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ABSTRACT: This paper is devoted to limit-dynamics for dispersive-dissipative

wave equations on an unbounded domain. An interesting feature is that the stochas-

tic term is multiplied by an unbounded Laplace operator. A random attractor in

the Sobolev space is obtained when the density of noise is small and the growth rate

of nonlinearity is subcritical. The random attractor is upper semicontinuous to the

global attractor when the density of noise tends to zero. Both methods of spectrum

and tail-estimate are combined to prove the collective limit-set compactness. Fur-

thermore, a probabilistic method is used to show that the robustness of attractors is

basically uniform in probability.
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1. INTRODUCTION

This paper investigates probabilistic robustness of random attractors for dispersive-

dissipative wave equations driven by a Laplace-type noise:

d(ut + αu−∆u− β∆ut) + (λu −∆u+ f(x, u))dt

= g(x)dt + εSu ◦ dW, x ∈ R
3. (1)

with the initial conditions: u(0) = u0 and ut(0) = u1, where α, β, λ > 0, g ∈ L2(R3),
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W is a real-valued Wiener process and S = I − β∆. The term εSu ◦ dW means a

Laplace-multiplier noise with a density ε > 0, see [15].

The deterministic equation (ε = 0) is used to mathematically describe the spread

of longitudinal strain waves in nonlinear elastic road and weakly nonlinear ion-acoustic

weaves (see [2, 6, 16]). The terms −∆ut and −∆utt in Eq.(1) are called the viscosity

dissipative and the dispersive terms respectively (see [12]). The well-posedness and

dynamics for deterministic equation were widely investigated in [19, 27] and [3, 4, 23]

respectively.

Recently, Jones and Wang [12] studied the random attractor for dispersive-dis-

sipative wave equation perturbed by additive noise, i.e. Su = h where h is a known

function. The wave equation without the dispersive term was also discussed in Wang

[21] and Yang, Duan and Kloeden [24] for such additive noise and in Wang, Zhou and

Gu [22] for usual multiplicative noise, i.e. Su = u, also see [8, 9, 11, 13, 17, 18, 20,

25, 26, 32].

However, one hardly convert Eq.(1) for S = I into a random equation. If the noise

is multiplied by a Laplace operator, then, it is possible to convert it into a coupled

first-order system without stochastic differential.

In this paper, the first goal is to prove the existence of a random attractor on

E = H1(R3)2. We need two assumptions: the nonlinearity f has a subcritical growth,

and the density ε of noise is small. Note that the second assumption is special for the

equation with a Laplace-multiplier noise and different from the usual assumptions in

literatures.

The second goal is to prove convergence (or robustness) of the random attrac-

tors to the global attractor as the density ε tends to zero. By applying the abstract

result given in Li et al.[14], we need to verify the uniform absorption (Section 3), the

collectively limit-set compactness (Section 4) and the convergence (Section 5) of the

random system. In particular, the novelties and difficulties come from verifying the

limit-set compactness.

The third goal is to prove that the robustness of attractors is basically uniform

in probability, that is, the random attractor converges to the global attractor,

uniformly in a probabilistic subspace of probability 1 − η for any small η > 0. This

topic of probabilistic robustness seems to be new in literatures.
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2. SMALL LAPLACE-MULTIPLIER NOISE

2.1. TRANSLATION OF VARIABLES

Let z := ut + δu for a suitable δ > 0. We have

ut = −δu+ z, (2)

d(z − β∆z) + ((α− δ)z − (1 − βδ)∆z + δ1u− δ2∆u)dt

+ f(x, u)− g)dt = εSu ◦ dW, (3)

u(x, 0) = u0(x), z(x, 0) = u1(x) + δu0(x), (4)

where, δ1 := λ− αδ + δ2 and δ2 := 1− δ + βδ2.

We then identify the Winner process W (·, ω) with the standard process ω(·) on a

metric dynamical system (Ω,F , P, θt), where Ω = {ω ∈ C(R,R)| ω(0) = 0} with the

Frechet topology, F is the corresponding Borel σ-algebra, P is the Wiener measure

and θt is a group defined by θtω(·) = ω(·+ t)− ω(t) for (ω, t) ∈ Ω× R.

By [5], there is a solution y(θtω) = −δ
∫ 0

−∞ eδτ (θtω)(τ)dτ for the Ornstein-Uhlenbeck

equation: dy + δydt = dW (t).

Lemma 1. [1, 10]. The mapping t → y(θtω) is continuous and tempered on Ω0 with

P (Ω0) = 1,

lim
t→±∞

y(θtω)

t
= lim

t→±∞
1

t

∫ 0

−t

y(θsω)ds = 0, (5)

lim
t→±∞

1

t

∫ 0

−t

|y(θsω)|mds =
Γ(1+m

2 )√
πδm

, ∀m > 0, (6)

for all ω ∈ Ω0, where Γ is the Gamma function.

Let v(t, ω) := z(t, ω)− εy(θtω)u(t, ω). By (2), (3), we have

ut = v − δu + εyu, (7)

vt − β∆vt + (α− δ)v − (1− βδ)∆v + δ1u− δ2∆u+ f(x, u)

= g − εyv + εβy∆v − (εδ3y + ε2y2)u+ (εδ4y + ε2βy2)∆u, (8)

u(x, 0) = u0(x), v(x, 0) = u1(x) + δu0(x) − εy(ω)u0(x), (9)

where δ3 := α− 3δ, δ4 := 1− 3βδ.

2.2. HYPOTHESES AND CONTINUOUS RDS

Hypothesis F. f : R3 × R → R is continuous with r-th growth:

|f(x, s)| ≤ γ1|s|r + φ1(x), φ1 ∈ L2(R3), (10)
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f(x, s)s ≥ γ2F (x, s) + φ2(x), φ2 ∈ L1(R3), (11)

F (x, s) ≥ γ3|s|r+1 − φ3(x), φ3 ∈ L1(R3), (12)

|∂f
∂s

(x, s)| ≤ γ4|s|r−1 + φ4(x), φ4 ∈ H1(R3). (13)

where r ∈ [1, 4], γi > 0 and F (x, s) :=
∫ s

0
f(x, τ)dτ .

We then choose δ > 0 such that δi > 0 (i = 1, 2, 3, 4) and set

κ1 := min{α− δ,
1− βδ

β
, δ, δγ2}, (14)

κ2 := max{2(δ3 + 1),
2(δ3 + 1)

δ1
,
2(δ4 + β)

β
,
2(δ4 + β)

δ2
,
γ1
γ3

, 4}. (15)

Hypothesis S. The density of noise is small: ε ∈ (0, ε0], where

ε0 = min{1, κ1

30κ2(
2√
πδ

+ 1
δ
)
}. (16)

Let E = H1(R3)×H1(R3) with the norm:

‖ϕ‖E = (‖v‖2 + β‖∇v‖2 + δ1‖u‖2 + δ2‖∇u‖2) 1
2 (17)

for ϕ = (u, v) ∈ E. ‖ · ‖E is equivalent to the usual Sobolev norm.

By following the argument of [19], one can prove that for each ω ∈ Ω0 and ϕε
0 =

(uε
0, v

ε
0) ∈ E, the problem (7)-(9) has a unique solution ϕε(·, ω, ϕε

0) ∈ C([0,∞), E).

By [5], Φε : R+ × Ω0 ×E → E is a continuous random dynamic system (RDS) on E,

where, for each ε ≤ ε0,

Φε(t, ω, ϕε
0) = ϕε(t, ω, ϕε

0) = (uε(·, ω, uε
0), v

ε(·, ω, vε0)). (18)

Let D be a universe of all tempered random sets D such that

lim
t→+∞

e−
1
15κ1t‖D(θ−tω)‖2E = 0. (19)

3. COLLECTIVELY UNIFORM ESTIMATES

Lemma 2. For each D ∈ D and ω ∈ Ω0 there is a T1 = T1(D, ω) > 0 such that for

all t ≥ T1 and ϕ0 ∈ D(θ−tω),

‖ϕ(t, θ−tω, ϕ0)‖2E ≤ c+ cRε(ω), (20)

where,

Rε(ω) :=

∫ 0

−∞
eκ1s+

√
ε|y(θsω)|+εκ2

∫
0
s
|y(θτω)|+|y(θτω)|2dτds < +∞. (21)
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Moreover, for all s, t ≥ 0, we have,

‖ϕ(s, θ−tω, ϕ0)‖2E

≤ ce−κ1s+εκ2

∫
s−t

−t
|y(θτω)|+|y(θτω)|2dτ (‖ϕ0‖2E +

∫
R3

F (x, u0)dx)

+ c

∫ s−t

−t

eκ1(σ−s+t)+
√
ε|y(θσω)|+εκ2

∫
s−t

σ
|y(θτω)|+|y(θτω)|2dτdσ + c. (22)

Proof. Taking the inner product of Eq.(8) with v in L2, we have

d

dt
(‖ϕ‖2E + 2

∫
R3

F (x, u)dx) + 2κ1‖ϕ‖2E + 2δ(f(x, u), u)

≤ 2εy(f(x, u), u) + 2(g, v) + I1 + I2. (23)

where I1, I2 are defined and estimated as follows.

I1 : = −2εy‖v‖2 − 2εβ|y|‖∇v‖2 + 2εδ1|y|‖u‖2 + 2εδ2|y|‖∇u‖2

≤ 2ε|y|‖ϕ‖2E ≤ 1

2
εκ2|y|‖ϕ‖2E ≤ 1

2
εκ2(|y|+ |y|2)‖ϕ‖2E . (24)

Since ε ≤ ε0 ≤ 1, it follows from the definition of κ2 that

I2 : = −2(εδ3y + ε2y2)(u, v) + 2(εδ4y + ε2βy2)(∆u, v)

≤ 1

2
εκ2(|y|+ |y|2)‖ϕ‖2E . (25)

By the Young inequality, we see that

2(g, v) ≤ 2‖v‖‖g‖ ≤ c‖ϕ‖E‖g‖ ≤ 1

2
κ1‖ϕ‖2E + c. (26)

By (10), we see δγ2 ≥ κ1 and F + φ3 ≥ 0. By (11),

2δ(f(x, u), u) ≥ 2δγ2

∫
F (x, u) + 2δ

∫
φ2(x)

≥2κ1

∫
F (x, u) + 2(κ1 − δγ2)

∫
φ3(x) + 2δ

∫
φ2(x). (27)

By γ1 ≤ κ2γ3 and (10),

2εy(f(x, u), u) ≤ 2εγ1|y|
∫
R3

|u|r+1dx+ 2ε|y|‖φ1‖‖u‖

≤2εκ2(|y|+ |y|2)
∫
R3

γ3|u|r+1dx+ 2ε|y|‖φ1‖‖u‖ (by (12))

≤2εκ2(|y|+ |y|2)
∫
R3

F (x, u)dx +
1

2
κ1‖ϕ‖2E + εc(|y|+ |y|2). (28)

Substituting (24)-(28) into (23), we find

d

dt
(‖ϕ‖2E + 2

∫
F (x, u)dx)
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+ (κ1 − εκ2(|y|+ |y|2))(‖ϕ‖2E + 2

∫
F (x, u)dx) ≤ ce

√
ε|y|. (29)

Applying the Gronwall lemma over [0, s] for any s ≥ 0, we find

‖ϕ(s, ω, ϕ0)‖2E + 2

∫
R3

F (x, u(s, ω, u0))dx

≤ e−κ1s+εκ2

∫
s

0
|y(θτω)|+|y(θτω)|2dτ (‖ϕ0‖2E + 2

∫
R3

F (x, u0)dx)

+ c

∫ s

0

eκ1(σ−s)+
√
ε|y(θσω)|+εκ2

∫
s

σ
|y(θτω)|+|y(θτω)|2dτdσ. (30)

Replacing ω by θ−tω in (30), we find, for all s, t ≥ 0,

‖ϕ(s, θ−tω, ϕ0)‖2E + 2

∫
R3

F (x, u(s, θ−tω, u0))dx

≤ ce−κ1s+εκ2

∫
s−t

−t
|y(θτω)|+|y(θτω)|2dτ (‖ϕ0‖2E +

∫
R3

F (x, u0)dx)

+ c

∫ s−t

−t

eκ1(σ−s+t)+
√
ε|y(θσω)|+εκ2

∫
s−t

σ
|y(θτω)|+|y(θτω)|2dτdσ, (31)

which implies (22) in view of (12). In particular, we have

‖ϕ(t, θ−tω, ϕ0)‖2E

≤ ce−κ1t+εκ2

∫ 0
−t

|y(θτω)|+|y(θτω)|2dτ (‖ϕ0‖2E +

∫
R3

F (x, u0)dx)

+ c

∫ 0

−t

eκ1s+
√
ε|y(θsω)|+εκ2

∫
0
s
|y(θτω)|+|y(θτω)|2dτds+ c. (32)

By Hypothesis S, we know that there is a T0 = T0(ω) > 0 such that

εκ2

∫ 0

−t

|y(θτω)|+ |y(θτω)|2dτ ≤ ε0κ2(
2Γ(1)√

πδ
+

2Γ(3/2)√
πδ

)t

=
κ1κ2

30κ2(
2√
πδ

+ 1
δ
)
(

2√
πδ

+
1

δ
)t =

1

30
κ1t, for all t ≥ T0. (33)

By (5),
√
ε|y(θsω)| ≤ − 1

30κ1s for all s ≤ −T0. Therefore, we have

∫ −T0

−∞
eκ1s+

√
ε|y(θsω)|+εκ2

∫ 0
s
|y(θτω)|+|y(θτω)|2dτds ≤

∫ 0

−∞
e

14
15κ1sds < +∞,

which implies Rε(ω) (given in (21)) is finite. On the other hand, by (19) and (33),

we see that for ϕ0 ∈ D(θ−tω), when t → +∞,

ce−κ1t+εκ2

∫ 0
−t

|y(θτω)|+|y(θτω)|2dτ‖ϕ0‖2E ≤ ce−
29
30κ1t‖D(θ−tω)‖2E → 0.

By the Sobolev embedding H1 →֒ Lp for p ∈ [2, 6],

ce−κ1t+εκ2

∫ 0
−t

|y(θτω)|+|y(θτω)|2dτ
∫

F (x, u0)
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≤ce−
29
30κ1t(1 + ‖u0‖r+1

r+1 + ‖φ1‖‖u0‖)

≤ce−
29
30κ1t + c(e−

29×2
30(r+1)

κ1t‖u0‖2H1)
r+1
2 + ce−

29
30κ1t‖u0‖2

≤ce−
29
30κ1t + c(e−

1
15κ1t‖D(θ−tω)‖2E)

r+1
2 + ce−

1
15κ1t‖D(θ−tω)‖2E

which tends to zero as t → +∞ in view of (19).

4. TAIL-ESTIMATE AND SPECTRUM

We need an auxiliary estimate.

Lemma 3. Let Hypotheses F be satisfied. We have

‖vt‖2H1 + ‖ut‖2H1 ≤ ce|y(θtω)|(1 + ‖ϕ‖2E + ‖ϕ‖2rE ). (34)

Proof. We multiply (8) with vt to obtain

‖vt‖2 + β‖∇vt‖2 = I1 + I2 + I3, (35)

where we estimate I1, I2, I3 as follows.

I1 : = −(α− δ)(v, vt) + (1− βδ)(∆v, vt)− δ1(u, vt) + δ2(∆u, vt)

≤ 1

4
‖vt‖2 +

1

4
β‖∇vt‖2 + c‖ϕ‖2E.

By (10) and H1 →֒ Lp for p ∈ [2, 6],

I2 : = (g, vt)− (f(x, u), vt) ≤ γ1

∫
R3

|u|r|vt|dx+ ‖vt‖‖φ1‖

≤ 1

8
‖vt‖2 + c+ c‖u‖rH1‖vt‖H1 + ‖vt‖‖φ1‖

≤ 1

4
‖vt‖2 +

1

4
β‖∇vt‖2 + c(1 + ‖ϕ‖2rE ),

similarly, the rest terms on the right-hand side of (35) are bounded by

I3 : = εβy(∆v, vt) + 2(εδ4y + ε2βy2)(∆u, vt)− 2(εδ3y + ε2y2)(u, vt)

− εy(v, vt) ≤
1

4
‖vt‖2 +

1

4
β‖∇vt‖2 + c+ c(|y|+ |y|2)‖ϕ‖2E.

By 1 + |y|+ |y|2 ≤ 2e|y|, we obtain (34).
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4.1. COLLECTIVE TAIL-ESTIMATES

Lemma 4. Let D ∈ D and ω ∈ Ω0. We have

lim
t,k→+∞

sup
ϕ0∈D(θ−tω)

sup
ε≤ε0

‖ϕε(t, θ−tω, ϕ0)‖E(Oc
k
) = 0, (36)

where Ok = {x : |x| < k}, Oc
k = R

3\Ok and E(Oc
k) = H1(Oc

k)
2.

Proof. For k ≥ 1, we let ρk(x) := ρ( |x|
2

k2 ) for x ∈ R
3, where ρ : R 7→ [0, 1] is a smooth

function such that ρ ≡ 0 on [0, 1] and ρ ≡ 1 on [2,∞).

We take the inner product of (8) with ρkv in L2, after some calculations, we obtain

d

dt

∫
ρk(|ϕ|2 + 2F (x, u)) + 2κ1

∫
ρk|ϕ|2 + 2δ

∫
ρkf(x, u)u

≤ 2εy

∫
ρkf(x, u)u+ 2

∫
ρkvg +H1 +H2 +H3, (37)

where |ϕ| := (|v|2 + β|∇v|2 + δ1|u|2 + δ2|∇u|2) 1
2 and

H1 : = −2εy

∫
R3

ρk|v|2 − 2εβy

∫
R3

ρk|∇v|2dx+ 2εδ1y

∫
R3

ρk|u|2dx

≤ 2ε|y|
∫
R3

ρk|ϕ|2dx ≤ 1

2
εκ2(|y|+ |y|2)

∫
R3

ρk|ϕ|2dx,

H2 : = 2εδ2y

∫
R3

ρk|∇u|2dx− 2(εδ3y + ε2y2)

∫
ρkvu

+ 2(εδ4y + ε2βy2)

∫
ρkv∆u ≤ 1

2
εκ2(|y|+ |y|2)

∫
R3

ρk|ϕ|2dx.

Similarly,

H3 : = −2δ2

∫
ut(∇u · ∇ρk)− 2δ2(δ − εy)

∫
u(∇u · ∇ρk)

− 2β

∫
v(∇vt · ∇ρk)− (2(1− βδ) + 2εβy)

∫
v(∇v · ∇ρk)

≤ c

k
e2|y|(1 + ‖ϕ‖2E + ‖ϕ‖2rE ).

The Young inequality implies that

2

∫
ρkvg ≤ c

∫
ρk|ϕ||g| ≤

1

2
κ1

∫
ρk|ϕ|2 + c

∫
ρk|g|2. (38)

By (14), we see δγ2 − κ1 ≥ 0, then

2δ

∫
ρkf(x, u)u ≥ 2δγ2

∫
ρkF (x, u) + 2δ

∫
ρkφ2(x)

≥ 2κ1

∫
ρkF (x, u) + 2(κ1 − δγ2)

∫
ρkφ3 + 2δ

∫
ρkφ2. (39)
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By (15), γ1 ≤ κ2γ3, then the Young inequality implies that

2εy

∫
ρkf(x, u)u ≤ 2εγ1|y|

∫
ρk|u|r+1 + 2ε|y|

∫
ρk|u||φ1|

≤ 2εκ2(|y|+ |y|2)
∫

γ3ρk|u|r+1 + 2ε|y|
∫

ρk|u||φ1|

≤ 2εκ2(|y|+ |y|2)
∫

ρkF (x, u) +
1

2
κ1

∫
ρk|ϕ|2

+ c(|y|+ |y|2)
∫

ρk(|φ3|+ |φ1|2). (40)

Since limk→+∞
∫
R3 ρk(|g|2 + |φ2|+ |φ3|+ |φ1|2)dx = 0, it follows from (37)-(40) that

for every η > 0, there is a K0 > 1 such that

d

dt

∫
ρk(|ϕ|2 + 2F (x, u))

+ (κ1 − εκ2(|y|+ |y|2))
∫

ρk(|ϕ|2 + 2F (x, u))

≤ηe2|y|(1 + ‖ϕ‖2E + ‖ϕ‖2rE ), for k ≥ K0. (41)

We use the Gronwall lemma to find that for all k ≥ K0,

∫
ρk|ϕ(t, θ−tω, ϕ0|2 + 2

∫
ρkF (x, u) ≤ cQ1 + cη(Q2 +Q3), (42)

where, as t → +∞

Q1 := ce−κ1t+εκ2

∫
0
−t

|y(θτω)|+|y(θτω)|2dτ
∫

ρk(|ϕ0|2 + F (x, u0))

tends to zero. It is easy to see that

Q2 :=

∫ t

0

eκ1(s−t)+2|y(θs−tω)|+εκ2

∫
0
s−t

|y(θτω)|+|y(θτω)|2dτds

is finite. It suffices to prove the finiteness of the following term:

Q3 :=

∫ t

0

eκ1(s−t)+2|y(θs−tω)|+εκ2

∫ 0
s−t

|y(θτω)|+|y(θτω)|2dτ‖ϕ(s)‖2rE ds,

where ϕ(s) = ϕ(s, θ−tω, ϕ0). For this end, we use (22) to obtain that

‖ϕ(s, θ−tω, ϕ0)‖2E ≤
3∑

j=1

q(s, t),

where

q1(s, t) := ce−κ1s+εκ2

∫
s−t

−t
|y(θτω)|+|y(θτω)|2dτ‖ϕ0‖2E ,
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q2(s, t) := ce−κ1s+εκ2

∫
s−t

−t
|y(θτω)|+|y(θτω)|2dτ

∫
R3

F (x, u0)dx,

q3(s, t) := c

∫ s−t

−t

eκ1(σ−s+t)+|y(θσω)|+εκ2

∫
s−t

σ
|y(θτω)|+|y(θτω)|2dτdσ + c.

Then, we have Q3 ≤ c
∑3

j=1 Q3,j , where

Q3,j :=

∫ t

0

eκ1(s−t)+2|y(θs−tω)|+εκ2

∫ 0
s−t

|y(θτω)|+|y(θτω)|2dτqrj (s, t)ds,

for j = 1, 2, 3. After some calculations, we have

Q3,1 ≤ Ce−
r
5κ1t+εrκ2

∫
0
−t

|y(θτω)|+|y(θτω)|2dτ‖ϕ0‖2rE
≤ c(e−

1
15κ1t‖D(θ−tω)‖2E)r → 0

as t → +∞. By the same argument, we have Q3,2(t, ω) ≤ CQ̃3,2, where,

Q̃3,2 : = e−
r
5κ1t+εrκ2

∫
0
−t

|y(θτω)|+|y(θτω)|2dτ (

∫
R3

F (x, u0(θ−tω))dx)
r

≤ ce−
r
6κ1t(

∫
R3

|f(x, u0)||u0|+ |φ2|dx)r (by(10))

≤ ce−
r
6κ1t + ce−

r
6κ1t‖u0‖r

2+r
r+1 + ce−

r
6κ1t‖φ1‖r‖u0‖r

≤ ce−
r
6κ1t + c(e−

1
3(r+1)

κ1t‖u0‖2H1)
r2+r

2 + c(e−
1
3κ1t‖u0‖2)

r
2

≤ ce−
r
6κ1t + c(e−

1
15κ1t‖D(θ−tω)‖2E)

r2+r
2 + c(e−

1
3κ1t‖D‖2E)

r
2 ,

where, we take the minimal coefficient 1/15 in (19). Then Q̃3,2 → 0 as t → +∞ and

thus Q3,2 is bounded. By the tempered property of y, one can verify that Q3,3 is

finite and thus Q3 is finite.

Finally, by using F + φ3 ≥ 0 (see (12)), it follows from (42) that

∫
R3

ρk|ϕ|2dx ≤
4∑

i=1

Qi(t, k, ω) + c

∫
Oc

k

|φ3|dx → 0

as t, k → +∞. The proof is complete.

4.2. ORTHOGONAL DECOMPOSITION

Let ξk(x) := 1− ρk(x) for k ≥ 1, and

ϕ̄ = (ū, v̄) := ξkϕ = (ξku, ξkv), (43)

for each solution ϕ = (u, v) of system (7)-(9). Then, ϕ̄ ∈ H1(O2k)×H1(O2k) has the

orthogonal decomposition:

ϕ̄ = Piϕ̄⊕ (I − Pi)ϕ̄ := ϕ̄i,1 + ϕ̄i,2 = (ūi,1, v̄i,1) + (ūi,2, v̄i,2), (44)
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where Pi : L
2(O2k)× L2(O2k) 7→ Yi × Yi := span{e1, e2 · ··, ei} × span{e1, e2 · ··, ei} is

a canonical projection and {ej}∞j=1 is the family of eigenfunctions for −∆ in L2(O2k)

with corresponding positive eigenvalues λ1 ≤ λ2 ≤ ·· ≤ λj → ∞ as j → ∞. We also

see Yi × Yi ⊂ H1(O2k)×H1(O2k), thus it easily follows from (43) that

ξk∆v = ∆v̄ − v∆ξk − 2∇ξk · ∇v, (45)

ξk∆vt = ∆v̄t − vt∆ξk − 2∇ξk · ∇vt, (46)

ξk∆u = ∆ū− u∆ξk − 2∇ξk · ∇u. (47)

Multiplying (7)-(8) by ξk and substituting (45)-(47) into the obtained results, we have

ūt = v̄ − δū+ εyū (48)

v̄t − β∆v̄t + (α− δ)v̄ − (1 − βδ)∆v̄ + δ1ū− δ2∆ū

= −ξkf(x, u) + ξkg − εyv̄ + εβy∆v̄ − (εδ3y

+ ε2y2)ū + (εδ4y + ε2βy2)∆ū − J (49)

where

J : = βvt∆ξk + 2β∇ξk · ∇vt + (1 − βδ)v∆ξk + δ2u∆ξk + εβyv∆ξk

+ 2(1− βδ)∇ξk · ∇v + 2δ2∇ξk · ∇u+ 2εβy∇ξk · ∇v

+ (εδ4y + ε2βy2)u∆ξk + 2(εδ4y + ε2βy2)∇ξk · ∇u.

Lemma 5. Let D ∈ D, ω ∈ Ω0 and k ≥ 1. We have

lim
t,i→+∞

sup
ϕ0∈D(θ−tω)

sup
ε≤ε0

‖(I − Pi)ξkϕ
ε(t, θ−tω, ϕ0)‖E(O2k) = 0. (50)

Proof. Applying I − Pi to (49) and taking the inner product of the result equation

with v̄i,2, we have

d

dt
(‖v̄i,2‖2 + β‖∇v̄i,2‖2) + 2(α− δ)‖v̄i,2‖2 + 2(1− βδ)‖∇v̄i,2‖2

+ 2δ1(ūi,2, v̄i,2)− 2δ2(∆ūi,2, v̄i,2) = −2(ξkf(x, u), v̄i,2) + 2(ξkg, v̄i,2)

− 2εy‖v̄i,2‖2 − 2εβy‖∇v̄i,2‖2 − 2(εδ3y + ε2y2)(ū, v̄i,2)

+ 2(εδ4y + ε2βy2)(∆ū, v̄i,2)− 2(J, v̄i,2). (51)

Applying I − Pi to (48), we have

2(ūi,2, v̄i,2) =
d

dt
‖ūi,2‖2 + 2δ‖ūi,2‖2 − 2εy‖ūi,2‖2, (52)

− 2(∆ūi,2, v̄i,2) =
d

dt
‖∇ūi,2‖2 + 2δ‖∇ūi,2‖2 − 2εy‖∇ūi,2‖2. (53)
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Then, it follows from (51)-(53) that

d

dt
‖ϕ̄i,2‖2E + 2κ1‖ϕ̄i,2‖2E ≤ −2(ξkf(x, u), v̄i,2) + 2(ξkg, v̄i,2)

+ J1 + J2 − 2(J, v̄i,2), (54)

where J1, J2 are given by

J1 :=− 2εy‖v̄i,2‖2 − 2εβy‖∇v̄i,2‖2 + 2εδ1y‖ūi,2‖2 + 2εδ2y‖∇ūi,2‖2

≤ 2ε|y|‖ϕ̄i,2‖2E ≤ 1

2
εκ2(|y|+ |y|2)‖ϕ̄i,2‖2E .

J2 :=− 2(εδ3y + ε2y2)(ū, v̄i,2) + 2(εδ4y + ε2βy2)(∆ū, v̄i,2)

≤ 1

2
εκ2(|y|+ |y|2)‖ϕ̄i,2‖2E.

Let µ = r−1
2r+2 ∈ [0, 1) since r ∈ [1, 4]. Then, by the interpolation inequality and the

Young inequality, we see

−2(ξkf(x, u), v̄i,2) ≤ c

∫
R3

ξk|u|r|v̄i,2|dx+ c

∫
R3

ξk|φ1|v̄i,2|dx

≤ c‖u‖rr+1‖∇v̄i,2‖µ‖v̄i,2‖1−µ + c‖φ1‖‖v̄i,2‖

≤ cλ
µ−1
2

i+1 ‖u‖rH1‖∇v̄i,2‖+ cλ
− 1

2

i+1‖φ1‖‖∇v̄i,2‖

≤ 1

2
κ1‖ϕ̄i,2‖2E + cλµ−1

i+1 ‖ϕ‖2rE + cλ−1
i+1. (55)

By the Young inequality and g ∈ L2(R3), we have

2(ξkg, v̄i,2) ≤ cλ
− 1

2

i+1‖∇v̄i,2‖ ≤ 1

4
κ1‖ϕ̄i,2‖2E + cλ−1

i+1. (56)

By (34), we can similarly obtain that

(J, v̄i,2) ≤ ‖J‖‖v̄i,2‖ ≤ cλ
− 1

2

i+1‖J‖‖∇v̄i,2‖ ≤ cλ
− 1

2

i+1‖J‖‖ϕ̄i,2‖

≤ 1

4
κ1‖ϕ̄i,2‖2E + cλ−1

i+1e
|y|(‖ϕ‖2E + ‖ut‖2H1 + ‖vt‖2H1)

≤ 1

4
κ1‖ϕ̄i,2‖2E + cλ−1

i+1e
2|y|(1 + ‖ϕ‖2E + ‖ϕ‖2rE ). (57)

Substituting (55)-(57) into (54) and noting λµ−1
i+1 + λ−1

i+1 → 0 as i → +∞, we obtain

that for η > 0, there is an i1 ∈ N such that for all i ≥ i1,

d

dt
‖ϕi,2‖2E + (κ1 − εκ2(|y|+ |y|2))‖ϕi,2‖2E

≤ ηce2|y|(1 + ‖ϕ‖2E + ‖ϕ‖2rE ). (58)

Applying the Gronwall lemma to (58) over [0, t] and replacing ω by θ−tω, we find

‖ϕi,2(t, θ−tω, (I − Pi)(ξkϕ0))‖2E(R3) ≤ ηc(Q2 +Q3)
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+ e−κ1t+εκ2

∫
0
−t

|y(θτω)|+|y(θτω)|2dτ‖(I − Pi)(ξkϕ0))‖2E , (59)

where Q2, Q3 is finite as given in the proof of Lemma 4. By ‖I −Pi‖ ≤ 2, ξk ≤ 1 and

(33), we see that for t ≥ T0,

e−κ1t+εκ2

∫
0
−t

|y(θτω)|+|y(θτω)|2dτ‖(I − Pi)ξkϕ0(θ−tω))‖2E(R3)

≤ ce−
1
15κ1t‖D(θ−tω))‖2E(R3) → 0 as t → +∞,

which implies (49) as required.

5. CONVERGENCE OF THE SYSTEM

Proposition 6. Let ϕε := (uε, vε) and ϕ0 := (u0, v0) be the solutions of (7)-(9) for

ε > 0 and ε = 0 respectively. Suppose the initial value ϕε
0 → ϕ0

0 in E as ε → 0, then,

for each T > 0,

lim
ε→0

sup
t∈[0,T ]

‖ϕε(t, ω, ϕε
0)− ϕ0(t, ϕ0

0)‖E = 0. (60)

Proof. Let Ψε := (Uε, V ε) with Uε = uε − u0 and V ε = vε − v0 for ε ∈ (0, ε0), By

(7)-(8), we obtain that

Uε
t = V ε − δUε + εyuε, (61)

V ε − β∆V ε
t + (α− δ)V ε − (1− βδ)∆V ε + δ1U

ε − δ2∆Uε

= f(x, u0)− f(x, uε)− εyvε + εβy∆vε

− (εδ3y + ε2y2)uε + (εδ4y + ε2βy2)∆uε. (62)

Taking the inner product of the Eq.(62) with V ε, we have

d

dt
(‖V ε‖2 + β‖∇V ε‖2) + 2(α− δ)‖V ε‖2 + 2(1− βδ)‖∇V ε‖2

+ 2δ1(U
ε, V ε)− 2δ2(∆Uε, V ε)

= 2(f(x, u0)− f(x, uε), V ε)− 2εy(vε, V ε) + 2εβy(∆vε, V ε)

− 2(εδ3y + ε2y2)(uε, V ε) + 2(εδ4y + ε2βy2)(∆uε, V ε). (63)

We multiply (61) by V ε and substitute the result into (63) to obtain

d

dt
‖Ψε‖2E + 2κ1‖Ψε‖2E ≤ 2(f(x, u0)− f(x, uε), V ε) + 2J. (64)

where we use the Young inequality to bound the term J :

J : = εβy(∆vε, V ε)− εy(vε, V ε) + εδ1y(u
ε, Uε) + εδ2y(∇uε,∇Uε)
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− (εδ3y + ε2y2)(uε, V ε) + (εδ4y + ε2βy2)(∆uε, V ε)

≤ κ1‖Ψε‖2E/2 + εc(|y|+ |y|2)‖ϕε‖2E. (65)

By the mean value theorem,

|f(x, u0)− f(x, uε)| ≤ c(|φ4|+ |u0|r−1 + |uε|r−1)|Uε|. (66)

So, by H1 →֒ L2r−2 (since 2r − 2 ≤ 6), we have

2(f(x, u0)− f(x, uε), V ε)

≤ c‖φ4‖6‖V ε‖‖Uε‖3 + c(‖|uε|r−1‖+ ‖|u0|r−1‖)‖Uε‖6‖V ε‖3
≤ c‖φ4‖H1‖V ε‖‖Uε‖3 + c(‖uε‖r−1

2r−2 + ‖u0‖r−1
2r−2)‖Uε‖6‖V ε‖3

≤ c‖V ε‖‖Uε‖H1 + c(‖uε‖r−1
H1 + ‖u0‖r−1

H1 )‖Uε‖H1‖V ε‖H1

≤ c‖Ψε‖2E + c(‖ϕε‖r−1
E + ‖u0‖r−1

E )‖Ψε‖2E
≤ κ1‖Ψε‖2E + c(1 + ‖ϕε‖r−1

E + ‖u0‖r−1
E )‖Ψε‖2E. (67)

Therefore, substituting (67)-(65) into (64), we find

d

dt
‖Ψε‖2E ≤ Kε

1(t, ω)‖Ψε‖2E + εKε
2(t, ω),

where, by applying the Gronwall lemma to (29) over [0, T ], both

Kε
1(t, ω) := (1 + ‖ϕε‖r−1

E + ‖u0‖r−1
H1 ) and

Kε
2(t, ω) := c(|y(θtω)|+ |y(θtω)|2)‖ϕε‖2E

are bounded when t ∈ [0, T ] and ε ∈ (0, ε0]. Hence,

d

dt
‖Ψε‖2E ≤ C‖Ψε‖2E + εC (68)

Applying the Gronwall lemma to (68) over [0, t] for t ≤ T , we see

sup
t∈[0,T ]

‖Ψε(t)‖2E ≤ C‖Ψε(0)‖2E + εCT. (69)

By ‖Ψε(0)‖2E = ‖ϕε
0 − ϕ0

0‖E → 0, we obtain (60) as required.

6. ROBUSTNESS OF RANDOM ATTRACTORS

A random compact set Aε ∈ D is said to be a D-random attractor for the RDS Φε

(given by (18)) if it is invariant, i.e. Φε(t, ω)Aε(ω) = Aε(θtω) for t ≥ 0, ω ∈ Ω0, and

D-attracting, i.e. for each D ∈ D and ω ∈ Ω0,

lim
t→+∞

distE(Φ
ε(t, θ−tω)D(θ−tω), Aε(ω)) = 0.

For the details, see [28, 29, 30, 31]. If ε = 0, we obtain a semigroup Φ0 with a global

attractor A0 on E (see, e.g. [4, 5]).
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Theorem 7. For each ε ∈ (0, ε0], the random dynamical system Φε has a unique

D-random attractor Aε = {Aε(ω) : ω ∈ Ω} on E = H1(R3)2. Moreover,

lim
ε→0

distE(Aε(ω), A0) = 0, ω ∈ Ω0. (70)

Proof. By the abstract result given by [14, Theorem 4.1], it suffices to verify the

following three aspects.

(i) Covergence. Φε → Φ0 as ε → 0, which is established by Proposition 6.

(ii) Collective absorption. For each ε ∈ (0, ε0], let

Kε(ω) := {ϕ ∈ E : ‖ϕ‖2E ≤ c(1 +Rε(ω))}, (71)

where Rε(ω) is defined by (21). By Lemma 2, Kε is a closed, bounded and random

D-absorbing set for Φε. Moreover, by (21) and (71),

lim
ε→0

‖Kε(ω)‖E(R3) ≤ c+
c

κ1
, ω ∈ Ω0.

It is easy to show ∪ε∈(0,ε0]Kε ∈ D. Then, the family {Kε : ε ∈ (0, ε0]} is collectively

absorbing.

(iii) Collective limit-set compactness. Let D ∈ D and ω ∈ Ω0. We need to

show the Kuratowski measure χEM(T ) → 0 as T → ∞, where,

M(T ) :=
⋃
t≥T

⋃
ε≤ε0

Φε(t, θ−tω)D(θ−tω).

For this end, let η > 0 be small. By (36), we take T1 > 0 and k ≥ 1 such that

‖ϕ‖E(Oc
k
) ≤ η, for all ϕ ∈ M(T1). (72)

By (50), there are i ∈ N and T2 ≥ T1 such that

‖(I − Pi)(ξkϕ)‖E(Q2k) ≤ η, for all ϕ ∈ M(T2). (73)

By (20), there is a T3 ≥ T2 such that M(T3) is bounded in E(R3), which implies that

the set {ξkϕ : ϕ ∈ M(T3)} is bounded in E(Q2k). Therefore the set {Pi(ξkϕ) : ϕ ∈
M(T3)} is bounded in a finitely dimensional subspace and thus it is pre-compact such

that

χE(Q2k){Pi(ξkϕ) : ϕ ∈ M(T3)} = 0. (74)

By (73)-(74), we have

χE(Q2k){ξkϕ : ϕ ∈ M(T3)} ≤ χE(Q2k){Pi(ξkϕ : ϕ ∈ M(T3)}
+ χE(Q2k){(I − Pi)(ξkϕ : ϕ ∈ B(T3)} ≤ 2η. (75)
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Since ξkϕ = ϕ on Qk, it follows from (75) that

χE(Qk)(M(T3)) = χE(Qk){ξkϕ : ϕ ∈ M(T3)} ≤ 2η. (76)

By (72) and (76), we arrive at

χE(R3)(M(T3)) ≤ χE(Qk)(M(T3)) + χE(Qc
k
)(M(T3)) ≤ 4η,

which shows the needed conclusion. The measurability of attractors can be proved

by the same method as given by [7].

7. BASICALLY UNIFORM ROBUSTNESS

In this section, we will prove that the robustness (given in Theorem 7) is basically

uniform in probability. The following lemma is well known.

Lemma 8. If {Fn}∞n=1 is an increasing family taken from F , then P (∪∞
n=1Fn) =

limn→∞ P (Fn). If {Gn}∞n=1 is a decreasing family taken from F , then P (∩∞
n=1Gn) =

limn→∞ P (Gn).

Theorem 9. Let Aε and A0 be the random attractors given in Theorem 7. Then,

for any εn → 0 and η > 0, there is a Ωη ∈ F with P (Ωη) > 1− η such that

lim
εn→0

sup
ω∈Ωη

distE(Aεn(ω), A0) = 0. (77)

Proof. We set hn(ω) = distE(Aεn(ω), A0) and

Ω1 = {ω ∈ Ω : lim
n→∞

hn(ω) = 0}, Ω̂ = Ω \ Ω1.

Then, by Theorem 7, Ω1 ⊃ Ω0 and thus P (Ω1) = 1, P (Ω̂) = 0. On the other hand, it

is easy to prove

Ω̂ =
∞⋃
k=1

∞⋂
m=1

∞⋃
n=m

{ω ∈ Ω : hn(ω) ≥
1

k
}.

Note that ∪∞
n=m{ω ∈ Ω : hn(ω) ≥ 1

k
} decreases as m increases. By (ii) of Lemma 8,

lim
m→∞

P (

∞⋃
n=m

{ω ∈ Ω : hn(ω) ≥
1

k
})

=P (

∞⋂
m=1

∞⋃
n=m

{ω ∈ Ω : hn(ω) ≥
1

k
}) ≤ P (Ω̂) = 0.
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Then, for each η > 0 and k ∈ N, there is an m(k) ∈ N such that

P (
∞⋃

n=m(k)

{ω ∈ Ω : hn(ω) ≥
1

k
}) < η

2k
.

Setting

Ωη :=

∞⋂
k=1

∞⋂
n=m(k)

{ω ∈ Ω : hn(ω) <
1

k
},

then, it is easy to find that

P (Ω0\Ωη) = P (

∞⋃
k=1

∞⋃
n=N(k)

{ω ∈ Ω0 : fεn(ω) ≥
1

k
})

≤
∞∑
k=1

P (

∞⋃
n=m(k)

{ω ∈ Ω : hεn(ω) ≥
1

k
}) <

∞∑
k=1

η

2k
= η,

which proves P (Ωη) > 1 − η. On the other hand, for each η′ > 0, there is a

k0 := k0(η
′) ∈ N such that 1

k0
< η′, in this way, we find an m(k0) such that

Ωη ⊂
⋂∞

n=m(k0)
{ω ∈ Ω : hn(ω) <

1
k0
}, then

sup
ω∈Ωη

hn(ω) <
1

k0
< η′, for all n ≥ m(k0),

which implies (77) as required.
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