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1. INTRODUCTION

For any x ∈ R, let p(x, y) be a nonnegative Borel measurable function, and

∫
R

p(x, y)dy = 1.

p(x, y) will be called transition probability density. If p(x1, y) = p(x2, y) for any

x1, x2 ∈ R, p(x, y) will be called constant transition density. If p(x, y) is a constant

transition density, then p(x, y) = π(y) is a probability density.

Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain taking values in R with the

transition kernels Pn(x,B) (Pn(x,B) = P(Xn+1 ∈ B|Xn = x), where B ∈ B(R)).
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Let pn(x, y) be the transition probability densities. If

Pn(x,B) =

∫
B

pn(x, y)dy,

{Xn, n ≥ 0} will be called a continuous-state nonhomogeneous Markov chain.

Let

p(n,n+2)(x, y) =

∫
R

pn(x, z)pn+1(z, y)dz,

and

p(n,n+k)(x, y) =

∫
R

p(n,n+k−1)(x, z)pn+k−1(z, y)dz,

then p(n,n+k)(x, y) is also a transition probability density. It is easy to see that for

any B ∈ B(R),

P(Xn+k ∈ B|Xn = x) =

∫
B

p(n,n+k)(x, y)dy.

If the continuous-state Markov chain is homogeneous, pn(x, y) will be denoted

simply by p and p(n,n+k) by p(k), and we have

p(n+k)(x, y) =

∫
R

p(n)(x, z)p(k)(z, y)dz.

p(n)(x, y) is called n-step transition probability density of the homogeneous Markov

chains.

Let f(x) be a Borel measurable function defined on R, we define the norm ‖ · ‖ of

f(x) as follows:

‖f(x)‖ =

∫
R

|f(x)|dx.

There have been some works on strong law of large numbers for nonhomogeneous

Markov chains. Liu and Liu [3] have studied the strong law of large numbers for

multivariate functions of countable nonhomogeneous Markov chains. Liu and Liu

[4] have studied a class of strong law of large numbers for functionals of countable

nonhomogeneous Markov chains. Liu and Yang [6] have studied the strong law of

large numbers and Shannon-McMillan-Breiman theorem for finite nonhomogeneous

Markov chains. Yang [11] has studied the convergence in the Cesàro sense and strong

law of large numbers for bivariate functions of countable nonhomogeneous Markov

chains under the condition limn→∞(1/n)
∑n

k=1 ‖Pk − P‖ = 0 where P is periodic

strongly ergodic. Yang [12] has also studied strong law of large numbers for countable

nonhomogeneous Markov chains under the condition of uniform convergence in the
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Cesàro sense which is different from the result of [11]. Dietz and Sethuraman [1] have

studied large deviations for a class of finite nonhomogeneous Markov chains.

In this paper, we are going to study the strong law of large numbers for multivariate

functions of continuous-state nonhomogeneous Markov chains. Firstly, we give a

primary proof of equivalence of the ergodicities for continuous-state homogeneous

Markov chains. Then, we establish some lemmas which are the basis of the main

result. Finally, we study the strong law of large numbers for multivariate functions of

continuous-state nonhomogeneous Markov chains. As corollaries, we give a strong law

of large numbers for functions of two variables of continuous-state nonhomogeneous

Markov chains.

This paper is organized as follows: In Section 2, we give a primary proof of

equivalence of the ergodicities for continuous-state homogeneous Markov chains. In

Section 3, we study some lemmas which are the basis of the main result, then we

obtain the strong law of large numbers for multivariate functions of continuous-state

nonhomogeneous Markov chains.

2. A PRIMARY PROOF OF ERGODICITIES FOR

CONTINUOUS-STATE HOMOGENEOUS MARKOV CHAINS

In this section, we introduce the definitions of geometric strongly ergodic, strongly

ergodic and weakly ergodic for continuous-state homogeneous Markov chains, then

we give a primary proof of equivalence of above three ergodicities for continuous-state

homogeneous Markov chains.

Definition 2.1. ([9], Definition 2) Let p(x, y) be the transition probability density.

Define Dobrushin coefficient of p as follows:

C(p) =
1

2
sup
x,y

∫
R

|p(x, z)− p(y, z)|dz. (2.1)

Definition 2.2. Let {Xn, n ≥ 0} be a continuous-state homogeneous Markov chain

with the transition probability density p(x, y). Let p(n)(x, y) be the n-step transition

probability density, and let π(y) be a probability density on R.

(i) If there exist two constants c > 0, 0 < r < 1 and a positive integer n0 such

that as n ≥ n0, for any x,

∫
R

|p(n)(x, y)− π(y)|dy ≤ crn, (2.2)

{Xn, n ≥ 0} will be called geometric strongly ergodic. We also call that p(x, y) is

geometric strongly ergodic with probability density π(y). (see [7]).
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(ii) If

sup
x

∫
R

|p(n)(x, y)− π(y)|dy → 0(n → ∞), (2.3)

{Xn, n ≥ 0} will be called strongly ergodic. We also call that p(x, y) is strongly

ergodic with probability density π(y). (see [9]).

(iii) {Xn, n ≥ 0} will be called weakly ergodic if C(p(n)) → 0 as n → ∞. (see [9]).

Definition 2.3. Let {Xn, n ≥ 0} be a continuous-state homogeneous Markov chain

with the transition probability density p(x, y). Let π(y) be a probability density on

R. If

π(y) =

∫
R

π(x)p(x, y)dx, (2.4)

π(y) will be called stationary distribution of this Markov chain. We also called π(y)

is the stationary distribution determined by p.

If {Xn, n ≥ 0} is strongly ergodic with the probability density π(y), it is easy to

see that π(y) is the stationary distribution of {Xn, n ≥ 0}.

In the remark of Definition 5 of [9], the author of this paper pointed out that

C(p) = 0 if and only if p is a constant transition density. It is easy to see that this

conclusion is not correct. Here we give a revised lemma as follows.

Lemma 2.1. Let p(x, y) be a transition probability density. C(p) = 0 if and only if

there exists a constant transition density p(y) such that

sup
x

∫
R

|p(x, y)− p(y)|dy = 0. (2.5)

Proof. Sufficiency is obvious. We only need to prove necessity. Let p(y) = p(0, y),

it is easy to see that p(y) is a constant transition density. Since C(p) = 0, we have
1
2 supx1,x2

∫
R
|p(x1, y)− p(x2, y)|dy = 0, and (2.5) holds.

From above lemma, if C(p) = 0, we can regard p as a constant transition density

or a probability density.

Lemma 2.2. ([9], Lemma 6) Let p(x, y) be a transition probability density and let

r(x) be a Borel function such that ‖r‖ < ∞ and
∫
R
r(x)dx = 0. Let

rp(y) =

∫
R

r(x)p(x, y)dx, (2.6)

then

‖rp‖ ≤ ‖r‖C(p). (2.7)
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Remark. In Lemma 6 of [9], the author has just given this conclusion but not

provided a detailed proof. Here we give a completed proof as follows.

Proof. Since r(x) = r+(x) − r−(x), |r(x)| = r+(x) + r−(x), where r+(x) =

max{r(x), 0}, r−(x) = max{−r(x), 0}. Let
∫
R
r(x)dx = 0, we have

∫
R

r+(x)dx =

∫
R

r−(x)dx, and

∫
R

|r(x)|dx = 2

∫
R

r+(x)dx.

It is easy to see that
∫
R
(
∫
R
r(x)p(x, y)dx)dy = 0. Similarly, we have

C(p) = sup
x,y

∫
R

(p(x, z)− p(y, z))+dz.

Let

E = {y :

∫
R

r(x)p(x, y)dx > 0}.

Since
∫
R
|r(x)|dx

∫
E
p(x, y)dy < ∞, by Fubini theorem, we have

‖rp‖ =

∫
R

|

∫
R

r(x)p(x, y)dx|dy

=2

∫
R

(

∫
R

r(x)p(x, y)dx)+dy

=2

∫
E

(

∫
R

r(x)p(x, y)dx)dy

=2

∫
R

r(x)dx

∫
E

p(x, y)dy

=2

∫
R

(r+(x) − r−(x))dx

∫
E

p(x, y)dy

≤2(

∫
R

r+(x)dx sup
x1

∫
E

p(x1, y)dy −

∫
R

r−(x)dx inf
x2

∫
E

p(x2, y)dy)

=2

∫
R

r+(x)dx sup
x1,x2

∫
E

(p(x1, y)− p(x2, y))dy

≤2

∫
R

r+(x)dx sup
x1,x2

∫
R

(p(x1, y)− p(x2, y))
+dy

=‖r‖C(p). (2.8)

The proof of this lemma is completed.

Corollary 2.1. (Dobrushin inequality) Let p(x, y) be a transition probability density

of a continuous-state homogeneous Markov chain, and let ρ1(x) and ρ2(x) be two

probability densities. Then

‖

∫
R

ρ1(x)p(x, ∗)dx −

∫
R

ρ2(x)p(x, ∗)dx‖ ≤ C(p)‖ρ1 − ρ2‖. (2.9)
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Proof. Let r(x) = ρ1(x) − ρ2(x) in Lemma 2.2, then
∫
R
(ρ1(x) − ρ2(x))dx = 0. By

Lemma 2.2, we have

‖

∫
R

ρ1(x)p(x, ∗)dx −

∫
R

ρ2(x)p(x, ∗)dx‖ =‖(ρ1 − ρ2)p‖

≤C(p)‖ρ1 − ρ2‖. (2.10)

That is (2.9) holds.

Lemma 2.3. ([8], Lemma 2) Let p and q be two transition probability densities. Then

C(pq) ≤ C(p)C(q). (2.11)

Lemma 2.4. Let {Xn, n ≥ 0} be a continuous-state homogeneous Markov chain with

the transition probability density p(x, y). Then {Xn, n ≥ 0} is weakly ergodic if and

only if there exists a positive integer number n0 such that C(p(n0)) < 1.

Proof. The necessity is obvious. We only need to prove sufficiency. Since p(n+1)(x, y) =∫
R
p(x, z)p(n)(z, y)dz, by (2.11), we have C(p(n+1)) ≤ C(p)C(p(n)) ≤ C(p(n)). Hence

{C(p(n))} is a nondecreasing sequence. Let C(p(n0)) = δ < 1, we have C(p(kn0)) ≤

δk → 0 as k → ∞. Since {C(p(kn0))} is a subsequence of {C(p(n))}, hence we have

C(p(n)) → 0.

The following theorem is the main result in this section.

Theorem 2.1. Let {Xn, n ≥ 0} be a continuous-state homogeneous Markov chain

with the transition probability density p(x, y). The following propositions are equiva-

lent:

(i) {Xn, n ≥ 0} is geometric strongly ergodic;

(ii) {Xn, n ≥ 0} is strongly ergodic;

(iii) {Xn, n ≥ 0} is weakly ergodic.

Remark. The results of this theorem are known (see [2], [7] and [10, p.384]). But

here, we give a primary proof of this theorem.

Proof. (i)⇒(ii) is obvious. Next we prove (ii)⇒(iii). Since

C(p(n)) =
1

2
sup
x1,x2

∫
R

|p(n)(x1, y)− p(n)(x2, y)|dy

≤
1

2
sup
x1

∫
R

|p(n)(x1, y)− π(y)|dy +
1

2
sup
x2

∫
R

|p(n)(x2, y)− π(y)|dy, (2.12)

the weak ergodicity follows from the strong ergodicity of {Xn, n ≥ 0}.
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Finally, we prove (iii)⇒(i). Let x0 ∈ R, by Dobrushin inequality, for any n, k, we

have∫
R

|p(n+k)(x0, y)− p(n+1)(x0, y)|dy =

∫
R

|

∫
R

(p(k)(x0, z)− p(x0, z))p
(n)(z, y)dz|dy

≤‖(p(k)(x0, ∗)− p(x0, ∗)‖C(p(n))

≤2C(p(n)) → 0 (n → ∞). (2.13)

Thus there exists a sequence such that

∫
R

p(n1)(x0, y)dy +

∞∑
k=1

∫
R

|p(nk+1)(x0, y)− p(nk)(x0, y)|dy < ∞. (2.14)

It follows from (2.14) that

p(n1)(x0, y) +

∞∑
k=1

(p(nk+1)(x0, y)− p(nk)(x0, y)) converges a.e.. (2.15)

On convergence points of (2.15), let π(x0, y) = p(n1)(x0, y) +
∑∞

k=1(p
(nk+1)(x0, y) −

p(nk)(x0, y)), otherwise, let π(x0, y) = 0. It is easy to see that

lim
k→∞

p(nk)(x0, y) = π(x0, y) a.e.. (2.16)

By (2.13), (2.16) and Fatou lemma, we have

∫
R

|p(n+1)(x0, y)− π(x0, y)|dy ≤ 2C(p(n)). (2.17)

By (2.17), we conclude that π(x0, y) is a transition probability density and C(π) = 0,

by Lemma 2.1, π(x0, y) is a constant transition density (π(x0, y) = π(y)). Hence, for

any x, we have

∫
R

|p(n+1)(x, y)− π(y)|dy ≤ 2C(p(n)). (2.18)

Since C(p(n)) → 0, let C(p(n0)) = r < 1 and n = ln0 + k (k = 0, 1, · · · , n0 − 1), by

(2.18), for any x, when n ≥ n0, we have

∫
R

|p(n+1)(x, y)− π(y)|dy ≤ 2C(p(n)) ≤ 2C(p(ln0))

≤ 2rl = 2(r
l

n+1 )n+1 ≤ 2(r
1

2n0 )n+1 = 2δn+1,

where 0 < δ < 1. We obtain that {Xn, n ≥ 0} is geometric strongly ergodic. Thus

we have completed the proof of this theorem.
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3. STRONG LAW OF LARGE NUMBERS

In this section, we will establish the strong law of large numbers for functions of

N + 1 variables of continuous-state nonhomogeneous Markov chains. Before proving

the main result, we need to prove the following lemmas.

Lemma 3.1. Let {Xn, n ≥ 0} be a continuous-state nonhomogeneous Markov chain

with the transition probability densities {pn(x, y), n ≥ 1}. Let p(x, y) be another

transition probability density. If

lim
n→∞

1

n

n∑
k=1

sup
x

‖pk(x, ∗)− p(x, ∗)‖ = 0, (3.1)

then for any positive integer numbers m and l

lim
n→∞

1

n

n∑
k=1

sup
x

‖p(m+k,m+k+l)(x, ∗)− p(l)(x, ∗)‖ = 0. (3.2)

Proof. Now

sup
x

‖p(m+k,m+k+2)(x, ∗)− p(2)(x, ∗)‖

= sup
x

∫
R

|p(m+k,m+k+2)(x, y)− p(2)(x, y)|dy

= sup
x

∫
R

|

∫
R

pm+k(x, z)pm+k+1(z, y)dz −

∫
R

p(x, z)p(z, y)dz|dy

≤ sup
x

∫
R

|

∫
R

pm+k(x, z)pm+k+1(z, y)dz −

∫
R

pm+k(x, z)p(z, y)dz|dy

+sup
x

∫
R

|

∫
R

(pm+k(x, z)p(z, y)dz −

∫
R

p(x, z)p(z, y))dz|dy

≤ sup
z

‖pm+k+1(z, ∗)− p(z, ∗)‖+ sup
z

‖pm+k(z, ∗)− p(z, ∗)‖. (3.3)

It follows from (3.1) that for any m

lim
n→∞

1

n

n∑
k=1

sup
x

‖p(m+k,m+k+2)(x, ∗)− p(2)(x, ∗)‖ = 0.

By induction, (3.2) holds.

Lemma 3.2. Let {Xn,Fn, n ≥ 0} be a stochastic sequence on the probability space

(Ω,F , P ), and let F−n = {Ω, φ}, n ≥ 1. Let {ϕn, n ≥ 1} be a sequence of nonnegative,

even functions defined on R such that as |x| increase

ϕn(x)

|x|
↑,

ϕn(x)

x2
↓ . (3.4)
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If

∞∑
n=1

E[ϕn(Xn)]

ϕn(n)
< ∞, (3.5)

then for any k ≥ 1

lim
n→∞

1

n

n∑
m=1

{Xm − E[Xm+k|Fm]} = 0 a.e.. (3.6)

Proof. By (3.5) and Corollary 1 of [5], for any k ≥ 1, we have

lim
n→∞

1

n

n∑
m=1

{Xm − E[Xm|Fm−k]} = 0 a.e.. (3.7)

By using similar proof of Lemma 3 of [12]. By (3.5), we can obtain

lim
n→∞

1

n+ k
E[Xn+k|Fn] = 0 a.e., (3.8)

(3.6) follows from (3.7) and (3.8).

The following theorem is the main result in this paper.

Theorem 3.1. Let {Xn, n ≥ 0} be a continuous-state nonhomogeneous Markov

chain with the transition probability densities {pn(x, y), n ≥ 1}. Let {fn, n ≥ 1} be a

sequence of Borel measurable functions defined on B(RN+1), and {ϕn, n ≥ 1} be the

same as in Lemma 3.2. Let

gn(x) = E[fn(Xn−N , · · · , Xn)|Xn−N = x], (3.9)

where supx |gn(x)| < ∞. Let g(x) be another Borel function defined on R such that

supx |g(x)| < ∞, and p(x, y) be another transition probability density. Assume that

p(x, y) is strongly ergodic with probability density π(y). If

∞∑
n=1

E[ϕn(fn(Xn−N , · · · , Xn))]

ϕn(n)
<∞, (3.10)

lim
n→∞

1

n

n∑
m=1

sup
x

‖pm(x, ∗)− p(x, ∗)‖ =0, (3.11)

and

lim
n→∞

1

n

n∑
m=1

sup
x

|gm(x)− g(x)| =0, (3.12)

then

lim
n→∞

1

n

n∑
m=1

fm(Xm−N , · · · , Xm) =

∫
R

g(x)π(x)dx a.e. (3.13)
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Proof. Let X−n be a constant as n ≥ 1, and let Fn = σ(Xn, Xn−1, · · · ). Then

{fn(Xn−N , · · · , Xn),Fn, n ≥ 0} is a stochastic sequence. By (3.10) and Lemma 3.2,

we have for any k ≥ 1

lim
n→∞

1

n

n∑
m=1

{fm(Xm−N , · · · , Xm)− E[fm+k+N (Xm+k, · · · , Xm+k+N )|Fm]}

= 0 a.e.. (3.14)

By Markov property and the properties of conditional expectation

1

n

n∑
m=1

E[fm+k+N (Xm+k, · · · , Xm+k+N )|Fm]

=
1

n

n∑
m=1

E[E[fm+k+N (Xm+k, · · · , Xm+k+N )|Fm+k]|Fm]

=
1

n

n∑
m=1

E[E[fm+k+N (Xm+k, · · · , Xm+k+N )|Xm+k]|Fm]

=
1

n

n∑
m=1

E[gm+k+N (Xm+k)|Xm]

=
1

n

n∑
m=1

∫
R

gm+k+N (x)p(m,m+k)(Xm, x)dx. (3.15)

By (3.15), we have

|
1

n

n∑
m=1

E[fm+k+N (Xm+k, · · · , Xm+k+N )|Fm]−
1

n

n∑
m=1

∫
R

g(x)p(k)(Xm, x)dx|

=|
1

n

n∑
m=1

∫
R

gm+k+N (x)p(m,m+k)(Xm, x)dx−
1

n

n∑
m=1

∫
R

g(x)p(k)(Xm, x)dx|

≤
1

n

n∑
m=1

|

∫
R

gm+k+N (x)p(m,m+k)(Xm, x)dx−

∫
R

g(x)p(m,m+k)(Xm, x)dx|

+
1

n

n∑
m=1

|

∫
R

g(x)p(m,m+k)(Xm, x)dx −

∫
R

g(x)p(k)(Xm, x)dx|

=
1

n

n∑
m=1

|

∫
R

p(m,m+k)(Xm, x)(gm+k+N (x) − g(x))dx|

+
1

n

n∑
m=1

|

∫
R

g(x)(p(m,m+k)(Xm, x)− p(k)(Xm, x))dx|

≤
1

n

n∑
m=1

sup
x

|gm+k+N (x)− g(x)|
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+
1

n
sup
x

|g(x)|

n∑
m=1

sup
x

‖p(m,m+k)(x, ∗)− p(k)(x, ∗)‖. (3.16)

By (3.12), the first term of right side of (3.16) converges to zero as n → ∞. By

(3.11) and Lemma 3.1, the second term of right side of (3.16) also converges to zero

as n → ∞. By (3.14) and (3.16), we have for any k ≥ 1

lim
n→∞

1

n

n∑
m=1

{fm(Xm−N , · · · , Xm)−

∫
R

g(x)p(k)(Xm, x)dx} = 0 a.e.. (3.17)

Now

|
1

n

n∑
m=1

∫
R

g(x)p(k)(Xm, x)dx −

∫
R

g(x)π(x)dx|

≤
1

n

n∑
m=1

∫
R

|g(x)(p(k)(Xm, x)− π(x))|dx

≤
1

n

n∑
m=1

sup
x

|g(x)|

∫
R

|(p(k)(Xm, x)− π(x)|dx

≤ sup
x

|g(x)| sup
y

∫
R

|p(k)(y, x)− π(x)|dx. (3.18)

Since p(y, x) is strongly ergodic with probability density π(x), the right side of (3.18)

is small provided k is large, equation (3.13) follows from (3.17) and (3.18) directly.

Corollary 3.1. Let {Xn, n ≥ 0} be a continuous-state nonhomogeneous Markov

chain with the transition probability densities {pn(x, y), n ≥ 1}. Let {fn, n ≥ 1} be

a sequence of Borel measurable functions defined on B(R2), and {ϕn, n ≥ 1} be the

same as in Lemma 3.2. Let

gn(x) = E[fn(Xn−1, Xn)|Xn−1 = x],

where supx |gn(x)| < ∞. Let g(x) be another Borel function defined on R such that

supx |g(x)| < ∞, and p(x, y) be another transition probability density. Assume that

p(x, y) is strongly ergodic with probability density π(y). If (3.11) and (3.12) hold, and

∞∑
n=1

E[ϕn(fn(Xn−1, Xn))]

ϕn(n)
< ∞, (3.19)

then

lim
n→∞

1

n

n∑
m=1

fm(Xm−1, Xm) =

∫
R

g(x)π(x)dx a.e.. (3.20)

Proof. Letting N = 1 in Theorem 3.1, this corollary follows.
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Corollary 3.2. Let {Xn, n ≥ 0} be a continuous-state nonhomogeneous Markov

chain with the transition probability densities {pn(x, y), n ≥ 1}. Let p(x, y) be another

transition probability density. Assume that p(x, y) is strongly ergodic with probability

density π(y). Let SB
n (ω) (B ∈ B(R)) be the times of visiting B of X0, X1, · · · , Xn−1,

that is

SB
n (ω) =

n−1∑
m=0

I{Xm∈B}. (3.21)

If (3.11) holds, then

lim
n→∞

SB
n (ω)

n
=

∫
B

π(y)dy a.e.. (3.22)

Proof. Letting fn(x, y) = IB(y) in Corollary 3.1, and ϕn = x2, obviously (3.10)

holds, and

gn(x) =

∫
R

IB(y)pn(x, y)dy =

∫
B

pn(x, y)dy.

Let

g(x) =

∫
B

p(x, y)dy,

by (3.11), we have (3.12) holds. Since p(x, y) is strongly ergodic with probability

density π(y), then π(y) is the stationary distribution determined by p, we have

∫
R

g(x)π(x)dx =

∫
R

(

∫
B

p(x, y)dy)π(x)dx

=

∫
B

(

∫
R

p(x, y)π(x)dx)dy =

∫
B

π(y)dy. (3.23)

By (3.23) and Corollary 3.1, we have

lim
n→∞

1

n

n∑
m=1

fm(Xm−1, Xm) = lim
n→∞

1

n

n∑
m=1

I{Xm∈B}

= lim
n→∞

1

n
SB
n (ω) =

∫
R

g(x)π(x)dx =

∫
B

π(y)dy a.e.. (3.24)

Thus (3.22) holds.
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