈ U . Let H : U × [0, 1] → 2E×[0,1] be given

by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U and µ ∈ [0, 1] and assume (3.2) (with

Definition 2.3) and (3.3) hold. For any continuous map µ : U → [0, 1] assume

Λ ∈ MA(U, E × [0, 1]) where

Λ(x, λ) = (N(x, λ), µ(x, λ)) for (x, λ) ∈ U.
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Also suppose

(3.7)

{

Ω = {(x, λ) ∈ U : Φ(x, λ) ∩ N(x, λ) 6= ∅}

is compact and Ω1 6= ∅;

here Ωt = {x ∈ E : (x, t) ∈ Ω} for t ∈ [0, 1]. Then Ω contains a continuum

intersecting Ω0 × {0} and Ω1 × {1}.

Proof. Note A = Ω0 × {0} ⊆ Ω and B = Ω1 × {1} ⊆ Ω are closed and compact.

If there is no continuum intersecting A and B then from Theorem 2.11, Ω can be

represented as Ω = Ω⋆ ∪Ω⋆⋆ where Ω⋆ and Ω⋆⋆ are disjoint compact sets with A ⊆ Ω⋆

and B ⊆ Ω⋆⋆. Notice Ω⋆ and Ω⋆⋆ ∪ ∂U are closed and disjoint (note Ω⋆ ∩ ∂U = ∅

since if there exists a (x, λ) ∈ ∂U and (x, λ) ∈ Ω⋆ then (note (x, λ) ∈ Ω⋆ ⊆ Ω)

Φ(x, λ) ∩ N(x, λ) 6= ∅ which contradicts (3.3)). Now there exists a continuous map

µ : U → [0, 1] with µ(Ω⋆⋆ ∪ ∂U) = 0 and µ(Ω⋆) = 1. Let

Λ(x, λ) = (N(x, λ), µ(x, λ)) for (x, λ) ∈ U.

From the statement of Theorem 3.6 note Λ ∈ MA(U, E × [0, 1]) and in fact Λ ∈

MA∂U (U, E × [0, 1]) since if there exists a (x, λ) ∈ ∂U with Φ⋆(x, λ) ∩ Λ(x, λ) 6=

∅ then (Φ(x, λ), λ) ∩ (N(x, λ), µ(x, λ)) 6= ∅ i.e. (Φ(x, λ), λ) ∩ (N(x, λ), 0) 6= ∅ i.e.

Φ(x, λ) ∩ N(x, λ) 6= ∅ with λ = 0, and this contradicts (3.3). Note H0(x, λ) =

H(x, λ, 0) = (N(x, λ), 0) so

Λ|∂U = H0|∂U

since if (x, λ) ∈ ∂U then Λ(x, λ) = (N(x, λ), µ(x, λ)) = (N(x, λ), 0) because µ(Ω⋆⋆ ∪

∂U) = 0. Now (3.2) guarantees that there exists a (x, λ) ∈ U with Φ⋆(x, λ)∩Λ(x, λ) 6=

∅ i.e. (Φ(x, λ), λ) ∩ (N(x, λ), µ(x, λ)) 6= ∅ i.e. Φ(x, λ) ∩ N(x, λ) 6= ∅ and λ = µ(x, λ).

Note (x, λ) ∈ Ω since (x, λ) ∈ U and Φ(x, λ) ∩ N(x, λ) 6= ∅. Now either (x, λ) ∈ Ω⋆

or (x, λ) ∈ Ω⋆⋆. Suppose (x, λ) ∈ Ω⋆. Then µ(x, λ) = 1 so λ = µ(x, λ) = 1 and

Φ(x, 1)∩N(x, 1) 6= ∅ i.e. (x, 1) ∈ B ⊆ Ω⋆⋆ which contradicts (x, 1) = (x, λ) ∈ Ω⋆. Next

suppose (x, λ) ∈ Ω⋆⋆. Then µ(x, λ) = 0 so λ = µ(x, λ) = 0 and Φ(x, 0) ∩ N(x, 0) 6= ∅

i.e. (x, 0) ∈ A ⊆ Ω⋆ which contradicts (x, 0) = (x, λ) ∈ Ω⋆⋆.

Remark 3.7. We now consider the situation in Remark 2.9 (and Remark 3.5) and

the corresponding result is: Suppose N ∈ A(U, Y ; L, T ) and fix Φ : U → 2Y with

Φ⋆ ∈ B(U, Y × [0, 1];L,T); here Φ⋆(x, λ) = (Φ(x, λ), λ) for (x, λ) ∈ U . Let H :

U × [0, 1] → 2Y ×[0,1] be given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U and µ ∈ [0, 1]

and assume (3.5) and (3.6) hold. For any continuous map µ : U → [0, 1] assume

Λ ∈ MA(U, Y × [0, 1];L,T) where

Λ(x, λ) = (N(x, λ), µ(x, λ)) for (x, λ) ∈ U.
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Also suppose

(3.8)











Ω = {(x, λ) ∈ U : (L + T )−1(Φ + T )(x, λ)∩

(L + T )−1(N + T )(x, λ) 6= ∅} is compact

and Ω1 6= ∅.

Then Ω contains a continuum intersecting Ω0 × {0} and Ω1 × {1}.

In our next result (3.3) is not assumed.

Theorem 3.8. Let E be a metric space and U an open subset of E × [0, 1]. Suppose

N ∈ MA(U, E) and fix Φ : U → 2E with Φ⋆ ∈ B(U, E × [0, 1]); here Φ⋆(x, λ) =

(Φ(x, λ), λ) for (x, λ) ∈ U . Assume

(3.9) Φ(x, 0) ∩ N(x, 0) = ∅ for (x, 0) ∈ ∂U.

Let H : U × [0, 1] → 2E×[0,1] be given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U and

µ ∈ [0, 1] and assume (3.2) (with Definition 2.3) and (3.7) hold. For any continuous

map µ : U → [0, 1] assume Λ ∈ MA(U, E × [0, 1]) where

(3.10) Λ(x, λ) = (N(x, λ), µ(x, λ)) for (x, λ) ∈ U.

In addition for open bounded subsets W of U with Ω0 × {0} ⊆ W ⊆ U (so Φ(x, 0) ∩

N(x, 0) = ∅ for (x, 0) ∈ U\W ), ∂W ∩ Ω = ∅ and W ∩ (∂U ∩ Ω) = ∅ assume

N ∈ MA(W, E) and the following conditions holds:

(3.11) H0 is Φ⋆-essential in MA∂W (W, E × [0, 1])

(3.12)











for any continuous map µ : W → [0, 1] assume

Λ ∈ MA(W, E × [0, 1])where Λ(x, λ) = (N(x, λ), µ(x, λ))

for (x, λ) ∈ W

and

(3.13) Σ is closed and Σ1 6= ∅;

here Σ =
{

(x, λ) ∈ W : Φ(x, λ) ∩ N(x, λ) 6= ∅
}

and Σt = {x ∈ E : (x, t) ∈ Σ} for

t ∈ [0, 1]. Then Ω contains a continuum intersecting Ω0×{0} and (∂U∩Ω)∪(Ω1×{1}).

Proof. There are two cases to consider, namely Ω ∩ ∂U = ∅ or Ω ∩ ∂U 6= ∅. If

Ω ∩ ∂U = ∅ then (3.3) holds so the result follows from Theorem 3.6. Now suppose

Ω ∩ ∂U 6= ∅. Let A = Ω0 × {0}, B = Ω1 × {1} and C = Ω ∩ ∂U( 6= ∅). Notice C ⊆ Ω

is closed and (3.9) guarantees that C ∩ A = ∅. Now from Theorem 2.11 either

(1). there exists a continuum of Ω which intersects A and C (and we are finished),

or

(2). Ω = Ω⋆ ∪ Ω⋆⋆ where Ω⋆ and Ω⋆⋆ are disjoint compact sets with A ⊆ Ω⋆ and

C ⊆ Ω⋆⋆.
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Suppose (2) occurs. From Theorem 2.12 there exists an open bounded set V with

(3.14) Ω⋆ ⊆ V, V ∩ Ω⋆⋆ = ∅ and ∂V ∩ Ω = ∅.

Let W = U ∩ V . We now show

(3.15) A ⊆ W ⊆ U, ∂W ∩ Ω = ∅ and W ∩ (∂U ∩ Ω) = ∅.

Note A ⊆ W since A ⊆ Ω⋆ ⊆ V and A ⊆ U from (3.9). Next notice that

∂W = (U ∩ V )\(U ∩ V ) ⊆ (U ∩ V )\(U ∩ V )

= ((U\U) ∩ V ) ∪ ((V \V ) ∩ U)

= (∂U ∩ V ) ∪ (∂V ∩ U) ⊆ (∂U ∩ V ) ∪ ∂V,

and note ∂V ∩ Ω = ∅ (see (3.14)) and (∂U ∩ V ) ∩ Ω = ∅ (from (3.14) we have

V ∩ Ω⋆⋆ = ∅ and note C = Ω ∩ ∂U ⊆ Ω⋆⋆ so we have V ∩ Ω ∩ ∂U = ∅) and so

∂W ∩Ω = ∅. Finally notice W ∩Ω⋆⋆ = ∅ since W ⊆ U ∩V ⊆ V and V ∩Ω⋆⋆ = ∅ from

(3.9), so W ∩ Ω⋆⋆ = ∅ and C ⊆ Ω⋆⋆ implies W ∩ (∂U ∩ Ω) = ∅. Thus (3.15) holds.

Let

Σ =
{

(x, λ) ∈ W : Φ(x, λ) ∩ N(x, λ) 6= ∅
}

.

Note ∂W ∩Σ = ∅ (see (3.15) and note Σ ⊆ Ω). Now Theorem 3.6 (note Σ is compact)

implies that Σ contains a continuum intersecting Σ0×{0} (⊆ Ω0 ×{0}) and Σ1×{1}

(⊆ Ω1 × {1}) and our result follows.

Remark 3.9. We now consider the situation in Remark 2.9 (and Remarks 3.5 and

3.7) and the corresponding result is: Let E be a metric space and U an open subset

of E × [0, 1]. Suppose N ∈ MA(U, Y ; L, T ) and fix Φ : U → 2Y with Φ⋆ ∈ B(U, Y ×

[0, 1];L,T); here Φ⋆(x, λ) = (Φ(x, λ), λ) for (x, λ) ∈ U . Assume

(3.16) (L + T )−1(Φ + T )(x, 0) ∩ (L + T )−1(N + T )(x, 0) = ∅ for (x, 0) ∈ ∂U.

Let H : U × [0, 1] → 2Y ×[0,1] be given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U and

µ ∈ [0, 1] and assume (3.5) and (3.8) hold. For any continuous map µ : U → [0, 1]

assume Λ ∈ MA(U, Y × [0, 1];L,T) where

(3.17) Λ(x, λ) = (N(x, λ), µ(x, λ)) for (x, λ) ∈ U.

In addition for open bounded subsets W of U with Ω0 ×{0} ⊆ W ⊆ U , ∂W ∩Ω = ∅,

and W ∩ (∂U ∩ Ω) = ∅ assume N ∈ MA(W, Y ; L, T ) and the following conditions

hold:

(3.18) H0 is (L,T)Φ⋆-essential in MA∂W (W, Y × [0, 1];L,T)

(3.19)











for any continuous map µ : W → [0, 1] assume

Λ ∈ MA(W, Y × [0, 1];L,T) where

Λ(x, λ) = (N(x, λ), µ(x, λ)) for (x, λ) ∈ W
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and

(3.20) Σ is closed and Σ1 6= ∅;

here Σ =
{

(x, λ) ∈ W : (L + T )−1(Φ + T )(x, λ) ∩ (L + T )−1(N + T )(x, λ) 6= ∅
}

. Then

Ω contains a continuum intersecting Ω0 × {0} and (∂U ∩ Ω) ∪ (Ω1 × {1}).

In our next result {(x, λ) ∈ U : Φ(x, λ)∩N(x, λ) 6= ∅} is compact is not assumed.

For convenience we assume E is a normed space (the proof when E is a metric space

is similar).

Theorem 3.10. Let E be a normed space and U an open subset of E× [0, 1]. Suppose

N ∈ MA(U, E) and fix Φ : U → 2E with Φ⋆ ∈ B(U, E × [0, 1]); here Φ⋆(x, λ) =

(Φ(x, λ), λ) for (x, λ) ∈ U . Assume (3.9) and the following condition holds:

(3.21) Ω0 is nonempty and compact;

here Ω0 = {x ∈ E : (x, 0) ∈ Ω} where Ω = {(x, λ) ∈ U : Φ(x, λ) ∩ N(x, λ) 6= ∅}.

Let H : U × [0, 1] → 2E×[0,1] be given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U and

µ ∈ [0, 1]. In addition for open bounded subsets W of U with Ω0 × {0} ⊆ W ⊆ U (so

Φ(x, 0) ∩ N(x, 0) = ∅ for (x, 0) ∈ U\W ) assume N ∈ MA(W, E) and the following

conditions hold:

(3.22) H0 is Φ⋆-essential in MA∂W (W, E × [0, 1])

(3.23)











for any continuous map µ : W → [0, 1] assume

Λ ∈ MA(W, E × [0, 1]) where Λ(x, λ) = (N(x, λ), µ(x, λ))

for (x, λ) ∈ W

and

(3.24)

{

Σ = {(x, λ) ∈ W : Φ(x, λ) ∩ N(x, λ) 6= ∅}

is compact and Σ1 6= ∅.

Then Ω contains a connected component intersecting Ω0 × {0} and which either in-

tersects (∂U ∩ Ω) ∪ (Ω1 × {1}) or is unbounded.

Proof. Since Ω0 is compact there exists n0 ∈ N with Ω0 ⊆ B(0, n0). For n ≥ n0 let

Un = U ∩ (B(0, n) × [0, 1]) and Ωn = {(x, λ) ∈ Un : Φ(x, λ) ∩ N(x, λ) 6= ∅}.

Note (3.9) implies Ω0 × {0} ⊆ U and as a result Ω0 × {0} ⊆ Un. Also note if there

exists (x, 0) ∈ U\Un with Φ(x, 0) ∩ N(x, 0) 6= ∅ then (x, 0) ∈ Ω0 × {0} ⊆ Un, a

contradiction. Thus

Φ(x, 0) ∩ N(x, 0) = ∅ for (x, 0) ∈ U\Un.

For each n ≥ n0, Theorem 3.8 (with Un replacing U and note (3.7) holds with

Un replacing U (see (3.24) with W = Un)) guarantees that there exists (xn, 0) ∈
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Ω0 × {0} and a connected component Cn of Ωn containing (xn, 0) and intersecting

(∂Un ∩Ωn) ∪ (Ωn
1 × {1}) (here Ωn

1 = {x ∈ E : (x, 1) ∈ Ωn}). Since Ω0 is compact the

sequence (xn) has an accumulation point x0 ∈ Ω0. Assume that there is NO connected

component of Ω intersecting Ω0 × {0} and (∂U ∩ Ω) ∪ (Ω1 × {1}). Let C0 be the

connected component containing x0 (and not intersecting (∂U ∩ Ω) ∪ (Ω1 × {1})).

Our result follows if we show C0 is unbounded. Assume C0 is bounded. Note

C0 ⊆ U and C0 ∩ ∂U = ∅ (since C0 does not intersect (∂U ∩ Ω) ∪ (Ω1 × {1})) so

C0 ⊆ U , and note C0 , Ω0×{0} are closed and bounded and as a result we can choose

an open bounded set V with

C0 ∪ (Ω0 × {0}) ⊆ V ⊆ U.

Suppose ∂V ∩ Ω = ∅. Note if there exists (x, 0) ∈ U\V with Φ(x, 0) ∩ N(x, 0) 6= ∅

then (x, 0) ∈ Ω0 × {0} ⊆ V , a contradiction. Thus

Φ(x, 0) ∩ N(x, 0) = ∅ for (x, 0) ∈ U\V.

Now Theorem 3.8 with V replacing U (note Ω̃0 × {0} ⊆ V ⊆ U and ∂V ∩ Ω̃ = ∅

since Ω̃ ⊆ Ω) implies that Ω̃ = {(x, λ) ∈ V : Φ(x, λ) ∩ N(x, λ) 6= ∅} has a connected

component intersecting Ω̃0 × {0} (⊆ Ω0 × {0}) and Ω̃1 × {1} (⊆ Ω1 × {1}), which

contradicts the assumption that there is no connected component of Ω intersecting

Ω0 × {0} and (∂U ∩ Ω) ∪ (Ω1 × {1}); here Ω̃t = {x ∈ E : (x, t) ∈ Ω̃} for t ∈ [0, 1].

Thus

∂V ∩ Ω 6= ∅.

Note (x0, 0) ∈ Ω0 × {0} ⊆ V so (x0, 0) and ∂V ∩ Ω are closed disjoint subsets of

the compact set Ω̃ and the connected component of Ω̃ containing (x0, 0) does not

intersect ∂V ∩ Ω (since C0 ⊆ V ). Now from Theorem 2.12 there exists an open

bounded neighborhood V0 of (x0, 0) with

(3.25) (x0, 0) ∈ V0, V0 ∩ (Ω ∩ ∂V ) = ∅ and ∂V0 ∩ Ω̃ = ∅.

Let W = V ∩ V0. Now W ⊆ V with

(3.26) (x0, 0) ∈ W and ∂W ∩ Ω = ∅

since ∂W ⊆ (∂V ∩ V0)∪ (∂V0 ∩ V ) and note (∂V ∩ V0)∩Ω = V0 ∩ (∂V ∩Ω) = ∅ from

(3.25) and (∂V0 ∩ V ) ∩ Ω = ∂V0 ∩ (V ∩ Ω) = ∂V0 ∩ Ω̃ = ∅ from (3.25).

Now V is bounded and W is an open neighborhood of (x0, 0) so there exists a

n1 ≥ n0 with

(xn1
, 0) ∈ W and V ⊆ B(0, n1) × [0, 1].

Note (xn1
, 0) ∈ W∩Cn1

so W∩Cn1
6= ∅. Also note that Cn1

meets (E×[0, 1])\W since

Cn1
intersects (∂Un1∩Ωn1)∪(Ωn1

1 ×{1}) (and does not intersect (∂U∩Ω)∪(Ω1×{1})).

Now Cn1
is connected so Cn1

∩ ∂W 6= ∅. This is a contradiction since Cn1
∩ ∂W ⊆

Ωn1 ∩ ∂W ⊆ Ω ∩ ∂W = ∅ from (3.26).
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Remark 3.11. We now consider the situation in Remark 2.9 (and Remarks 3.5,

3.7 and 3.9) and the corresponding result is: Let E be a normed space and U an

open subset of E × [0, 1]. Suppose N ∈ MA(U, Y ; L, T ) and fix Φ : U → 2Y with

Φ⋆ ∈ B(U, Y × [0, 1];L,T); here Φ⋆(x, λ) = (Φ(x, λ), λ) for (x, λ) ∈ U . Assume (3.16)

and the following conditions holds:

(3.27) Ω0 is nonempty and compact;

here Ω0 = {x ∈ E : (x, 0) ∈ Ω} where Ω = {(x, λ) ∈ U : (L + T )−1(Φ + T )(x, λ) ∩

(L + T )−1(N + T )(x, λ) 6= ∅}. Let H : U × [0, 1] → 2Y ×[0,1] be given by H(x, λ, µ) =

(N(x, λ), µ) for (x, λ) ∈ U and µ ∈ [0, 1]. In addition for open bounded subsets W of

U with Ω0×{0} ⊆ W ⊆ U assume N ∈ MA(W, Y ; L, T ) and the following conditions

hold:

(3.28) H0 is (L,T)Φ⋆-essential in MA∂W (W, Y × [0, 1];L,T)

(3.29)











for any continuous map µ : W → [0, 1] assume

Λ ∈ MA(W, Y × [0, 1];L,T) where

Λ(x, λ) = (N(x, λ), µ(x, λ)) for (x, λ) ∈ W

and

(3.30)











Σ = {(x, λ) ∈ W : (L + T )−1(Φ + T )(x, λ)∩

(L + T )−1(N + T )(x, λ) 6= ∅}is compact

and Σ1 6= ∅.

Then Ω contains a connected component intersecting Ω0 × {0} and which either

intersects (∂U ∩ Ω) ∪ (Ω1 × {1}) or is unbounded.
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