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ABSTRACT. Time scale linear-quadratic control problems with affine mixed state-control and

joint endpoints equality constraints are considered. Without any controllability assumption, it is

shown that the feasible pairs at which the first variation vanishes are exactly the feasible pairs

that satisfy the weak maximum principle (called “extremals”) with λ0 = 1. In this case, we say

the problem is ”weakly normal” at such feasible pairs. When a certain matrix function S(·) has

invertible images, the weak-normality condition at (x̄, ū) with associated adjoint variable p̄ is also

equivalent to (x̄, p̄) solving the corresponding non-homogeneous symplectic boundary value problem

and to ū being a certain affine combination of this solution. In this equivalence, the invertibility of

the corresponding matrices S(t) is not needed when the linear-quadratic problem is itself symplectic.

As an application, it is established that without any controllability assumption, the optimality in

linear-quadratic problems is characterized in terms of either the weak normality condition, or the

solvability of the corresponding symplectic boundary value. These results are obtained for linear-

quadratic control problems with or without shift in the state variable and are new not only for the

time scale setting but also for the continuous time and discrete time settings.
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1. INTRODUCTION

Consider the linear-quadratic optimal control problem on a time scale T having

constraints as variable state endpoints equalities as well as mixed control–state equal-

ities. As is customary of dynamic and variational problems over time scales, there are

two formulations: one we denote by (LQσ), in which the data has a shift in the state

variable xσ, and the second is (LQ), in which x has no shift. When the time scale

T is a connected interval both forms collapse to the continuous time linear-quadratic

control problem. The presence of two forms of such variational problems stems from

the fact that the time scale incorporates also the discrete setting where both forms are

prominent; see e.g. [7,27] for the discrete problems with no shift, and [3,16,18,26] for
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the discrete problems with shift. The framework of time scale dynamic equation and

its corresponding objective functional includes not only the continuous and discrete

time setting but also anything in between see e.g., [1, 2, 8, 10, 11, 17].

Let P(·), Q(·), R(·), A(·), B(·), K(·), N(·), c(·), z(·) and k(·) be respectively

n×n-, n×m-, m×m-, n×n-, n×m-, k×n-, k×m-, k×1-, n×1-, and m×1- matrix-

functions defined over the time scale [a, ρ(b)]T which are piecewise rd-continuous with

P(t) and R(t) symmetric for all t, m ≤ n, and k ≤ m. Let Γ and M be respectively

2n× 2n- and r × 2n-matrices with Γ symmetric and r ≤ 2n, and let d be a vector in

R
r and ca and cb be vectors in R

n. Assume in addition that M and N(t), for all t,

are of full rank. Define

F(x, u) := ca
T x(a) + cb

T x(b) +
1

2

(

x(a)

x(b)

)T

Γ

(

x(a)

x(b)

)

+

∫ b

a

[

zT xσ + kT u +
1

2

(

(xσ)TPxσ + 2(xσ)TQ u + uTRu
)]

(t)∆t.(1.1)

The linear-quadratic control problem with shift in x, (LQσ), is defined as:

minimize F(x, u)(LQσ)

subject to:x ∈ C1
prd[a, b]T and u ∈ Cprd[a, ρ(b)]T satisfying

x∆(t) = A(t)xσ(t) + B(t)u(t), t ∈ [a, ρ(b)]T,(1.2)

K(t)xσ(t) + N(t)u(t) = c(t), t ∈ [a, ρ(b)]T,(1.3)

M

(

x(a)

x(b)

)

= d,(1.4)

where T is a bounded time scale, a := min T, b := max T, and [c, d]T := [c, d]∩T. The

state x : [a, b]T → Rn is piecewise rd-continuously ∆-differentiable, and the control

u : [a, ρ(b)]T → Rm is piecewise rd-continuous. The Hamiltonian corresponding to

problem (LQσ) is

H(t, x, u, p, λ, λ0) := pT [A(t)x + B(t)u] + λT [K(t)x + N(t)u − c(t)] + λ0

[

zT (t)x

+ kT (t)u +
1

2

(

xTP(t)x + 2xTQ(t)u + uTR(t)u
)]

.(1.5)

A pair (x, u) satisfying (1.2), (1.3) and (1.4) is said to be feasible for (LQσ). A

feasible pair (x̄, ū) is a weak local minimum for (LQσ) if there exists ε̄ > 0 such that

for any feasible (x, u) with ‖x−x̄‖C < ε̄ and ‖u−ū‖Cprd
< ε̄ we have F(x̄, ū) ≤ F(x, u),

where

‖u‖Cprd
:= sup

t∈[a,ρ(b)]T

∣

∣u(t)
∣

∣, ‖x‖C := max
t∈[a,b]T

∣

∣x(t)
∣

∣.
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Given the data P (·), Q(·), R(·), A(·), B(·), K(·), N(·), c(·), z(·), k(·), Γ, M , d,

ca, and cb, satisfying the assumptions of the corresponding coefficients in (LQσ). Set

F (x, u) := ca
T x(a) + cb

T x(b) +
1

2

(

x(a)

x(b)

)T

Γ

(

x(a)

x(b)

)

+

∫ b

a

[

zT x + kT u +
1

2

(

xT Px + 2xT Q u + uT Ru
)

]

(t)∆t.(1.6)

Then, the linear-quadratic control problem with no shift in x, (LQ), is defined as

minimize F (x, u)(LQ)

subject to:x ∈ C1
prd[a, b]T and u ∈ Cprd[a, ρ(b)]T satisfying

x∆(t) = A(t)x(t) + B(t)u(t), t ∈ [a, ρ(b)]T,(1.7)

K(t)x(t) + N(t)u(t) = c(t), t ∈ [a, ρ(b)]T,(1.8)

M

(

x(a)

x(b)

)

= d,(1.9)

where the state x, the control u, the Hamiltonian H , and the notion of weak local

minimality are defined in terms of the data of this problem similarly to those for the

problem (LQσ). The feasibility of a pair (x, u) means that it satisfies (1.7)–(1.9).

Note that the time scale [a, b]T does not only incorporate both the continuous time

connected interval [a, b] and the discrete time interval [0, N + 1]N := {0, 1, . . . , N + 1}

but also, as is the case in many applications [4, 6, 19, 20], the time scale encompasses

the setting where the time is neither continuous nor discrete. Thorough description of

the time scales theory can be found in [6]. The functions σ and ρ are respectively the

forward and backward jump operators on [a, b]T and xσ(t) := x
(

σ(t)
)

. The time scale

∆-derivative and the corresponding integral are denoted, respectively, by x∆(t) and
∫ b

a
G(t) ∆t. In the special cases of the continuous and discrete times, x∆(t) reduces to

the standard derivative ẋ(t) and forward difference ∆x(t), the integral to
∫ b

a
G(t) dt

and
∑N

k=0 G(k), and the jump operators to σ(t) = t = ρ(t) and σ(k) = k + 1, ρ(k) =

k−1, respectively. The graininess function on [a, b]T is µ(t) := σ(t)−t. The notions of

piecewise rd-continuous (Cprd) and piecewise rd-continuously ∆-differentiable (C1
prd)

functions are introduced in [17].

In the presence of variable endpoints constraints and only pure-control equality

constraints, first and second-order order necessary conditions for weak local optimal-

ity invoking Lagrange multipliers were derived in [23] for the time scale nonlinear

optimal control problem and are known as the weak maximum principle and the

second variation condition, respectively. This latter states that the linear-quadratic

accessory problem corresponding to the nonlinear problem has zero as a minimum

value. These necessary conditions unify the corresponding continuous time results,
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see e.g. [12], and the discrete time results, see e.g. [15] or [16]. They also extend the

results in [5, 26] from the calculus of variations to general optimal control problems.

In order that these conditions be meaningful or non-degenerate, the multiplier λ0

associated to the objective function must be non-zero. A sufficient condition for the

non-degeneracy is the M-controllability of the constraints linearization (see [23]).

Optimal control problems with mixed control-state constraints were never studied

over time scales. However, they were extensively studied in thecontinuous time setting

for which such first and second order optimality conditions are obtained (see e.g, [29],

[30], [28]). In order to have λ0 = 1, it is customary to either assume one state

endpoint is free (e.g., [9]), which yields the controllability, or to directly assume the

controllability of the constraints linearization when both endpoints vary (e.g., [34]).

On the other hand, in the continuous time setting, when the problem is purely linear-

quadratic (see Remark 2.2) over L2[a, b] controls, the state endpoints are both fixed,

and no mixed control-state constraints are present, it is shown in [13, Section 8] by

means of Hilbert space methods and without any controllability, that any optimal

solution must have at least one set of multipliers for which λ0 = 1.

One main goal of this paper is to show without any controllability assumption

that any linear-quadratic problem on time scales of the form (LQσ) or (LQ) has

the property that its “critical pairs” are exactly “extremals” at which the problem

is “weakly normal.” In other words, feasible pairs (x̄, ū) at which the first variation

of the problem vanishes are exactly those who admit at least one set of multipliers

satisfying the weak maximum principle with λ0 = 1. Once this result is established,

a characterization of optimality for linear-quadratic problems is obtained in terms of

the non-negativity of the second variation and the weak normality condition. Fur-

thermore, the normality condition is shown to be also equivalent to the existence of

a solution to the corresponding non-homogeneous symplectic system with boundary

conditions when a certain matrix function S(·) for (LQσ) or S(·) for (LQ) have in-

vertible images. This equivalence, however, does not require the invertibility of the

corresponding matrix S(t) when the linear-quadratic problem itself is symplectic; see

Section 4 for details. In order to prove these results for the linear-quadratic problem

in the form of (LQ), it is shown that this latter is in fact equivalent to the form

(LQσ); a result that is important on its own for this general setting.

The results in this paper are new, not only for the time scale setting, but also for

the continuous or discrete time setting. In particular, the result in [13] for the con-

tinuous time is now extended to the case when the mixed state-control and the joint

endpoints constraints are present and when the quadratic function is not necessarily

purely quadratic (see Remark 2.2). Furthermore, the same result is now valid when

the control space is the smaller set of piecewise continuous functions.
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2. LINEAR-QUADRATIC PROBLEMS WITH STATE SHIFT

In the first part of this section we derive a characterization of optimality for

the linear-quadratic control problem (LQσ) introduced in Section 1 without any M-

controllability assumption. This characterization is done in terms of the first variation

being zero; a condition shown later to be equivalent to the “weak-normality” of the

problem (LQσ) at the extremal.

Definition 2.1. A pair (η, v) is said to be an admissible direction for the problem

(LQσ) if it satisfies the equation of motion (1.2), and the linearization of (1.3) and

(1.4), that is,

η∆(t) = A(t)ησ(t) + B(t)v(t), t ∈ [a, ρ(b)]T,(2.1)

K(t)ησ(t) + N(t)v(t) = 0, t ∈ [a, ρ(b)]T,(2.2)

M

(

η(a)

η(b)

)

= 0.(2.3)

Note that when c ≡ 0 and d = 0 then feasible pairs and admissible directions

are the same.

Since N(t) is of full rank for all t ∈ [a, ρ(b)]T, choose a function Y : [a, ρ(b)]T →

Rm×(m−k), Y ∈ Cprd, such that, for each t, Y(t) is a matrix whose columns form an

orthonormal basis for the space KerN(t). Set

(2.4) N†(t) := NT (t)(N(t)NT (t))−1 for all t ∈ [a, ρ(b)]T.

Then, equation (2.2) is equivalent to

(2.5) v(t) = Y(t)w(t) − N†(t)K(t)ησ(t), for all t ∈ [a, ρ(b)]T,

where w(·) is in Cprd. Hence, (η, v) satisfies Definition (2.1) is equivalent to v being

defined through w via (2.5) and (η, w) satisfies

η∆(t) =
(

A(t) − B(t)N†(t)K(t)
)

ησ(t) + B(t)Y(t)w(t), t ∈ [a, ρ(b)]T,(2.6)

M

(

η(a)

η(b)

)

= 0.(2.7)

We define the first and second variations of the problem (LQσ) at a pair (x̄, ū)

in C1
prd × Cprd in the direction of an admissible pair (η, v) by

F′(x̄, ū; η, v) := ca
T η(a) + cb

T η(b) +

(

x̄(a)

x̄(b)

)T

Γ

(

η(a)

η(b)

)

+

∫ b

a

[

zT ησ + kT v

+ (x̄σ)TPησ + ūTQT ησ + (x̄σ)TQv + ūTRv
]

(t)∆t,(Lσ)
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(Qσ) F′′(x̄, ū; η, v) :=

(

η(a)

η(b)

)T

Γ

(

η(a)

η(b)

)

+

∫ b

a

[(ησ)TPησ +2(ησ)TQv+vTRv](t)∆t.

Remark 2.2. (i) The affine feature of (1.2)–(1.4) and the quadraticity of the func-

tional F in (1.1) yield that the second variation F′′ is independent of (x̄, ū).

(ii) When the problem is purely linear-quadratic, that is, ca = 0, cb = 0, c ≡ 0,

z ≡ 0, k ≡ 0, and d = 0 then, feasible directions are also admissible directions

and we readily obtain from (Lσ) that F′(x̄, ū; x̄, ū) = 2F(x̄, ū) and from (Qσ) that

F′′(x̄, ū; η, v) = 2F(η, v).

When K ≡ 0, our problem (LQσ) is a special case of the nonlinear control

problem studied in [23] for pure equality control constraints. A necessary condition

for optimality is obtained in [23, Corollary 6.3]. It states that the first variation at

an optimal pair must be equal zero along any admissible direction (η, v), provided

I −µ(t)A(t) is invertible for all t and the system (1.2) is M-controllable over the null

space of N (see Definition 4.2 therein, or take K ≡ 0 in the M-controllability notion

given by (2.10)). Also, these same assumptions are required in [23, Theorem 7.2] for

the second variation to be non-negative along any admissible direction (η, v).

Unlike the results in [23, Corollary 6.3 and Theorem 7.2] for the case when K ≡ 0,

the following proposition shows that even in the presence of mixed state-control con-

straints in the linear-quadratic problem (LQσ), the first and second order necessary

conditions for (LQσ) do not require neither the invertibility of I −µ(A−BN†K) nor

the M-controllability of (2.1)–(2.2). In addition, this Proposition shows that these

necessary conditions are also sufficient for the weak local optimality of (x̄, ū), which

is equivalent to the global optimality.

Proposition 2.3 (Optimality & 1st and 2nd variations of (LQσ)). Let (x̄, ū) be

feasible for (LQσ). Then, the following conditions are equivalent.

(a) (x̄, ū) is a weak local minimum for (LQσ).

(b) For all admissible directions (η, v), F′(x̄, ū; η, v) = 0 and F′′(x̄, ū; η, v) ≥ 0.

(c) (x̄, ū) is a global minimum for (LQσ).

Remark 2.4. When( LQσ) is purely linear-quadratic and (x̄, ū) is a weak local min-

imum, then (a) ⇒ (b) here and part (ii) of Remark 2.2 imply that F(x̄, ū) = 0.

Proof of Proposition 2.3.

(a) ⇒ (b): Let (η, v) be an admissible direction. Then, for any ε, the pair (x̄+εη, ū+

εv) is feasible for problem (LQσ). By the weak local minimality of (x̄, ū), there exists

ε0 > 0 such that

(2.8) F(x̄ + εη, ū + εv) − F(x̄, ū) ≥ 0 ∀ε ∈ [0, ε0].
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Use (1.1) and foil F(x̄ + εη, ū + εv), it follows from (Lσ) that (2.8) is equivalent to:

(2.9) ε2F′′(x̄, ū; η, v) + 2εF′(x̄, ū; η, v) ≥ 0 ∀ε ∈ [0, ε0].

This implies that for all ε in (0, ε0], εF′′(x̄, ū; η, v) + 2F′(η̄, v̄; η, v) ≥ 0. Upon taking

ε ց 0 it follows that

F′(η̄, v̄; η, v) ≥ 0 ∀ admissible directions (η, v).

Since the set of admissible pairs is symmetric with respect to the origin and F′

is linear in (η, v), it follows that F′(x̄, ū; η, v) = 0 for all admissible directions (η, v).

By using F′(x̄, ū; η, v) = 0 in (2.9) it follows that F′′(x̄, ū; η, v) ≥ 0.

(b) ⇒ (c): Let (x, u) be any feasible pair. It follows that (η, v) := (x− x̄, u− ū) is an

admissible direction. Using condition (b) and the admissiblity of (η, v) in

F(x, u) = F(x̄ + η, ū + v) = F(x̄, ū) + F′(x̄, ū; η, v) +
F′′(x̄, ū; η, v)

2
,

we get F(x, u) ≥ F(x̄, ū), and hence (x̄, ū) is a global minimum.

(c) ⇒ (a): This implication is immediate. �

In order to characterize the primal form of the first-order condition, namely,

F′(x̄, ū; η, v) = 0 for all admissible directions, in terms of the weak maximum principle

we introduce the notions of extremals and the weak-normality for the problem (LQσ).

Definition 2.5 (Extremal for (LQσ)). A feasible pair (x̄, ū) is said to be extremal

for (LQσ) if there exist λ0, λ̄ : [a, ρ(b)]T → Rk, λ̄ ∈ Cprd, p̄ : [a, b]T → Rn, p̄ ∈ C1
prd,

and γ̄ ∈ Rr satisfying

(i) λ0 ≥ 0, and λ0 + ‖λ̄‖Cprd
+ ‖p̄‖C +

∣

∣γ̄
∣

∣ 6= 0,

(ii) the adjoint equation: for all t ∈ [a, ρ(b)]T

(2.10) p̄∆(t) = −AT (t)p̄(t) + KT (t)λ̄(t) + λ0[P(t)x̄σ(t) + Q(t)ū(t) + z(t)],

(iii) the stationarity condition: for all t ∈ [a, ρ(b)]T

(2.11) −BT (t) p̄(t) + NT (t) λ̄(t) + λ0[Q
T (t)x̄σ(t) + R(t)ū(t) + k(t)] = 0,

(iv) the transversality condition:

(2.12)

(

p̄(a)

−p̄(b)

)

= λ0

[

Γ

(

x̄(a)

x̄(b)

)

+

(

ca

cb

)

]

+ MT γ̄.

When λ0 6= 0, it can be taken to be equal to 1.

Remark 2.6. The notion of extremality of a feasible pair means that there exists a

vector of multipliers Λ̄ := (λ0, λ̄, p̄, γ̄) satisfying “the weak maximum principle,” that

is, conditions (i)–(iv) of Definition 2.5. Conditions (ii)–(iii) can be phrased in terms

of the Hamiltonian H defined in by (1.5) as follows: for all t ∈ [a, ρ(b)]T,

(2.13) ((p̄∆)T (t), 0) = ∇x,uH(t, x̄σ(t), ū(t),−p̄(t), λ(t), λ0).
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Now we define the weak-normality of our problem at an extremal. It extends the

notion known for continuous-time control problems with only pure control constraints

(see e.g., [35, Definition 2.3]).

Definition 2.7 (Weak-Normality of (LQσ)). The problem (LQσ) is weakly normal

at an extremal pair (x̄, ū) if there exists a multiplier vector of the form Λ̄ = (λ0 =

1, λ̄, p̄, γ̄) satisfying conditions (i)–(iv) of Definition 2.5.

For comparison purposes only, we introduce here the notions of normality and

M-controllability. The normality notion for the problem (LQσ) extends to the time

scale setting the notion known in [34] for the continuous-time.

Definition 2.8 (Normality of (LQσ)). The problem (LQσ) is normal if the system

(2.14) p∆ = −AT p + KT λ,−BTp + NTλ = 0, (on [a, ρ(b)]T),

(

p(a)

−p(b)

)

= MT γ,

where γ ∈ Rr and λ : [a, ρ(b)]T → Rk, possesses only the trivial solution p(·) ≡ 0 (and

then also γ = 0 and λ ≡ 0).

Remark 2.9. Similarly to the case of continuous time setting (see [34, Proposi-

tion 4.1]), it is easy to see that the normality notion in Definition 2.8 is equivalent to

saying that

(2.15) p∆ = −(AT − KTNT
† B

T )p,YTBT p = 0, ( on [a, ρ(b)]T),

(

p(a)

−p(b)

)

= MT γ,

where γ ∈ Rr, possesses only the trivial solution p(·) ≡ 0 (and then also γ = 0).

Next we define the notion of M-controllability of the system (2.1)–(2.2), which

generalizes to the case of mixed control-state constraints the notion known, e.g., in [23]

where only pure control equality constraints are present.

Definition 2.10. The system (2.1)–(2.2) is said to be M-controllable if

(2.16)
{

M

(

η(a)

η(b)

)

: (η, v) ∈ C1
prd × Cprd and solve (2.1)–(2.2)

}

= R
r.

It is equivalent to the M-controllability of the control equation (2.6), that is,

(2.17)
{

M

(

η(a)

η(b)

)

: (η, w) ∈ C1
prd × Cprd and solve (2.6)

}

= R
r.

Remark 2.11 (Normality of (LQσ)⇔ M-controllability). When I − µ(A−BN†K)

is invertible, arguments similar to [34, Proposition 4.2] and to [23, Proposition 4.5]

easily prove that the normality of (LQσ) is equivalent to the M-controllability of the

system (2.1)–(2.2).
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When only pure control constraints are present, i.e., when K ≡ 0, the above

equivalence would only require I − µA to be invertible; which is the usual condition

needed for this special setting (see [23, Proposition 4.5]).

Remark 2.12 (Normality vs. weak-normality of (LQσ)). The normality condition

is clearly stronger than that of the weak-normality at an extremal pair (x̄, ū). The

former dictates that all multiplier vectors corresponding to any extremal pair of (LQσ)

must have λ0 6= 0. On the other hand, the weak normality at an extremal (x̄, ū)

guarantees for this extremal the existence of at least one multiplier vector having

λ0 6= 0. However, this latter notion says nothing about other extremals and does not

exclude that there could be for (x̄, ū) other multiplier vectors in which λ0 = 0. Note

that in many situations, e.g., deriving sufficient optimality criteria, it is enough to

have one multiplier vector Λ in which λ0 6= 0.

The following statement confirms that without the M-controllability assumption

on the system (2.1)–(2.2), the first variation of (LQσ) at a pair (x̄, ū) is zero along

all admissible directions exactly means that (x̄, ū) must be an extremal at which the

problem (LQσ) is weakly normal.

Theorem 2.13 (First variation of (LQσ) & weak-normality at extremals). Assume

that for all t in [a, ρ(b)] the matrix I − µ(A − BN†K)(t) is invertible, and let (x̄, ū)

be a feasible pair. Then, the following conditions are equivalent.

(I) F′(x̄, ū; η, v) = 0 for all admissible directions (η, v).

(II) (x̄, ū) is an extremal at which (LQσ) is weakly-normal.

Remark 2.14. When the time scale is continuous, (LQσ) is purely linear-quadratic,

both state-endpoints are fixed to be zero (i.e, M = identity), and the control variable

is unrestricted (i.e., (1.3) is absent), then the implication (I) ⇒ (II) is proved in [13,

Section 8] using Hilbert space methods with the control space being the larger space

L2[a, b]. Therefore, the necessity part of Theorem 2.13 generalizes the corresponding

result in [13] not only to the time scale setting, but also in the continuous time, to

the case where the linear terms of F are present and where the control-state space is

that of piecewise smooth × piecewise continuous functions, the state-endpoints vary

in an affine fashion, and the affine mixed state-control constraints (1.3) are present.

A direct consequence of combining Theorem 2.13 with Proposition 2.3 is the

following Corollary, which represents a characterization of optimality of a feasible pair

in (LQσ). In particular, without assuming any controllability condition, an optimal

pair (x̄, ū) turns out to be an extremal with corresponding multipliers vector having

λ0 6= 1. This type of results is a special feature for the linear-quadratic problem, since

in the nonlinear problem this feature does not hold without an extra condition like

the M-controllability (see [23]).
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Corollary 2.15 (Weak-normality of (LQσ) at optimal pairs). Assume that I−µ(A−

BN† K)(t) is invertible on [a, ρ(b)]. Then, the following conditions are equivalent.

(a) The pair (x̄, ū) is (weak local or global) optimal for (LQσ).

(b) The pair (x̄, ū) is an extremal at which the problem (LQσ) is weakly normal, and

F′′(x̄, ū; η, v) ≥ 0 for all admissible directions (η, v).

Remark 2.16. When (x̄, ū) is an extremal at which (LQσ) is weakly normal, that is,

the first part of condition (b) holds, with corresponding multipliers Λ = (1, λ̄, p̄, γ̄),

then

(2.18) 2F(x̄, ū) =

(

x̄(a)

x̄(b)

)T (

ca

cb

)

− dT γ̄ +

∫ b

a

[zT x̄σ + kT ū − cT (t)λ̄(t)]∆t,

and hence, if in addition (LQσ) is purely linear-quadratic, then F(x̄, ū) = 0.

Proof of Theorem 2.13. (I) ⇒ (II): Assume (I), i.e., F′(x̄, ū; η, v) = 0 for all admissible

directions (η, v). As discussed at the beginning of this section, (η, v) is admissible

means that v is given by (2.5) for some w ∈ Cprd, and (η, w) satisfies (2.6)–(2.7).

Let Φ(·) to be the fundamental matrix of the system (2.6), i.e., Φ(t) be the unique

solution of Z∆ =
(

A(t) − B(t)N†(t)K(t)
)

Zσ, Z(a) = I. By [6, Theorem 5.21] and

the invertibility of I − µ
(

A − BN†K
)

(t) on [a, ρ(b)]T, the matrix Φ(t) exists and is

invertible on [a, b]T. The fundamental matrix Ψ of the adjoint system

(2.19) Z∆ = −
(

A(t) − B(t)N†(t)K(t)
)T

Z, Z(a) = I,

satisfies ΦT (t)Ψ(t) = I on [a, b]T.

Set M = [MaMb], where Ma and Mb are respectively the first and the last n-

columns of M. By using the variation of constant formula, see e.g. [6, Theorem 5.27],

where we write η(a) = α, it follows that the solutions of (2.6) and (2.7) are of the

form

(2.20) η(t) = Φ(t)α + Φ(t)

∫ t

a

Φ−1(τ)B(τ)Y(τ)w(τ)∆τ,

(2.21) [Ma + MbΦ(b)]α + MbΦ(b)

∫ b

a

Φ−1(τ)B(τ)Y(τ)w(τ)∆τ = 0,

where α ∈ Rn and w ∈ Cprd.

Write Γ =

[

Γa Γab

Γba Γb

]

, where each entry is an n × n-matrix and substitute

η(a) = α, v = Yw −N†Kησ, and ησ from (2.20), into the equation F′(x̄, ū; η, v) = 0.

It results that, for

β1 := Γax̄(a) + Γbax̄(b) + ca, β2 := Γabx̄(a) + Γbx̄(b) + cb,(2.22)
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(2.23)
δ(t) :=

[

(P− KTNT
† Q

T )x̄σ + (Q − KTNT
† R)ū + z − KTNT

† k
]

(t),

ξ(t) := Q(t)T x̄σ(t) + R(t)ū(t) + k(t),

}

we have

0 = [βT
1 + βT

2 Φ(b) +

∫ b

a

δT (t)Φσ(t)∆t]α

+

∫ b

a

[βT
2 Φ(b)Φ−1(t)B(t) + ξT (t)]Y(t)w(t)∆t

+

∫ b

a

δT (t)Φσ(t)
(

∫ σ(t)

a

Φ−1(τ)B(τ)Y(τ)w(τ)∆τ
)

∆t,(2.24)

for all α ∈ R
n and w ∈ Cprd satisfying (2.21).

To calculate the last term of (2.24) we use the integration by parts formula
∫ b

a

y∆(t)zσ(t)∆t = y(b)z(b) − y(a)z(a) −

∫ b

a

y(t)z∆(t)∆t,

where y(t) :=
∫ t

a
δT (τ)Φσ(τ)∆τ , and z(t) :=

∫ t

a
Φ−1(τ)B(τ)Y(τ)w(τ)∆τ we get

∫ b

a

δT (t)Φσ(t)
(

∫ σ(t)

a

Φ−1(τ)B(τ)Y(τ)w(τ)∆τ
)

∆t

=

∫ b

a

δT (τ)Φσ(τ)∆τ

∫ b

a

Φ−1(t)B(t)Y(t)w(t)∆t

−

∫ b

a

(

∫ t

a

δT (τ)Φσ(τ)∆τ
)

Φ−1(t)B(t)Y(t)w(t)∆t

=

∫ b

a

(

∫ b

t

δT (τ)Φσ(τ)∆τ
)

Φ−1(t)B(t)Y(t)w(t)∆t(2.25)

Using (2.25) into (2.24) we obtain

0 = [βT
1 + βT

2 Φ(b) +

∫ b

a

δT (t)Φσ(t)∆t]α

+

∫ b

a

[(

βT
2 Φ(b) +

∫ b

t

δT (τ)Φσ(τ)∆τ
)

Φ−1(t)B(t) + ξT (t)
]

Y(t)w(t)∆t,(2.26)

for all α ∈ Rn and w : [a, ρ(b)] → Rm−k satisfying (2.21). Set

(2.27)



































D := Ma + MbΦ(b) ∈ Rr×n,

E(t) := MbΦ(b)Φ−1(t)B(t)Y(t) ∈ Rr×(m−k),

d := β1 + ΦT (b)β2 +
∫ b

a
(Φσ)T (t)δ(t)∆t ∈ Rn,

h(t) := YT (t)
[

BT (t)Φ−T (t)
(

ΦT (b)β2

+
∫ b

t
(Φσ)T (τ)δ(τ)∆τ

)

+ ξ(t)
]

∈ R
m−k.

Then, (2.26) and (2.21) are equivalent to saying that

(2.28) dT α +

∫ b

a

hT (t)w(t)∆t = 0, whenever Dα +

∫ b

a

E(t)w(t)∆t = 0,
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for α ∈ Rn and w : [a, ρ(b)]T → Rm−k, w ∈ Cprd. Thus, by the generalized Dubois-

Reymond Lemma in [23, Lemma 4.7], (2.28) is equivalent to the existence of a vector

c ∈ Rr such that

d = DT c and h(t) = ET (t)c for all t ∈ [a, ρ(b)]T.

This means that

β1 + ΦT (b)β2 +

∫ b

a

(Φσ)T (t)δ(t)∆t = [MT
a + ΦT (b)MT

b ]c,(2.29)

YT (t)
[

BT (t)Φ−T (t)
(

ΦT (b)β2 +

∫ b

t

(Φσ)T (τ)δ(τ)∆τ
)

+ ξ(t)
]

= YT (t)BT (t)Φ−T (t)ΦT (b)MT
b c, ∀ t ∈ [a, ρ(b)]T.(2.30)

Set γ̄ := −c and

(2.31) p̄(t) := Φ−T (t)
[

−ΦT (b)β2 −

∫ b

t

(Φσ)T (τ)δ(τ)∆τ + ΦT (b)MT
b c
]

.

From (2.31), (2.29), and (2.22), it easily follows that p̄ and γ̄ satisfy the transversality

conditions (2.12) where λ0 = 1.

Now, (2.31) and (2.23) yield that (2.30) is equivalent to

(2.32) YT (t)[BT (t)p̄(t) − QT (t)x̄σ(t) −R(t)ū(t) − k(t)] = 0, ∀ t ∈ [a, ρ(b)],

which is equivalent to the existence of a function λ̄ : [a, ρ(b)] → Rk such that

(2.33) BT (t)p̄(t) − QT (t)x̄σ(t) − R(t)ū(t) − k(t) = NT (t)λ̄(t), ∀ t ∈ [a, ρ(b)],

proving that (2.11) is satisfied by λ0 = 1, p̄ and λ̄. Furthermore, the full rank property

of N implies the uniqueness of the function λ̄ satisfying (2.33) and that it must be

given by the formula

(2.34) λ̄(t) = NT
† (t)[BT (t)p̄(t) −QT (t)x̄σ(t) − R(t)ū(t) − k(t)] ∀ t ∈ [a, ρ(b)],

where N† is defined in (2.4). This proves that λ̄ is indeed in Cprd.

It remains to show that λ0 = 1, p̄, and λ̄ satisfy the adjoint equation. Calculate

the ∆-derivative of p̄ given by (2.31), and using (2.23) for δ(t) and the fact that

Ψ = Φ−T satisfies (2.19) we obtain

(2.35) p̄∆ = −AT p̄+Px̄σ +Qū+ z+KTNT
†

[

BT p̄−QT x̄σ −Rū−k
]

, on [a, ρ(b)].

Using the definition of λ̄ in (2.34) into (2.35) we conclude that the adjoint equa-

tion (2.10) holds. Therefore, Condition (II) of the theorem is satisfied.

(II) ⇒ (I): Assume that there is a multiplier vector Λ := (λ0 = 1, λ̄, p̄, γ̄) satisfying

with the pair (x̄, ū) conditions (ii)–(iv) of (2.5). Let (η, v) be any admissible pair,



LINEAR-QUADRATIC CONTROL ON TIME SCALES 639

from (2.10)–(2.12), and (2.1)–(2.3) it follows that the expression of F′ in (Lσ) is

F′(x̄, ū; η, v) : = ca
T η(a) + cb

T η(b) +

(

x̄(a)

x̄(b)

)T

Γ

(

η(a)

η(b)

)

+

∫ b

a

[(

(x̄σ)!TP + ūTQT + zT
)

ησ +
(

(x̄σ)TQ + ūTR + kT
)

v
]

∆t

=
[

(

p̄(a)

−p̄(b)

)T

− γ̄TM
]

(

η(a)

η(b)

)

+

∫ b

a

[

(p̄∆)T ησ + p̄T (Aησ + Bv) − λ̄T (Kησ + Nv)
]

∆t

= 0.

�

Remark 2.17. Note that in the above proof, the invertibility assumption on I −

µ(A − BN†K) is only needed to prove the implication (I) ⇒ (II). However, this

assumption is not needed to prove (II) ⇒ (I).

In this last part of this section, we will show that under the invertibility of a cer-

tain matrix function S, the weak normality of (LQσ) at an extremal (x̄, ū) with adjoint

variable p̄ is equivalent to (x̄, p̄) solving a nonhomogeneous symplectic boundary value

problem and to ū being a certain matrix linear combination of (x̄, p̄). Thereby, we

will be able via Corollary 2.15 to characterize the optimality in terms of the existence

of a solution to this symplectic boundary value problem.

Let Y : [a, ρ(b)]T → Rm×(m−k) be the matrix function introduced in the proof of

Theorem 2.13. Thus, (x̄, ū) feasible, that is, satisfying (1.2)–(1.4), is equivalent to

saying that for some function w̄ : [a, ρ(b)]T → R(m−k), w̄ ∈ Cprd

x̄∆ = (A − BN†K)x̄σ + B(Yw̄ + N†c),(2.36)

ū = Yw̄ + N†(c −Kx̄σ),(2.37)

M

(

x̄(a)

x̄(b)

)

= d.(2.38)

Assume that for all t, (I − µ(A−BN†K))(t) is invertible, and define C̃(t) to be

its inverse, that is,

(2.39) C̃(t) := (I − µ(A −BN†K))−1(t).



640 V. ZEIDAN

In this case (2.36) and (2.37) are equivalent to

x̄σ = C̃x̄ + µC̃B(Yw̄ + N†c),(2.40)

x̄∆ = (A −BN†K)C̃x̄ + C̃B(Yw̄ + N†c),(2.41)

ū = (I − µN†KC̃B)(Yw̄ + N†c) − N†KC̃x̄.(2.42)

Define the (m − k) × (m − k)-matrix function S on [a, ρ(b)]T by

(2.43) S(t) := YT (t)
[

R + µ(QT −RN†K)C̃B
]

(t)Y(t).

When S(t) is invertible for all t, define the non-homogeneous symplectic boundary

value problem on [a, ρ(b)]T by

(S)

{

x̄∆ = A(t)x̄ + B(t)p̄ + C̃Bζ(t)

p̄∆ = C(t)x̄ + D(t)p̄ + ρ(t)

(Bdry) M

(

x̄(a)

x̄(b)

)

= d,

(

p̄(a)

−p̄(b)

)

= Γ

(

x̄(a)

x̄(b)

)

+

(

ca

cb

)

+ MT γ̄,

where

(2.44)











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




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















































ζ := N†c − YS−1YT
[

k +
(

R + µ(QT − RN†K)C̃B
)

N†c
]

,

ρ := z − KTNT
† k + [Q + µ(P − QN†K)C̃B − KTNT

† (R + µ(QT − RN†K)C̃B]ζ,

A := [(A − BN†K − C̃BYS−1YT (QT −RN†K)]C̃,

B := C̃BYS−1YTBT ,

C :=
[

(P − (Q − KTNT
† R)N†K − KTNT

† QT )(I − µC̃BYS−1YT (QT − RN†K))

+(KT NT
† R − Q)YS−1YT (QT − RN†K)

]

C̃,

D :=
(

P − QN†K − KTNT
† (QT − RN†K)

)

µC̃BYS−1YTBT

+(Q − KTNT
† R)YS−1YTBT + KTNT

† BT − AT .

In the continuous time setting (i.e., µ ≡ 0), and when the initial endpoint is fixed,

system (S) and (Bdry) reduce to to system (5.8)–(5.11) in [34].

When the mixed state-control constraints is absent (i.e., K ≡ 0 and N ≡ 0), no

endpoint constraints are present (i.e., M = 0 and d = 0), and F is purely quadratic,

the coefficients (2.44) and system (S) reduce to the coefficients and their corresponding

homogeneous symplectic system obtained in [24, Theorem 3.1]. Similarly to the proof

of [24, Theorem 3.1], the coefficients in (2.44) actually define a time scale symplectic

system since it can be verified that they satisfy

(2.45)

{

CT (I + µA) and (I + µDT )B are symmetric,

and AT + D + µ(AT D − CT B) = 0,

and

(2.46)

{

B(I + µA)T and C(I + µDT ) are symmetric,

and AT + D + µ(DAT − CBT ) = 0.
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Proposition 2.18 (Weak-normality and symplectic systems for (LQσ)). Assume that

[I−µ(A−BN†K)](t) and S(t) are invertible for all t in [a, ρ(b)]. Then, the following

conditions are equivalent.

(a) The problem (LQσ) is weakly-normal at the extremal (x̄, ū) with associated Λ̄ :=

(1, λ̄, p̄, γ̄).

(b) (x̄, p̄, γ̄) solve the symplectic boundary value problem (S) and (Bdry), and

ū = (I − µN†KC̃B)YS−1YT [BT p̄ − (QT −RN†K)C̃x̄](2.47)

− N†KC̃x̄ + (I − µN†KC̃B)ζ,

where ζ is defined by (2.44).

Remark 2.19. When (LQσ) is purely linear-quadratic, then ζ ≡ 0, ρ ≡ 0, and

ca = cb = 0. In this case, the corresponding symplectic system (S) is homogeneous

and the boundary conditions (Bdry) take the form

(2.48) M

(

x̄(a)

x̄(b)

)

= 0,

(

p̄(a)

−p̄(b)

)

= Γ

(

x̄(a)

x̄(b)

)

+ MT γ̄.

Proof of Proposition 2.18. Assume (a) to be valid. Then, (2.10)–(2.12) are satisfied

for λ0 = 1, and by the feasibility of (x̄, ū), (2.40)–(2.41) and (2.38) hold for some

w̄ : [a, ρ(b)]T → R
(m−k), w̄ ∈ Cprd. Substitute for x̄σ and ū from (2.40) and (2.42) into

(2.10) and (2.11), where λ0 = 1, we obtain

p̄∆ = −AT p̄ + KT λ̄ + (P − QN†K)C̃x̄ +
[

Q + µ(P −QN†K)C̃B
]

(Yw̄ + N†c) + z,

(2.49)

−BT p̄ + NT λ̄ + (QT − RN†K)C̃x̄ +
[

R + µ(QT − RN†K)C̃B
]

(Yw̄ + N†c) + k = 0.

(2.50)

By the full rank property of N, and from the definition of S in (2.43), it follows

that Equation (2.50) is equivalent to

YT (−BT p̄ + k) + YT (QT −RN†K)C̃x̄ + Sw̄ + YT [R + µ(QT − RN†K)C̃B]N†c = 0,

(2.51)

λ̄ = NT
†

[

BT p̄ − k − (QT − RN†K)C̃x̄ −
(

R + µ(QT − RN†K)C̃B
)

(Yw̄ + N†c)
]

,

(2.52)

where N† is defined in (2.4). The invertibility of S(t), for all t, yields that (2.51) and

(2.52) allow the functions w̄ and λ̄ to be phrased in terms of (x̄, p̄) as follows:

w̄ = S−1YT
[

BT p̄ − k − (QT − RN†K)C̃x̄ − S N†c
]

,(2.53)

λ̄ = NT
†

[

I − S YS−1YT
][

BT p̄ − k − (QT − RN†K)C̃x̄ − S N†c
]

,(2.54)
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where

(2.55) S := R + µ(QT − RN†K)C̃B.

Now, substitute (2.53) and (2.54) into (2.42), (2.41), and (2.49), we obtain that

ū satisfies (2.47) and (x̄, p̄, γ̄) satisfy the symplectic system (S) and the boundary

conditions (Bdry).

Conversely, assume (b) is true, that is, (x̄, p̄, γ̄) solve (S) and (Bdry) and ū is

given by (2.47). Define w̄ and λ̄ respectively by (2.53) and (2.52). Then, it follows

that (x̄, p̄, w̄, γ̄) satisfy (2.41), (2.49), (2.50), (2.38), and (Bdry). This means that (a)

is satisfied. �

Remark 2.20. Substituting the formula (2.37) for ū in terms of w̄, p̄ and x̄σ into

the stationarity equation (2.11) with λ0 = 1, we obtain an equation in w̄, p̄, and x̄σ,

namely,

(2.56) −BT p̄ + NT λ̄ + (QT − RN†K)x̄σ + RN†c + k + RYw̄ = 0.

In order to solve this last equation for w̄ in terms of (x̄σ, p̄) we would need to

assume as in [25] that YTRY is invertible. However, this is too restrictive, since in

the discrete case this assumption is rarely met. For this reason, in the proof above,

the stationarity equation was phrased in terms of x̄ (instead of x̄σ) in which S turns

out to be the coefficient of w̄ (see (2.50)). While in the continuous time setting

S is R, this is not the case in the discrete time setting. Therefore, in the above

proposition, the invertibility of only S, and not of R, is of great importance for the

case when µ(t) 6= 0. It allowed us to go directly from the Jacobi system (Jσ), defined

by (1.2)–(1.4) and (2.10)–(2.12) (where λ0 = 1), to the Symplectic System (S) and

(Bdry) without having to go through the “Hamiltonian System” (see [24] for the case

where no mixed state-control or endpoints constraints are present and (LQσ) is purely

linear-quadratic).

Now by using Proposition 2.18 we are able to re-state Corollary 2.15 in terms of

the symplectic system (S).

Corollary 2.21 (Characterization of optimality and symplectic system for (LQσ)).

Assume [I −µ(A−BN†K)](t) and S(t) are invertible for all t in [a, ρ(b)]. Then, the

following conditions are equivalent.

(a) (x̄, ū) is a (weak local or global) optimal for (LQσ).

(b) There exist a function p̄ and a vector γ̄ such that (x̄, p̄, γ̄) solve (S) and (Bdry),

ū is given via (2.47), and F′′(x̄, ū; η, v) ≥ 0 for all admissible pairs.

Remark 2.22. Assume that F is purely linear-quadratic, then the set of admissible

directions (η, v) coincides with that of feasible pairs and 2F(η, v) = F′′(x̄, ū; η, v).
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In the continuous time setting, the non-negativity and positivity of F′′(x̄, ū; η, v) are

characterized by conditions in terms of the notion of focal points and the Riccati

equation corresponding to the Jacobi system (see e.g, [31]– [35]). In the discrete

time setting (see e.g., [14]– [16], [18] and [26]) and in the time scale setting (see

e.g., [17], [19], [20]), the question of characterizing the nonnegativity and positivity of

F′′(x̄, ū; η, v) was intensively studied when F itself is symplectic (i.e., of the form (D)

below), or when we are in the calculus of variations setting. However, this question

remains open for quadratic functionals of the form (LQσ) (with or without control-

state constraints).

To the symplectic system (S) and its boundary conditions (Bdry) obtained from

(LQσ) we can associate a quadratic diagonal functional F(x, p) and a diagonal linear-

quadratic problem (D) defined as:

minimize F(x, p) := ca
T x(a) + cb

T x(b) +
1

2

(

x(a)

x(b)

)T

Γ

(

x(a)

x(b)

)

+

∫ b

a

[

zT x + kT p

+
1

2

(

xT
C

T (I + µA)x + 2µxT
C

T
Bp + pT (I + µD

T )Bp
)]

(t)∆t(D)

subject to: x ∈ C1
prd[a, b]T and u ∈ Cprd[a, ρ(b)]T satisfying

x∆(t) = A(t)x(t) + B(t)p(t) + C̃Bζ, t ∈ [a, ρ(b)]T,(2.57)

M

(

x(a)

x(b)

)

= d,(2.58)

where the coefficient ζ , A, B, C, and D are defined through (2.44), and hence satisfy

(2.45) and (2.46), and where z and k are

(2.59)

z := (I + µA
T )z − C̃T

[

KTNT

† + (Q −KTNT

† R)YS−TYT(I − µBTC̃TKTNT

† )
]

k,

(2.60) k := µB
Tz + BYS−TYT(I − µBTC̃TKTNT

† )k.

Remark 2.23. Since (D) is a linear-quadratic problem of symplectic structure, one

can show (see Section 4) that the symplectic system corresponding to its second vari-

ation F′′ is exactly (S) itself, in which ζ ≡ 0 and ρ ≡ 0, and its boundary conditions

(Bdry), where ca = cb = 0. Given that there are extensive results in the literature

characterizing the non-negativity and positivity of F′′, one would wonder whether

those results could be transferred to the original problem (LQσ) and its second vari-

ation F′′. This motivates an important question: are the problems (LQσ) and (D)

equivalent? If so, then checking the nonnegativity (or positivity) for F′′(x̄, ū; η, v) over

the admissible directions (η, v), would be equivalent to that of F′′(x̄, p̄; ξ, q) over (ξ, q)

satisfying (2.57) and (2.58), where ζ ≡ 0, and d = 0. By Corollary 2.21, it follows that

even in the general case one implication is true, namely, if (x̄, ū) is optimal for F(x, u)
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so does (x̄, p̄) for F(x, p), where p̄ is the function defined through its part (b). In fact,

if (x, p) is feasible for (D) then, define u in terms of (x, p) by (2.47), we then have the

pair (x, u) feasible for (LQσ) and that F(x, u) = F(x, p)+[kT +µ(zT −kT N†K)C̃B]ζ .

Similarily, we have F′′(x̄, ū; η, v) = F′′(x̄, p̄; ξ, q). However, the converse does not ap-

pear to be true without extra assumption. If fact, for a given pair (x, u) feasible

for (LQσ) we would need to get p with (x, p) feasible for (D). Solving (2.56) or its

equivalent equation (2.50) for p in terms of (x, u) would require the assumption that

for all t, (YTB)(t) is of full rank; which is too strong and is not commonly satisfied

in control problems.

3. LINEAR-QUADRATIC PROBLEMS WITHOUT STATE SHIFT

In this section we derive for the linear-quadratic control problem (LQ) introduced

in Section 1 results parallel to those derived in Section 2 for the problem (LQσ).

Definition 3.1. A pair (η, v) is said to be an admissible direction for the problem

(LQ) if it satisfies the equation of motion (1.7), and the linearized equations of (1.8)

and (1.9), that is,

η∆(t) = A(t)η(t) + B(t)v(t), t ∈ [a, ρ(b)]T,(3.1)

K(t)η(t) + N(t)v(t) = 0, t ∈ [a, ρ(b)]T,(3.2)

M

(

η(a)

η(b)

)

= 0.(3.3)

Note that if the c ≡ 0 and d = 0 then feasible pairs and admissible directions are

the same.

Since N(t) is of full rank for all t ∈ [a, ρ(b)]T, choose a function Y : [a, ρ(b)]T →

Rm×(m−k), Y ∈ Cprd, such that, for each t, Y (t) is a matrix whose columns form an

orthonormal basis for the space Ker N(t). Set

(3.4) N†(t) := NT (t)(N(t)NT (t))−1 for all t ∈ [a, ρ(b)]T.

Then, equation (3.2) is equivalent to

(3.5) v(t) = Y (t)w(t) − N†(t)K(t)η(t), for all t ∈ [a, ρ(b)]T,

where w(·) is in Cprd. Hence, (η, v) satisfies Definition (3.1) is equivalent to (η, w)

satisfies

η∆(t) =
(

A(t) − B(t)N†(t)K(t)
)

η(t) + B(t)Y (t)w(t), t ∈ [a, ρ(b)]T,(3.6)

M

(

η(a)

η(b)

)

= 0,(3.7)

where v is defined through w in (3.5).
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We define the first and second variations of the problem (LQ) at pair (x̄, ū) in

C1
prd × Cprd in the direction of an admissible pair (η, v) by

F ′(x̄, ū; η, v) := ca
T η(a) + cb

T η(b) +

(

x̄(a)

x̄(b)

)T

Γ

(

η(a)

η(b)

)

+

∫ b

a

[

zT η + kT v + x̄T Pη + ūTQT η + x̄T Q v + ūT Rv
]

(t) ∆t,(L)

F ′′(x̄, ū; η, v) :=

(

η(a)

η(b)

)T

Γ

(

η(a)

η(b)

)

+

∫ b

a

[ηT Pη + 2ηT Qv + vT Rv](t)∆t.(Q)

The following proposition states that, the necessary conditions of first and second

order do not require neither the invertibility of I + µ(A − BN†K) nor the M-

controllability of (3.1)–(3.2). In addition, this Proposition shows that these necessary

conditions are also sufficient for the weak local optimality of (x̄, ū), which is equivalent

to the global optimality.

Proposition 3.2 (Optimality & 1st and 2nd variations of (LQ)). Let (x̄, ū) be feasible

for (LQ). Then, the following conditions are equivalent.

(a) (x̄, ū) is a weak local minimum for (LQ).

(b) For all admissible directions (η, v), F ′(x̄, ū; η, v) = 0 and F ′′(x̄, ū; η, v) ≥ 0.

(c) (x̄, ū) is a global minimum for (LQ).

Proof. The proof of this proposition is identical to that of Proposition 2.3 where F,F′

and F′′ are respectively replaced by F, F ′ and F ′′. �

Parallel to Definitions 2.5 and 2.7, we introduce here the notions of extremals

and weak normality for problem (LQ) in terms of which the first-order condition is

characterized.

Definition 3.3 (Extremal for (LQ)). A feasible pair (x̄, ū) is said to be extremal for

(LQ) if there exist λ0, λ̄ : [a, ρ(b)]T → Rk, λ̄ ∈ Cprd, p̄ : [a, b]T → Rn, p̄ ∈ C1
prd, and

γ̄ ∈ Rr satisfying

(i) λ0 ≥ 0, and λ0 + ‖λ̄‖Cprd
+ ‖p̄‖C +

∣

∣γ̄
∣

∣ 6= 0,

(ii) the adjoint equation: for all t ∈ [a, ρ(b)]T

(3.8) p̄∆(t) = −AT (t)p̄σ(t) + KT (t)λ̄(t) + λ0[P (t)x̄(t) + Q(t)ū(t) + z(t)],

(iii) the stationarity condition: for all t ∈ [a, ρ(b)]T

(3.9) −BT (t)p̄σ(t) + NT (t)λ̄(t) + λ0[Q
T (t)x̄(t) + R(t)ū(t) + k(t)] = 0,
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(iv) the transversality condition:

(3.10)

(

p̄(a)

−p̄(b)

)

= λ0

[

Γ

(

x̄(a)

x̄(b)

)

+

(

ca

cb

)

]

+ MT γ̄.

Definition 3.4 (Weak-Normality of (LQ)). The problem (LQ) is weakly normal at an

extremal pair (x̄, ū) if there exists a multiplier vector of the form Λ̄ = (λ0 = 1, λ̄, p̄, γ̄)

satisfying conditions (i)–(iv) of Definition 3.3.

For comparison purposes only, we introduce here the notions of normality and

M-controllability in (LQ).

Definition 3.5 (Normality of (LQ)). The problem (LQ) is normal if the system

(3.11) p∆ = −AT pσ + KT λ,−BT p + NT λ = 0, (on [a, ρ(b)]T),

(

p(a)

−p(b)

)

= MT γ,

where γ ∈ Rr and λ : [a, ρ(b)]T → Rk, possesses only the trivial solution p(·) ≡ 0 (and

then also γ = 0 and λ ≡ 0).

Remark 3.6. Similarly to the case of continuous time setting (see [34, Proposi-

tion 4.1]), it is easy to see that the normality notion in Definition (2.8) is equivalent

to

(3.12) p∆ = −(AT − KT NT
† BT )p, Y T BT p = 0, (on [a, ρ(b)]T),

(

p(a)

−p(b)

)

= MT γ,

where γ ∈ Rr, possesses only the trivial solution p(·) ≡ 0 (and then also γ = 0).

Definition 3.7. The system (3.1)-(3.2) is said to be M-controllable if

(3.13)
{

M

(

η(a)

η(b)

)

: (η, v) ∈ C1
prd × Cprd and solve (3.1)–(3.2)

}

= R
r.

It is equivalent to the M-controllability of the control equation (3.6), that is,

(3.14)
{

M

(

η(a)

η(b)

)

: (η, w) ∈ C1
prd × Cprd and solve (3.6)

}

= R
r.

Remark 3.8 (Normality of (LQ) ⇔ M-controllability). When I +µ(A−B N† K) is

invertible, arguments parallel to [34, Proposition 4.2] and to [23, Theorem 9.3], easily

prove that the normality of (LQ) is equivalent to the M-controllability of the system

(3.1)–(3.2).

Remark 3.9 (Normality vs. weak-normality in (LQ)). It is clear that the notion

of normality for problem (LQ) is stronger than that of the weak normality at an

extremal pair (x̄, ū). In many situations including sufficient optimality criteria we

only require to have one multiplier in which λ0 6= 0, and hence it suffices to have

weak normality.
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Parallel to Theorem 2.13, the following result confirms that without any assump-

tion of M-controllability on the linear system, the first variation at a pair (x̄, ū) of

(LQ) along all admissible directions is zero, means that (x̄, ū) must be an extremal

at which the problem (LQ) is weakly normal.

Theorem 3.10 (First variation of (LQ) & weak-normalilty at extremals). Assume

that I +µ(A−BN†K) is invertible on [a, ρ(b)], and let (x̄, ū) be a feasible pair. Then,

the following conditions are equivalent.

(i) F ′(x̄, ū; η, v) = 0 for all admissible pairs (η, v).

(ii) (x̄, ū) is an extremal at which (LQ) is weakly normal.

Prior to proving Theorem 3.10, we state the following Corollary, obtained by

combining Proposition 3.2 with Theorem 3.10. It is a characterization for the opti-

mality in (LQ) in terms of the weak- normality of the problem and the non-negativity

of the second variation.

Corollary 3.11 (Weak-normality of (LQ) at optimal pairs). Assume that I +µ(A−

BN†K) is invertible on [a, ρ(b)]. Then, the following conditions are equivalent.

(a) (x̄, ū) is optimal (weak local or global) for (LQ).

(b) The pair (x̄, ū) is an extremal at which the problem (LQ) is weakly-normal, and

F ′′(x̄, ū; η, v) ≥ 0 for all admissible directions (η, v).

Remark 3.12. Corollary 3.11 implies that when we merely assume that I + µ(A −

B N† K) is invertible on [a, ρ(b)], the linear-quadratic problem (LQ) is weakly-normal

at optimal solutions. Unlike [23, Theorem 9.4], which applies when K ≡ 0, no M-

controllability is needed to obtain at least one multiplier in which λ0 6= 0.

The proof of Theorem 3.10 could be done directly by employing arguments par-

allel to those used in the proof of Theorem 2.13. However, a more constructive proof

of the result is presented here in two steps: (1) by establishing the equivalence be-

tween (LQ) and(LQσ), and then (2) by writing problem (LQ) in the form of (LQσ)

to which Theorem 2.13 applies and whose results are translated back in terms of the

data of (LQ).

The following two propositions show that the two forms of the linear quadratic

problem are equivalent. These statements are instrumental when we know a result

for one form and we wish to prove parallel result for the other form.

Proposition 3.13 ((LQ) to (LQσ)). Let P , Q, R, A, B, K, N , c, z, k, Γ, M , ca,

cb, and d be the data defining Problem (LQ) and let N† be defined by (3.4). Assume

that I + µ(A − B N† K) is invertible on [a, ρ(b)] with inverse C̃. Set the associated
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problem (LQσ) with coefficients

(3.15)



























Γ := Γ; M := M ; ca := ca; cb := cb; d := d;

A := C̃ A; B := C̃ B; K := K; N := N ; c := c;
(

P Q

QT R

)

:= ΩT

(

P Q

QT R

)

Ω;

(

z

k

)

= ΩT

(

z

k

)

,

where

(3.16) Ω :=

(

I − µC̃A −µC̃B

µN†KC̃A I + µN†KC̃B

)

and Ω−1 =

(

I + µA µB

−µN†KA I − µN†KB

)

Then,

(a) C̃−1 := I − µ(A −BN†K) = C̃;

(b) (x, u) feasible (respectively, (η, v) admissible) for (LQ) if and only if (x, ω) is

feasible (respectively, (η, ν) is admissible) for (LQσ), where

(3.17) ω := u − µN†Kx∆, and ν := v − µN†Kη∆.

Furthermore,

(3.18)











(

x

u

)

= Ω

(

xσ

ω

)

;

(

η

v

)

= Ω

(

ησ

ν

)

;

F (x, u) = F(x, ω); F ′(x, u; η, v) = F′(x, w; η, ν).

Remark 3.14. For the case where only pure control constraints are present, that

is, K ≡ 0, and when the function F is purely quadratic, this result follows from [23,

Proposition 3.1]. However, taking K ≡ 0 simplifies the results a great deal, since in

this case the control ω defined in (3.17) would be exactly u. That is, if K ≡ 0 and

(x, u) is feasible in (LQ) then, under I + µA invertible, the equation of motion (1.7)

can easily be phrased in terms of xσ and u as

(3.19) x∆ = ÃAxσ + ÃBu,

where Ã = (I +µA)−1. However, when K is present, using (3.19) in the control-state

constraint (1.8) yields

KÃxσ + (N − µKÃB)u = c.

This equation has N := N − µKÃB, which is not necessarily of full rank. Thus, we

would not be able to obtain the result of Theorem 3.10 by applying Theorem 2.13 to

the quadratic problem with shift in the state obtained in this manner. Therefore, the

difficulty in this proposition is to obtain a form of the control ω in terms of the pair

(x, u) so that the feasibility equations for (x, u) and the functional F (x, u) translate

in terms of (xσ, ω) in such a way that (x, ω) be feasible for the translated problem

(LQσ) and that the transition matrix Ω be invertible.
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Proof of Proposition 3.13. From the definitions of A, B, N† and K in (3.15) and by

setting C̃ := [I + µ(A − B N† K)]−1, conclusion (a) of the proposition follows.

Let (x, u) be feasible for (LQ) and let ω := u − µN†Kx∆. Then, Nu = Nω +

µKx∆. Substituting into (1.7)–(1.8) the equations

(3.20) u = ω + µN†Kx∆ and x = xσ − µx∆,

we obtain

x∆ = C̃Axσ + C̃Bω, Kxσ + Nω = c.(3.21)

Thus, since x also satisfies (1.9), it results that (x, ω) is feasible for (LQσ). Use

(3.21)(a) into (3.20) we get, for Ω defined in (3.16), that

(3.22)

(

x

u

)

= Ω

(

xσ

ω

)

.

Conversely, let (x, ω) be a feasible pair for the problem (LQσ) whose coefficients are

given through (3.15). Then, in addition to (1.9), we have

x∆ = C̃Axσ + C̃Bω(3.23)

Kxσ + Nω = c.(3.24)

Define u := ω + µN†Kx∆, and use xσ = x + µx∆ in (3.23) it follows that (x, u)

is feasible for (LQ) and it satisfies with (x, ω) equation (3.22).

Now substitute (x, u) from (3.22) into F (x, u) defined by (1.6), we readily obtain

F (x, u) = F(x, ω), where F is defined by (1.1) with coefficients from (3.15).

Let (η, v) admissible for (LQ). Similarly to the calculation for (x, u) where now

c ≡ 0 and d = 0, we obtain the equivalence with (η, ν) being admissible for (LQσ),

where ν defined in (3.17)(ii). Moreover, we have

(3.25)

(

η

v

)

= Ω

(

ησ

ν

)

.

Direct substitution of (3.22) and (3.25) into F ′(x, u; η, v) defined by (L), we obtain

F ′(x, u; η, v) = F′(x, ω; η, ν), where F′ is defined by (Lσ). Hence, Part (2) of this

proposition is valid. Furthermore, since N := N is of full rank, it follows that the

Problem (LQσ) with the data given by (3.15) is indeed one of the quadratic problems

with shift in the state. �

Parallel to Proposition 3.15, we now start with a Problem of the form (LQσ) and

translate it to a problem of the form (LQ). The proof of this proposition is similar

to the previous one and hence, is omitted.
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Proposition 3.15 ((LQσ) to (LQ)). Let P, Q, R, A, B, K, N, c, z, k, Γ, M,

ca, cb, and d be the data defining Problem (LQσ), and let N† be defined by (2.4).

Assume that I − µ(A − BN† K) is invertible on [a, ρ(b)] with inverse C̃. Set the

problem (LQ) with coefficients

(3.26)



























Γ := Γ; M := M; ca := ca; cb := cb; d := d;

A := C̃A; B := C̃B; K := K; N := N; c := c;
(

P Q

QT R

)

:= ΣT

(

P Q

QT R

)

Σ;

(

z

k

)

= ΣT

(

z

k

)

,

where

(3.27)

Σ :=

(

I + µC̃A µC̃B

−µN†KC̃A I − µN†KC̃B

)

and Σ−1 =

(

I − µA −µB

µN†KA I + µN†KB

)

Then,

1. I + µ(A − BN†K) = C̃;

2. (x, ω) feasible (respectively, (η, ν) admissible) for (LQσ) if and only if (x, u) is

feasible (respectively, (η, v) is admissible) for (LQ), where

(3.28) u := ω + µN†Kx∆ and v := ν + µN†Kη∆.

Furthermore,

(3.29)











(

xσ

ω

)

= Σ

(

x

u

)

;

(

ησ

ν

)

= Σ

(

η

v

)

;

F(x, ω) = F (x, u); F′(x, ω; η, ν) = F ′(x, u; η, v).

Remark 3.16. In the absence of the mixed state-control constraints (1.3) in (LQσ)

and (1.8) in (LQ), and when F and F are purely quadratic, the coefficients (3.15)

and (3.26) reduce respectively to those in Propositions 4.14 and 4.15 in [24].

Proof of Theorem 3.10. Define (LQσ) from Problem (LQ) through (3.15), and set

(3.30) ω̄ := ū − µN†Kx̄∆.

It results from Proposition 3.13 that (x̄, ω̄) is feasible for (LQσ) and that

(3.31)

(

x̄

ū

)

= Ω

(

x̄σ

ω̄

)

.

Part (b) of Proposition 3.13 yields that condition (i) of Theorem 3.10 is equivalent

to saying that F′(x̄, ω̄; η, ν) = 0, for all (η, ν) admissible for the problem (LQσ) and

that for v = ν + µN†Kη∆, we have (η, v) admissible for (LQ). Thus, Condition (i)

of this theorem is equivalent to Condition (I) of Theorem 2.13. Furthermore, from

part(a) of Proposition 3.13 we have the invertibility of C̃, and hence by applying
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Theorem 2.13 to our defined problem (LQσ), we obtain that Condition (i) of this

Theorem is also equivalent to saying that (x̄, ω̄) is an extremal for (LQσ) at which the

problem (LQσ) is weakly-normal. This means that there exist Λ̄ := (λ0 = 1, λ̄, p̄, γ̄)

where λ̄ : [a, ρ(b)]T → Rk, λ̄ ∈ Cprd, p̄ : [a, b]T → Rn, p̄ ∈ C1
prd, and γ̄ ∈ Rr satisfying

(2.10)–(2.12). By means of (3.15) and (3.31), these equations translate in terms of

the data of (LQ) to (3.10) with λ0 = 1 and, on [a, ρ(b)]T,

p̄∆ = −AT C̃T p̄ + KT λ̄ + P x̄ + Qū + z + µAT C̃TW,(3.32)

−BT C̃T p̄ + NT λ̄ + QT x̄ + Rū + k + µBT C̃TW = 0,(3.33)

where,

W := KT NT
† (QT x̄ + Rū + k) − (P x̄ + Qū + z).(3.34)

Multiply equation (3.33) by (−KT NT
† ) and add (3.32) we obtain after using

NT
† NT = I and µ(AT − KT NT

† BT )C̃T = C̃T µ(AT − KT NT
† BT ) = I − C̃T , that

(3.35) p̄∆ = −C̃T (AT − KNT
† BT )p̄ − C̃TW.

Substitute p̄ = p̄σ−µp̄∆ in (3.35) and solve for p̄∆ using that C̃ = [I+µ(A−BN†K)]−1,

it follows that

(3.36) p̄∆ = −(AT − KT NT
† BT )p̄σ −W.

Substitute p̄ = p̄σ − µp̄∆ in (3.33) and use (3.36) and the definition of C̃ we get

(3.37) −BT p̄σ + NT λ̄ + QT x̄ + Rū + k = 0,

that is, (3.9) holds with λ0 = 1. Now multiply (3.37) by (KT NT
† ) and use it in (3.36),

where W is given by (3.34), it follows that (3.8) holds with λ0 = 1.

The implication (ii) ⇒ (i) is straightforward. Therefore, the statement of this

theorem is proved. �

In this last part of this section, we will show that under the invertibility of a cer-

tain matrix function S, the weak normality of (LQ) at an extremal (x̄, ū) can be ex-

pressed in terms of a non-homogeneous symplectic boundary value problem. Thereby,

we will be able via Corollary 3.11 to characterize the optimality in terms of the

existence of a solution to this symplectic boundary value problem.

Since c 6≡ 0, then, for (x̄, ū) feasible we have parallel to (3.5) and (3.6), that

equations (1.7)–(1.9) are equivalent to

x̄∆ =
(

A − BN†K
)

x̄ + BY w̄ + BN†c, on [a, ρ(b)]T,(3.38)

M

(

x̄(a)

x̄(b)

)

= d,(3.39)

ū = Y w̄ + N†(c − Kx̄), on [a, ρ(b)]T,(3.40)
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where w̄(·) is in Cprd.

Let

(3.41) C̃(t) := [I + µ(A(t) − B(t)N†(t)K(t))]−1, t ∈ [a, ρ(b)]T,

and define the (m − k) × (m − k)-matrix function S on [a, ρ(b)]T by

(3.42) S(t) := Y T (t)
[

R − µBT C̃T (Q − KT NT
† R)

]

(t)Y (t).

When S is invertible, define the non-homogeneous symplectic boundary value problem

by

(S)

{

x̄∆ = A(t)x̄ + B(t)p̄ + B(t)ζ(t)

p̄∆ = C(t)x̄ + D(t)p̄ + ρ(t)

(bdry) M

(

x̄(a)

x̄(b)

)

= d,

(

p̄(a)

−p̄(b)

)

= Γ

(

x̄(a)

x̄(b)

)

+

(

ca

cb

)

+ MT γ̄,

where

(3.43)










































ζ := µY S−1Y T BT C̃T [(Q − KT NT
† R)N†c + z − KT NT

† k] + N†c,

ρ := C̃T [µ(Q − KT NT
† R)Y S−1Y T BT C̃T + I][(Q − KT NT

† R)N†c + z − KT NT
† k],

A := A − BN†K + BY S−1Y TV,

B := BY S−1Y T BT C̃T ,

C := C̃T [P − KT NT
† QT + (Q − KT NT

† R)(Y S−1Y TV − N†K)],

D := C̃T
[

KT NT
† BT − AT + (Q − KT NT

† R)Y S−1Y T BT C̃T
]

,

and

(3.44) V := µBT C̃T (P − QN†K) − (I + µBT C̃T KT NT
† )(QT − RN†K).

When F is purely quadratic (i.e., ca = cb = 0, z ≡ 0 and k ≡ 0), then ζ ≡ 0 and

ρ ≡ 0, and hence system (S) become homogeneous.

In the continuous time setting (i.e., µ ≡ 0), and F is purely linear-quadratic,

system (S) and (bdry) reduce to the homogeneous Hamiltonian system (5.8)–(5.11)

in [34].

In the special case where the mixed state-control constraints are absent (i.e.,

K ≡ 0, N ≡ 0, and c ≡ 0), no endpoint constraints are present (i.e., M = 0 and

d = 0), and F is purely quadratic, the coefficients (3.43) and system (S) reduce

to the coefficients and their corresponding homogeneous symplectic system obtained

in [24, Theorem 4.8]. Calculations prove that the coefficients A, B, C, and D in (3.43)

actually define a time scale symplectic system.

Proposition 3.17 (Weak-normality and symplectic systems for (LQ)). Assume that

[I +µ(A−BN†K)](t) and S(t) are invertible for all t in [a, ρ(b)]. Then, the following

conditions are equivalent.
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(a) The problem (LQ) is weakly-normal at the extremal (x̄, ū) with associated Λ̄ :=

(1, λ̄, p̄, γ̄).

(b) (x̄, p̄, γ̄) solve the symplectic boundary value problem (S) and (bdry), and

(3.45) ū = (Y S−1Y TV − N†K)x̄ + Y S−1Y T BT C̃T p̄ + ζ,

where ζ and V are given in (3.43) and in (3.44), respectively.

Proof. The problem (LQ) is weakly normal at the extremal (x̄, ū) means that there

exist Λ := (λ0 = 1, λ̄, p̄, γ̄) satisfying (3.8)–(3.10) and there exists w̄ such that (x̄, ū)

satisfy (3.38)–(3.40). Equation (3.9) where λ0 = 1, is equivalent to

λ̄ = NT
† (BT p̄σ − QT x̄ − Rū − k),(3.46)

Y T (−BT p̄σ + QT x̄ + Rū + k) = 0.(3.47)

Use (3.46), p̄σ = p̄ + µp̄∆, and (3.40) into (3.8) and solve for p̄∆ we get

p̄∆ = C̃T
[

(KT NT
† BT − AT )p̄ + [P − KT NT

† QT − (Q − KT NT
† R)N†K]x̄

+ (Q − KT NT
† R)(Y w̄ + N†c) + z − KT NT

† k
]

,(3.48)

p̄σ = C̃T
[

p̄ + µ[P − KT NT
† QT − (Q − KT NT

† R)N†K]x̄

+ µ(Q − KT NT
† R)(Y w̄ + N†c) + µ(z − KT NT

† )
]

.(3.49)

Substitute (3.49) and (3.40) into (3.47) and use that S is invertible to solve for

w̄, we obtain

(3.50) w̄ = S−1Y T
[

BT C̃T
(

p̄ + µ(Q − KT NT
† R)N†c + µ(z − KT NT

† k)
)

+ Vx̄
]

,

where V is defined by (3.44). This also implies that w̄ is in Cprd.

Finally plug the equation of w̄ from (3.50) into (3.48), (3.38) and (3.40) we obtain

that (x̄, p̄) satisfy the symplectic system (S) and (bdry), where the coefficients are

given by (3.43), and ū satisfies (3.45). Therefore, Condition (b) holds true.

Assume that (b) holds, i.e., (x̄, p̄, γ̄) solve (S) and (bdry). Let ū defined by (3.45)

and w̄ by (3.50). Easy calculations show that (S)(i) implies (x̄, w̄) satisfies (3.38) and

(3.39), and ū satisfies (3.40). Thus, (x̄, ū) is feasible. Furthermore, the definition of

w̄ in (3.50) and ū gives that (3.47) holds true, and hence, there must be a function λ̄

such that

−BT p̄σ + QT x̄ + Rū + k = −NT λ̄,

which yields that λ̄ satisfies (3.46) and whence, λ̄ is in Cprd and (3.9) holds for λ0 = 1.

On the other hand, from (S)(ii) we obtain that (3.32) holds true for λ0 = 1 and

λ̄ defined by (3.46). Therefore, (LQ) is weakly normal at (x̄, ū), and condition (a) is

satisfied. �
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Using Proposition 3.17 we can re-state Corollary 3.11 in terms of the symplectic

system (S).

Corollary 3.18 (Characterization of optimality and symplectic system in (LQ)).

Assume that [I + µ(A − BN†K)](t) and S(t), defined by (3.42), are invertible for all

t in [a, ρ(b)]T. Then, the following conditions are equivalent.

(a) (x̄, ū) is a (weak local or global) optimal for (LQ).

(b) There exist a function p̄ and a vector γ̄ such that (x̄, p̄, γ̄) solve (S) with (bdry),

ū satisfies (3.45), and F ′′(x̄, ū; η, v) ≥ 0 for all admissible pairs.

Remark 3.19. When F is purely linear-quadratic like F ′′ is, then 2F (η, v) = F ′′(x̄, ū;

η, v) and in this case, equations (3.8)–(3.10) together with equations (1.7)–(1.9) are

called the Jacobi system (J) for (LQ). The question of characterizing the non-

negativity and positivity of F (η, v) over the admissible pairs in terms of the Jacobi

system (J) remains open for the general case of time scales.

To the symplectic system (S) and its boundary conditions (bdry) obtained from

(LQ) there correspond a quadratic diagonal functional F(x, u) and a diagonal linear-

quadratic problem (D )defined as:

minimize F(x, p) :=cT
a x(a) + cT

b x(b) +
1

2

(

x(a)

x(b)

)T

Γ

(

x(a)

x(b)

)

+

∫ b

a

[

zT x + kT p

+
1

2

(

xT
C

T (I + µA)x + 2µxT
C

T
B p + pT (I + µD

T )Bp
)]

(t)∆t(D)

subject to: x ∈ C1
prd[a, b]T and u ∈ Cprd[a, ρ(b)]T satisfying

x∆(t) = A(t)x(t) + B(t)p(t) + B(t)ζ(t) t ∈ [a, ρ(b)]T,(3.51)

M

(

x(a)

x(b)

)

= d,(3.52)

where

(3.53) z := z + (VT Y S−T Y T − KT NT
† )k k := C̃BY S−T Y T k,

and the coefficient A, B, C, D, and ζ and V are defined in (3.43) and (3.44).

Remark 3.20. Parallel to [24, Proposition 4.12], if (x, p) is feasible for (D), then for

u defined through (x, p) via (3.45), we have (x, u) feasible for (LQ) and F (x, u) =

F(x, p) + kT ζ. This yields that if (x̄, ū) is optimal for (LQ), then (x̄, p̄) is optimal

for (D) where p̄ is the function obtained from part(b) of Corollary 3.18. However,

the converse of this statement is not always true, due to the fact that the feasibility

of (x, u) in (LQ) does not in general produce a function p with (x, p) feasible in

(D). On the other hand, the assumption parallel to [24, Proposition 4.12], namely,

for all t, (Y T B)(t) is of full rank), guarantees the converse statement, but again this
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assumption is too strong to impose on control problems. Therefore, obtaining the

optimality for (LQ) from that of (D) remains an open problem.

4. SYMPLECTIC QUADRATIC FORMS

Set

F(x, q) :=
1

2

(

x(a)

x(b)

)T

Γ

(

x(a)

x(b)

)

+
1

2

∫ b

a

[xTCT (I + µA)x

+ 2µxTCTBq + qT (I + µD)TBq](t)∆t.(4.1)

The symplectic quadratic problem, (P), is defined as:

(P) minimize F(x, q)

subject to: x ∈ C1
prd[a, b]T and q ∈ Cprd[a, ρ(b)]T satisfying

x∆(t) = A(t)x(t) + B(t)q(t), t ∈ [a, ρ(b)]T,(4.2)

M

(

x(a)

x(b)

)

= d,(4.3)

where M is an r × 2n-matrix, Γ is 2n × 2n-matrix, and A,B, C, and D are in

Cprd[a, ρ(b)]T real n × n-matrix functions such that the 2n × 2n-matrix function

S :=

(

A B

C D

)

satisfies the identity

(4.4) ST (t)J + JS(t) + µ(t)ST (t)JS(t) = 0 t ∈ [a, ρ(b)]T,

where J :=

(

0 I

−I 0

)

is skew-symmetric matrix. The symplecticity equation (4.4)

translates to having (2.45) and (2.46) hold, where A, B, C, and D are now A,B, C and

D, respectively.

The symplectic problem (P) is a special form of the linear -quadratic control

problem without shift in x, (LQ), where, Γ and d are the same, and

(4.5)










A := A; B := B; P := CT (I + µA); Q := µCTB; R := (I + µD)TB;

m = n; u := q; K ≡ N ≡ 0; Y ≡ I; C̃ = Ã := (I + µA)−1;

c ≡ 0; ca = cb = 0; z ≡ 0; k ≡ 0.

Given that A,B, C, and D satisfy (2.45) yields that P (t) and R(t) in (4.5) are sym-

metric.

Similarly to Section 3, (x, q) is feasible (respectively, admissible) for (P) means

that (4.2) and (4.3) (respectively, (4.2) and M

(

x(a)

x(b)

)

= 0) hold.
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Remark 4.1. If (x, q) is feasible for (P) and if for some p ∈ Cprd we have Bq = Bp

on [a, ρ(b)]T, then (x, p) is also feasible for (P) and F(x, q) = F(x, p). In fact, since

R := (I + µD)TB is symmetric, then by writing B = BB†B, where B† is the Penrose

inverse of B, we have qTRq = qTBT (I + µD)B†Bq. Thus, if Bq = Bp for p, q ∈ Cprd,

we obtain that qT Rq = pTBT (I + µD)B†Bp = pT Rp.

Using the coefficients (4.5) into (L) and (Q), the first and second variations of

the problem (P) at a feasible pair (x̄, q̄) in the direction of an admissible pair (η, v)

reduce to:

F ′(x̄, q̄; η, v) :=

(

x̄(a)

x̄(b)

)T

Γ

(

η(a)

η(b)

)

+

∫ b

a

[

x̄TCT (I + µA)η + q̄T µBTCη

+ x̄T µCTB v + q̄T (I + µD)TB v
]

(t) ∆t(L )

F ′′(x̄, q̄; η, v) := 2F(η, v) :=

(

η(a)

eta(b)

)T

Γ

(

η(a)

η(b)

)

+

∫ b

a

[

ηT CT (I + µA)η

+ 2ηTµCTBv + vT (I + µD)TBv
]

(t)∆t.(Q)

Note that F ′(x̄, ·; η, v) is invariant over {q ∈ Cprd : Bq = Bq̄, on [a, ρ(b)]T}, and

F ′′ is independent of (x̄, q̄).

An immediate consequence of Proposition 3.2 is the following characterization of

optimality for (P) in terms of F ′ and F ′′, which is 2F .

Proposition 4.2 (First and second variations for (P)). Let (x̄, q̄) be feasible for (P).

The following statements are equivalent.

(a) (x̄, q̄) is a weak local minimum for (P).

(b) For all admissible pairs (η, v) we have F ′(x̄, q̄; η, v) = 0 and F ′′(x̄, q̄; η, v) ≥ 0.

(c) (x̄, q̄) is a global minimum for (P).

Remark 4.3. In part (ii) of [25, Proposition 4.3], it is shown that when d = 0 and

under both the invertibility of I + µA and the M-controllability of the equation

of motion (which are required to apply therein [23, Theorems 9.6 and 9.7]), the

optimality in (P) implies that F ′(x̄, q̄; η, v) = 0 and F ′′(x̄, q̄; η, v) = 2F(η, v) ≥ 0

for all admissible pairs (η, v). Therefore, Proposition 4.2 implies for this special case

that neither the invertibility of I + µA nor the M-controllability of the equation of

motion are needed in order that the statement in part (ii) of [25, Proposition 4.3] be

valid, and furthermore, its converse is also true.

When d = 0, there is an extensive work in the literature to characterize the non-

negativity of F in terms of the natural conjoint basis or the principal solution of the



LINEAR-QUADRATIC CONTROL ON TIME SCALES 657

corresponding symplectic system, or in terms of an associated implicit Riccati equa-

tion (see e.g., [25, Theorem 3.2], [21, Theorems 5.1 and 5.3] and [22, Theorem 4.2]).

Each of these equivalent conditions is easier to verify than the non-negativity of the

F over all possible admissible pairs.

To characterize the first order condition in Proposition 4.2, we shall use the

weak normality notion and the corresponding homogeneous symplectic boundary value

problem associated with (P), for being easier conditions to verify.

Using the coefficients from (4.5) into Definition 3.3 where λ0 = 1, we obtain the

following definition of weak normality of (P) at a feasible pair (x̄, q̄).

Definition 4.4 (Weak normality of (P)). The problem (P) is weakly normal at a

feasible pair (x̄, q̄) means that there exist p̄ in C1
prd[a, b]T and γ̄ in Rk such that:

(4.6)































x̄∆ = Ax̄ + Bq̄, on [a, ρ(b)]T,

p̄∆ = −AT p̄σ + CT (I + µA)x̄ + µCTBq̄, on [a, ρ(b)]T,

−BT p̄σ + µBTCx̄ + (I + µDT )Bq̄ = 0, on [a, ρ(b)]T,

M

(

x̄(a)

x̄(b)

)

= d,

(

p̄(a)

−p̄(b)

)

= Γ

(

x̄(a)

x̄(b)

)

+ MT γ̄.

Remark 4.5. Note that Definition 4.4 yields that if (P) is weakly normal at (x̄, q̄)

with a multipliers (p̄, γ̄) and if for some q ∈ Cprd we have Bq = Bq̄ on [a, ρ(b)]T then

(x̄, q) is feasible and (P) is weakly normal at (x̄, q) with the same multipliers (p̄, γ̄).

If we intend to apply to problem (P) the results of Section 3 pertaining symplectic

systems, we would define the symplectic boundary value problem corresponding to (P)

in the same way we defined it for (LQ), that is, by using the coefficients given by

(3.43), which require, in addition to the invertibility of I + µA, the invertibility of

S(t) defined via (3.42). From (4.5) and (2.45), it follows that here S = BT ÃT ,

and hence, the invertibility of S(t) is equivalent to the invertibility of B(t). This

assumption renders the problem (P) a simple calculus of variations problem, which

is too restrictive for this study. Thus, in order to obtain general results for (P) we

should not apply the results known for (LQ) concerning symplectic systems, but

instead, we must tackle the problem (P) directly.

Nevertheless, if for the time being the invertibility of (I + µA)(t) and B(t) is

assumed, we notice when calculating the coefficients of the symplectic system associ-

ated to (P) via (3.43), that neither Ã nor S−1 appears in these coefficients. In fact,

we obtain A = A, B = B, C = C, D = D, ca = cb = 0, z ≡ 0, and k ≡ 0; which is

not surprising given that (P) itself is symplectic. Therefore, without any invertibil-

ity assumption, the symplectic boundary value problem corresponding to (P) is now
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homogeneous and is defined through the coefficients A,B, C, and D, that is,

(S )

{

x̄∆ = A(t)x̄ + B(t)p̄ t ∈ [a, ρ(b)]T,

p̄∆ = C(t)x̄ + D(t)p̄ t ∈ [a, ρ(b)]T,

(bdry) M

(

x̄(a)

x̄(b)

)

= d,

(

p̄(a)

−p̄(b)

)

= Γ

(

x̄(a)

x̄(b)

)

+ MT γ̄.

Note that the system (S ) is symplectic because the matrix of coefficients S :=
(

A B

C D

)

satisfies (4.4). Therefore, (x̄, p̄) solves (S ) if and only if it solves the

time-reversed system (S −)

(S −)

{

x̄∆ = −DT (t)x̄σ + BT (t)p̄σ t ∈ [a, ρ(b)]T,

p̄∆ = CT (t)x̄σ −AT (t)p̄σ t ∈ [a, ρ(b)]T.

Unlike (LQ), Problem (P), being symplectic, has a special structure that stems

from the fact that its associated coefficients (P, Q, R, A, B) defined through (4.5) are

inter-dependent in a specific manner via (4.4). Consequently, unlike Proposition 3.17,

we shall show directly that without any extra assumption on I +µA or on B, the weak

normality of (P) at (x̄, q̄) with associated multipliers (p̄, γ̄) is equivalent not only to

(x̄, p̄, γ̄) solving the symplectic boundary value problem with Bp̄ = Bq̄, but also to the

weak normality of (P) at (x̄, p̄) whose associated multipliers are also (p̄, γ̄) and such

that Bp̄ = Bq̄.

Proposition 4.6 (Weak-normality and symplectic systems for (P)). The following

conditions are equivalent.

(a) Problem (P) is weakly-normal at (x̄, q̄), with multipliers (p̄, γ̄) satisfying (4.6).

(b) (x̄, p̄, γ̄) solve the homogeneous symplectic boundary value problem (S ) and

(bdry), and B(t)q̄(t) = B(t)p̄(t), for all t ∈ [a, ρ(b)]T.

(c) The problem (P) is weakly-normal at (x̄, p̄), with multipliers (p̄, γ̄) satisfying

(4.6), and B(t)q̄(t) = B(t)p̄(t), for all t ∈ [a, ρ(b)]T.

Remark 4.7. As a consequence of the equivalence between (b) and (c) in Proposi-

tion 4.6 and by using therein q̄ := p̄ at which Bq̄ = Bp̄ is trivally satisfied, we obtain

the following equivalence:

(x̄, p̄, γ̄) solve (S ) and (bdry) ⇐⇒ (P) is weakly-normal at (x̄, p̄), with multiplier

(p̄, γ̄) satisfying (4.6).

Proof of Proposition 4.6.

(a) ⇒ (b): Let (a) hold and let (x̄, q̄, p̄, γ̄) satisfy (4.6). Use the equation of

motion (4.6)(i) into (4.6)(ii), we get

(4.7) p̄∆ = CT (t)x̄σ −AT (t)p̄σ.
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Use from (2.45) that µBTC = A+DT + µDTA into (4.6)(iii) and then use (4.6)(i) to

obtain

BT p̄σ = DT x̄ + (I + µDT )x̄∆ = x̄∆ + DT x̄σ.

Thus, the pair (x̄, p̄) solves (S −), and hence, it solves (S ). Therefore, (x̄, p̄, γ̄) solves

the symplectic boundary value problem, (S ) and (bdry). Now, given that both (x̄, q̄)

and (x̄, p̄) satisfy the equation of motion, we obtain that Bq̄ = Bp̄, that is, (b) holds.

(b) ⇒ (c): Suppose that (x̄, p̄, γ̄) solves (S ) and (bdry), thus, it solves (S −) and

(bdry) and,

(4.8) x̄∆ = Ax̄ + Bp̄, x̄σ = (I + µA)x̄ + µBp̄.

Replace the equation for x̄σ from (4.8)(ii) into (S −)(ii), it follows that the adjoint

equation,(4.6)(ii), is satisfies where q̄ := p̄. On the other hand, from (S −)(i), in

which we replace x̄∆ and x̄σ from (4.8) and we use A + DT + µDTA = µBTC, we

obtain (4.6)(iii), where q̄ = p̄. This shows that (x̄, p̄, p̄, γ̄) satisfy (4.6).

(c) ⇒ (a) let (x̄, p̄, p̄, γ̄) satisfy (4.6) and Bp̄ = Bq̄. Replacing Bp̄ by Bq̄ it followsm

that (x̄, q̄, p̄, γ̄) satisfy (4.6). �

Now, without assuming the invertibility of B nor the M-controllability of the

linear system (4.2), we can combine Theorem 3.10 applied to (P) with Proposition 4.6

to readily obtain characterizions of the first order condition in Proposition 4.2 in

terms of the weak-normality condition of (P) and its equivalent condition involving

the symplectic boundary value problem.

Theorem 4.8 (First variation, weakly normalilty, symplectic system of (P)). Assume

that I + µ(t)A(t) is invertible for all t ∈ [a, ρ(b)]T. Let (x̄, q̄) be feasible for (P), then

the following conditions are equivalent.

(i) F ′(x̄, q̄; η, v) = 0 for all admissible pairs (η, v).

(ii) Problem (P) is weakly normal at (x̄, q̄), with multipliers (p̄, γ̄) satisfying (4.6).

(iii) (x̄, p̄, γ̄ solve the homogeneous symplectic boundary value problem (S ) and (bdry),

and B(t)q̄(t) = B(t)p̄(t), for all t ∈ [a, ρ(b)]T.

(iv) Problem (P) is weakly-normal at (x̄, p̄), with multipliers (p̄, γ̄) satisfying (4.6),

and B(t)q̄(t) = B(t)p̄(t), for all t ∈ [a, ρ(b)]T.

Remark 4.9. (a) The assumption that I +µA is invertible is not assumed in Propo-

sition 4.6 and is not required to prove the implication (ii) ⇒ (i).

(b) If we only assume the first part of (iii) holds, namely, (x̄, p̄, γ̄) solve the sym-

plectic boundary value problem (S ) and (bdry) or, its equivalent form in Remark 4.7,

i.e., the first part of (iv), then easy calculations show that F ′(x̄, p̄; η, v) = 0, for all

admissible pairs (η, v). In other words, without the M-controllability of system (4.2)

or the invertibility of I + µA we have:
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(x̄, p̄, γ̄) solve (S ) and (bdry) ⇒ (x̄, p̄) is feasible and F ′(x̄, p̄; η, v) = 0 for all admis-

sible pairs.

The converse of this implication is not true in general, since even under I + µA

invertible when applying to (x̄, p̄) that (i) ⇒ (ii), we would only get that there are

multipliers p and γ such that (x̄, p̄, p, γ) satisfies (4.6), and hence, from (ii) ⇒ (iii),

we have only that (x̄, p, γ) solve (S ) and (bdry). There is no reason that p be p̄.

(c) Assume that d = 0, the M-controllability of (4.2) holds, and the invertibility

of I + µA is met. In part(i) of [25, Proposition 4.3] it is shown that whenever

F(η, v) ≥ 0, for all feasible pairs, and a triplet (x̄, p̄, γ̄) solves (S ) and (bdry), then

F ′(x̄, p̄; η, v) = 0, for all admissible pairs, and (x̄, p̄) is optimal for (P). However,

we claim that this result is true without the M-controllability or the invertibility of

I + µA. Indeed, we first note that in this case admissible and feasible pairs are

the same. In addition, by part (b) of this Remark, (x̄, p̄, γ̄) solving (S ) and (bdry)

yields that F ′(x̄, p̄; η, v) = 0 for all admissible or feasible pairs. Furthermore, using

F(x̄, p̄) = 1
2
F ′(x̄, p̄; x̄, p̄) = 0 and F ≥ 0, it follows that (x̄, p̄) must be optimal for

(P).

An immediate consequence of combining Theorem 4.8 with Proposition 4.2 is the

following Corollary which is a characterization of the optimality for (P) in terms of

each of the corresponding weak normality or the symplectic boundary value problem,

together with the non-negativity of the second variation.

Corollary 4.10 ( Characterization of optimality, weak normality, symplectic system

for (P)). Assume that I+µ(t)A(t) is invertible for all t in [a, ρ(b)]. Then, the following

conditions are equivalent.

(a) (x̄, q̄) is (weak local or global) optimal for (P).

(b) Problem (P) is weakly normal at (x̄, q̄) with multipliers (p̄, γ̄) satisfying (4.6),

and F ′′(x̄, q̄; η, v) ≥ 0 for all admissible pairs.

(c) (x̄, p̄, γ̄) solve the symplectic boundary value problem (S ) and (bdry), with B(t)q̄(t) =

B(t)p̄(t), for all t ∈ [a, ρ(b)]T, and F ′′(x̄, q̄; η, v) ≥ 0 for all admissible pairs.

(d) The problem (P) is weakly-normal at (x̄, p̄), with multipliers (p̄, γ̄) satisfying

(4.6), with B(t)q̄(t) = B(t)p̄(t), for all t ∈ [a, ρ(b)]T, and F ′′(x̄, q̄; η, v) ≥ 0 for

all admissible pairs.

Remark 4.11. (i) Let (x̄, q̄) be optimal for (P) and p̄ be its adjoint variable satisfying

with γ̄ condition (b) of Corollary 4.10. Then, (x̄, p̄) is also optimal for (P) and the

same multiplier pair (p̄, γ̄) satisfies with (x̄, p̄) (4.6). In fact, from (a) ⇒ (c) in

Corollary 4.10, it follows that Bq̄ = Bp̄ and hence, by Remark 4.1, we have (x̄, p̄) is

also optimal for (P). Furthermore, the implication (a) ⇒ (d) yields that (p̄, γ̄) is a

multiplier corresponding to the optimal pair (x̄, p̄).
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(ii) In [25, Proposition 4.3], when d = 0 and under both the invertibility of I+µA

and the M-controllability of the equation of motion, the implications (a) ⇒ (b) and

(a) ⇒ (c) (without Bq̄ = Bp̄) are shown to be true. Therefore, Corollary 4.10 is a

generalization of [25, Proposition 4.3(ii)] to the case where the M-controllability of

the equation of motion does not hold.

Remark 4.12. (General Remark): All the results and the proofs in this paper

remain valid if we replace (x, u) ∈ C1
prd × Cprd by (x, u) ∈ W 1,2 × L2. Of course,

the dynamic equations in this setting would be satisfied almost everywhere. We refer

to [32] and the references therein for the notions and properties of the Sobolev and

Lebesgue spaces on time scales.
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tions, Birkhäuser, Boston, 2001.

[7] V. G. Boltyanskii, Optimal Control of Discrete Systems, John Wiley & Sons, New York -

Toronto, 1978.
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