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1. INTRODUCTION

In this paper we consider the first-order linear difference equation with variable re-
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tarded arguments of the form

∆x(n) +

m
∑

i=1

pi(n)x(τi(n)) = 0, n ∈ N0, (E)

and the (dual) difference equation with variable advanced arguments of the form

∇x(n)−

m
∑

i=1

qi(n)x(σi(n)) = 0, n ∈ N, (E′)

where (pi(n))n≥0, (qi(n))n≥1, 1 ≤ i ≤ m, are sequences of nonnegative real numbers,

and (τi(n))n≥0, (σi(n))n≥1, 1 ≤ i ≤ m, are sequences of integers such that

τi(n) ≤ n− 1, ∀n ∈ N0 and lim
n→∞

τi(n) = ∞, 1 ≤ i ≤ m (1.1)

and

σi(n) ≥ n+ 1, ∀n ∈ N, 1 ≤ i ≤ m, (1.2)

respectively.

Here N0, N are the sets of nonnegative integers and positive integers, respectively,

∆ denotes the forward difference operator ∆x(n) = x(n+1)−x(n) and ∇ corresponds

to the backward difference operator ∇x(n) = x(n)− x(n− 1).

Set v = −min n≥0
1≤i≤m

τi(n) and note that v is a finite positive integer, if (1.1) holds.

By a solution of (E), we mean a sequence of real numbers (x(n))n≥−v which

satisfies (E), for all n ≥ 0. It is clear that, for each choice of real numbers c−v,

c−v+1, ..., c−1, c0, there exists a unique solution (x(n))n≥−v of (E) which satisfies

the initial conditions x(−v) = c−v, x(−v + 1) = c−v+1, ..., x(−1) = c−1, x(0) = c0.

When the initial data are given, we can obtain a unique solution to (E) by using the

method of steps.

By a solution of (E′), we mean a sequence of real numbers (x(n))n≥0 which satisfies

(E′) for all n ≥ 1.

A solution (x(n))n≥−v (or (x(n))n≥0) of (E) (or (E′)) is called oscillatory, if the

terms x(n) of the sequence are neither eventually positive nor eventually negative.

Otherwise, the solution is said to be nonoscillatory.

While deviating difference equations with one argument have been studied widely

and extensively by several researchers, the study of such equations, especially systems

involving several arguments, is scarce and rare, most likely due to the complexity of

the analysis of those equations and lack of an established theory. However, recent

studies in biological, physical and economics systems, involving multiple feedback

mechanisms have stimulated interest on equations (E) and (E′). Hence, in the last

few decades, the oscillatory behavior, stability and existence of positive solutions of

equations (E) and (E′) has been the subject of several studies. See, for example,
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[1−18] and the references cited therein. Most of these papers though, are concerned

with the special case where the arguments are nondecreasing, while merely a small

number of papers are dealing with the general case where the arguments are not

necessarily monotone, see, for example, [2−4].

The motivation for considering non-monotone arguments is not of purely mathe-

matical interest. Several phenomena require the use of non-monotone arguments since

there are always natural disturbances, e.g. noise in communication systems, that af-

fect all the parameters of an equation. Therefore, the monotone arguments, adequate

from a mathematical point of view, become non-monotone almost always. In view of

this, an interesting question arising in the case when the arguments τi(n) and σi(n)

are non-monotone, is whether we can establish oscillation criteria that substantially

improve on all the known results in the literature. This paper offers an affirmative

answer to this question.

The organization will be as follows. First, we present, separately for a delay

and advanced case, a short chronological review of the most interesting oscillation

conditions for the above equations. Next, we establish new sufficient conditions of

lim sup type, for the oscillation of all solutions of (E) and (E′). We base our technique

on the proper use of a recursive procedure leading to new inequalities which may

replace former ones. To verify the significance of the obtained results, we provide two

examples along with various comparisons among new and known criteria.

Throughout this paper, we are going to use the following notation:

k−1
∑

i=k

A(i) = 0 and
k−1
∏

i=k

A(i) = 1

α := lim inf
n→∞

m
∑

i=1

n−1
∑

j=τ(n)

pi(j) (1.3)

β := lim inf
n→∞

m
∑

i=1

σ(n)
∑

j=n+1

qi(j) (1.4)

D(ω) :=











0, if ω > 1/e

1−ω−
√
1−2ω−ω2

2 , if ω ∈ [0, 1/e]

MD := lim sup
n→∞

m
∑

i=1

n
∑

j=τ(n)

pi(j)

MA := lim sup
n→∞

m
∑

i=1

σ(n)
∑

j=n

qi(j)

where τ(n) = max1≤i≤m τi(n), σ(n) = min1≤i≤m σi(n) and τi(n), σi(n) are nonde-

creasing.
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1.1. RETARDED DIFFERENCE EQUATIONS

(CHRONOLOGICAL REVIEW)

In 2006, Berezansky and Braverman [1] and in 2014, Chatzarakis, Pinelas and Stavro-

ulakis [8] proved that if

lim sup
n→∞

m
∑

i=1

pi(n) > 0 and α >
1

e
, (1.5)

or

MD > 1, (1.6)

respectively, then all solutions of (E) are oscillatory.

Now let us come to the case considered in the present work, i.e., that the arguments

τi(n), 1 ≤ i ≤ m are not necessarily monotone.

Set

h(n) = max
1≤i≤m

hi(n) where hi(n) = max
0≤s≤n

τi(s), n ≥ 0 (1.7)

and

a1(n, k) :=
n−1
∏

i=k

[

1−
m
∑

ℓ=1

pℓ(i)

]

ar+1(n, k) :=

n−1
∏

i=k

[

1−

m
∑

ℓ=1

pℓ(i)a
−1
r (i, τℓ(i))

]

, r ∈ N.

Clearly, hi(n), h(n) are nondecreasing and τi(n) ≤ hi(n) ≤ h(n) ≤ n−1, for all n ≥ 0.

In 2015, Braverman, Chatzarakis and Stavroulakis [2] proved that if there exists

a subsequence θ(n), n ∈ N of positive integers such that

m
∑

i=1

pi(θ(n)) ≥ 1, ∀n ∈ N,

then all solutions of (E) are oscillatory.

Under the assumption that

m
∑

i=1

pi(n) < 1, ∀n ≥ 0, (1.8)

the same authors proved that, if for some r ∈ N

lim sup
n→∞

n
∑

j=h(n)

m
∑

i=1

pi(j)a
−1
r (h(n), τi(j)) > 1, (1.9)

then all solutions of (E) are oscillatory.
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In 2017, Chatzarakis, Horvat-Dmitrović and Pašić [3] proved that if, for some

ℓ ∈ N,

lim sup
n→∞

n
∑

j=h(n)

P(j)

h(n)−1
∏

i=τ(j)

1

1− Pℓ(i)
> 1, (1.10)

where

Pℓ(n) = P(n)



1 +

n−1
∑

i=τ(n)

P(i)

h(n)−1
∏

j=τ(i)

1

1− Pℓ−1(j)



 , (1.11)

with P(n) = P0(n) =
∑m

i=1 pi(n), then all solutions of (E) are oscillatory.

Lately, Chatzarakis and Jadlovská [4] proved that if, for some w ∈ N,

lim sup
n→∞

n
∑

ℓ=h(n)

P (ℓ)

h(n)−1
∏

i=τ(ℓ)

1

1− Pw(i)
> 1, (1.12)

where

Pw(n) = P (n)



1 +

n−1
∑

ℓ=τ(n)

P (ℓ) exp





n−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1− Pw−1(i)







 , (1.13)

with P (n) = P 0(n) =
∑m

i=1 pi(n), then all solutions of (E) are oscillatory.

1.2. ADVANCED DIFFERENCE EQUATIONS

(CHRONOLOGICAL REVIEW)

In 2014, Chatzarakis, Pinelas and Stavroulakis [8] proved that if

MA > 1, (1.14)

then all solutions of (E′) are oscillatory.

Assume that the arguments σi(n), 1 ≤ i ≤ m, are not necessarily monotone.

Set

ρ(n) = min
1≤i≤m

ρi(n), where ρi(n) = min
s≥n

σi(s), n ≥ 0 (1.15)

and

b1(n, k) :=

k
∏

i=n+1

[

1−

m
∑

ℓ=1

qℓ(i)

]

,

br+1(n, k) :=

k
∏

i=n+1

[

1−

m
∑

ℓ=1

qℓ(i)b
−1
r (i, σℓ(i))

]

, r ∈ N.

Clearly, ρi(n), ρ(n) are nondecreasing and σi(n) ≥ ρi(n) ≥ ρ(n) ≥ n+1 for all n ≥ 1.
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In 2015, Braverman, Chatzarakis and Stavroulakis [2] proved that if there exists

a subsequence θ(n), n ∈ N of positive integers such that

m
∑

i=1

qi(θ(n)) ≥ 1, ∀n ∈ N,

then all solutions of (E′) are oscillatory.

Under the assumption that

m
∑

i=1

qi(n) < 1, ∀n ≥ 1, (1.16)

the same authors proved that, if for some r ∈ N,

lim sup
n→∞

ρ(n)
∑

j=n

m
∑

i=1

qi(j)b
−1
r (ρ(n), σi(j)) > 1, (1.17)

then all solutions of (E′) are oscillatory.

Recently, Chatzarakis, Horvat-Dmitrović and Pašić [3] proved that if for some

ℓ ∈ N

lim sup
n→∞

ρ(n)
∑

j=n

Q(j)

σ(j)
∏

i=ρ(n)+1

1

1−Qℓ(i)
> 1, (1.18)

where

Qℓ(n) = Q(n)



1 +

ρ(n)
∑

i=n+1

Q(i)

σ(i)
∏

j=ρ(n)+1

1

1−Qℓ−1(j)



 , (1.19)

with Q(n) = Q0(n) =
∑m

i=1 qi(n), then all solutions of (E′) are oscillatory.

Lately, Chatzarakis and Jadlovská [4] proved that, if for some w ∈ N

lim sup
n→∞

ρ(n)
∑

ℓ=n

Q(ℓ)

σ(ℓ)
∏

i=ρ(n)+1

1

1−Qw(i)
> 1, (1.20)

where

Qw(n) = Q(n)



1 +

σ(n)
∑

ℓ=n+1

Q(ℓ) exp





σ(ℓ)
∑

j=n+1

Q(j)

σ(j)
∏

i=j+1

1

1−Qw−1(i)







 , (1.21)

with Q(n) =
∑m

i=1 qi(n) = Q0(n), then all solutions of (E′) are oscillatory.
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2. BASIC LEMMAS

2.1. RETARDED DIFFERENCE EQUATIONS

The proofs of our main results are essentially based on the following lemmas.

Lemma 1. Assume that (1.1) holds and α is defined by (1.3) with α > 0. Then we

have

lim inf
n→∞

m
∑

i=1

n−1
∑

j=h(n)

pi(j) = lim inf
n→∞

m
∑

i=1

n−1
∑

j=τ(n)

pi(j) = α, (2.1)

where h(n) is defined by (1.7) and τ(n) = max1≤i≤m τi(n).

Proof. Clearly, the sequence of integers h(n) is nondecreasing and τ(n) ≤ h(n) ≤

n− 1, for all n ≥ 0. So

m
∑

i=1

n−1
∑

j=h(n)

pi(j) ≤

m
∑

i=1

n−1
∑

j=τ(n)

pi(j).

Hence

lim inf
n→∞

m
∑

i=1

n−1
∑

j=h(n)

pi(j) ≤ lim inf
n→∞

m
∑

i=1

n−1
∑

j=τ(n)

pi(j).

Assuming that (2.1) does not hold, there exists α′ > 0 and a subsequence (θ(n)) such

that θ(n) → ∞ as n → ∞ and

lim
n→∞

m
∑

i=1

θ(n)−1
∑

j=h(θ(n))

pi(j) ≤ α′ < α.

By definition, h(θ(n)) = max1≤i≤m hi(θ(n)), where hi(θ(n)) = max0≤s≤θ(n) τi(s). It

is obvious that there is ℓ ∈ {1, . . . ,m} such that

h(θ(n)) = hℓ(θ(n)) and hj(θ(n)) ≤ hℓ(θ(n)), j ∈ {1, . . . ,m}.

But hℓ(θ(n)) = max0≤s≤θ(n) τℓ(s), hence there exists θ′(n) ≤ θ(n), θ′(n) ∈ N0 such

that hℓ(θ(n)) = τℓ(θ
′(n)). Due to τ(θ′(n)) = max1≤i≤m τi(θ

′(n)), we have

τ(θ′(n)) ≥ τℓ(θ
′(n)) = hℓ(θ(n)) = h(θ(n))

and consequently

m
∑

i=1

θ(n)−1
∑

j=h(θ(n))

pi(j) ≥

m
∑

i=1

θ(n)−1
∑

j=τ(θ′(n))

pi(j) ≥

m
∑

i=1

θ′(n)−1
∑

j=τ(θ′(n))

pi(j).
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It follows that
(

∑m
i=1

∑θ′(n)−1
j=τ(θ′(n)) pi(j)

)∞

n=1
is a bounded sequence, having a conver-

gent subsequence, say

m
∑

i=1

θ′(nk)−1
∑

j=τ(θ′(nk))

pi(j) → c ≤ α′, as k → ∞

which implies that

lim inf
n→∞

m
∑

i=1

n−1
∑

j=τ(n)

pi(j) ≤ α′ < α.

This contradicts (1.3).

The proof of the lemma is complete.

Lemma 2. Assume that (1.1) holds, α is defined by (1.3) with 0 < α ≤ 1/e, and

x(n) is an eventually positive solution of (E). Then we have

lim inf
n→∞

x(h(n))

x(n)
≥ λ0, (2.2)

where h(n) is defined by (1.7) and λ0 is the smaller root of the transcendental equation

λ = eαλ.

Proof. Assume that (x(n))n≥−w is an eventually positive solution of (E). Then

there exists n1 ≥ −w such that x(n), x(τi(n)) > 0, for all n ≥ n1. In view of this,

Eq.(E) becomes

∆x(n) = −

m
∑

i=1

pi(n)x(τi(n)) ≤ 0, ∀n ≥ n1,

which means that (x(n)) is an eventually nonincreasing sequence of positive numbers.

By the definition of α and using Lemma 1, it is clear that there exists ε ∈ (0, α)

such that
m
∑

i=1

n−1
∑

j=h(n)

pi(j) ≥ α− ε for n ≥ n (ε) ≥ n1.

We will show that

lim inf
n→∞

x(h(n))

x(n)
≥ λ0 (ε) , (2.3)

where λ0 (ε) is the smaller root of the equation

e(α−ε)λ = λ.

Assume, for the sake of contradiction, that (2.3) is not valid. Then, there exists ε0 > 0

such that
e(α−ε)γ

γ
≥ 1 + ε0, (2.4)
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where

γ = lim inf
n→∞

x(h(n))

x(n)
< λ0 (ε) . (2.5)

On the other hand, for any δ > 0, there exists n (δ) such that

x(h(n))

x(n)
≥ γ − δ for n ≥ n (δ) . (2.6)

Dividing (E) by x(n), we obtain

∆x(n)

x(n)
= −

m
∑

i=1

pi(n)
x(τi(n))

x(n)

≤ −
x(h(n))

x(n)

m
∑

i=1

pi(n) ≤ − (γ − δ)
m
∑

i=1

pi(n),

or
∆x(n)

x(n)
≤ − (γ − δ)

m
∑

i=1

pi(n).

Summing up the last inequality from h(n) to n− 1, we take

n−1
∑

j=h(n)

∆x(j)

x(j)
≤ − (γ − δ)

n−1
∑

j=h(n)

m
∑

i=1

pi(j) ≤ − (γ − δ) (α− ε) . (2.7)

But, since ex ≥ x+ 1, ∀x > 0, we have

n−1
∑

j=h(n)

∆x(j)

x(j)
=

n−1
∑

j=h(n)

(

x(j + 1)

x(j)
− 1

)

=

n−1
∑

j=h(n)

exp

(

ln
x(j + 1)

x(j)

)

− (n− h(n))

≥
n−1
∑

j=h(n)

(

1 + ln
x(j + 1)

x(j)

)

− (n− h(n))

= (n− h(n)) +

n−1
∑

j=h(n)

ln
x(j + 1)

x(j)
− (n− h(n))

=

n−1
∑

j=h(n)

ln
x(j + 1)

x(j)
= ln

x(n)

x(h(n))
,

or
n−1
∑

j=h(n)

∆x(j)

x(j)
≥ ln

x(n)

x(h(n))
. (2.8)

Combining (2.7) and (2.8), we have

ln
x(n)

x(h(n))
≤ − (γ − δ) (α− ε) ,
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i.e.,
x(h(n))

x(n)
≥ e(γ−δ)(α−ε) for large n.

Therefore,

γ = lim inf
n→∞

x(h(n))

x(n)
≥ e(γ−δ)(α−ε),

which, as δ → 0, implies

γ ≥ eγ(α−ε).

Combining the last inequality with (2.4), we obtain

eγ(α−ε)

1 + ε0
≥ eγ(α−ε)

which is not valid, since ε0 > 0. Therefore (2.3) is true. Since λ0 (ε) → λ0 as ε → 0,

(2.3) implies (2.2).

The proof of the lemma is complete.

The next lemma provides a lower estimate for the ratio x(n+1)/x(h(n)), in terms

of the smaller root of d2 − (1−α)d+α2/2 = 0. The proof of this lemma is similar to

the proof of Lemma 2.1 in [7].

Lemma 3. Assume that (1.1) holds, h(n) is defined by (1.7), 0 < α ≤ 1/e and x(n)

is an eventually positive solution of (E). Then

lim inf
n→∞

x(n+ 1)

x(h(n))
≥ D(α). (2.9)

2.2. ADVANCED DIFFERENCE EQUATIONS

Similar lemmas for the (dual) advanced difference equation (E′), easily, can be de-

rived. The proofs of these lemmas are omitted, since they are quite similar to those

of the corresponding lemmas, for the retarded equation.

Lemma 4. Assume that (1.2) holds and β is defined by (1.4) with β > 0. Then we

have

lim inf
n→∞

m
∑

i=1

ρ(n)
∑

j=n+1

qi(j) = lim inf
n→∞

m
∑

i=1

σ(n)
∑

j=n+1

qi(j) = β, (2.10)

where ρ(n) is defined by (1.15) and σ(n) = min1≤i≤m σi(n).

Lemma 5. Assume that (1.2) holds, β is defined by (1.4) with 0 < β ≤ 1/e, and

x(n) is an eventually positive solution of (E′). Then we have

lim inf
n→∞

x(ρ(n))

x(n)
≥ λ0 (2.11)
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where ρ(n) is defined by (1.15) and λ0 is the smaller root of the transcendental equa-

tion λ = eβλ.

Lemma 6. Assume that (1.2) holds, ρ(n) is defined by (1.15), 0 < β ≤ 1/e and

x(n) is an eventually positive solution of (E′). Then

lim inf
n→∞

x(n− 1)

x(ρ(n))
≥ D(β). (2.12)

3. MAIN RESULTS

3.1. RETARDED DIFFERENCE EQUATIONS

Based on Lemmas 1, 2 and 3, we further study (E) and derive new sufficient oscillation

conditions, involving lim sup, which improve on all previously known results in the

literature.

Theorem 7. Assume that (1.1), (1.8) hold, and h(n) is defined by (1.7). If for

some w ∈ N

lim sup
n→∞

n
∑

ℓ=h(n)

P (ℓ) exp





h(n)−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i)



 > 1, (3.1)

where

Rw(n) = P (n)



1 +

n−1
∑

ℓ=τ(n)

P (ℓ) exp





n−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw−1(i)







 (3.2)

with R0(n) = λ0P (n), P (n) =
∑m

i=1 pi(n) and λ0 be the smaller root of the transcen-

dental equation λ = eαλ, then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solu-

tion (x(n))n≥−v of (E). Since (−x(n))n≥−v is also a solution of (E), we can confine

our discussion only to the case where x(n) > 0, for all large n. Let n1 ≥ −v be an

integer such that x(n) > 0, for all n ≥ n1. Then, there exists n2 ≥ n1 such that

x (τi(n)) > 0, for all n ≥ n2. In view of this, Eq.(E) becomes

∆x(n) = −

m
∑

i=1

pi(n)x (τi(n)) ≤ 0, for all n ≥ n2,

which means that (x(n)) is an eventually nonincreasing sequence of positive numbers.
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Taking into account the fact that τi(n) ≤ hi(n) ≤ h(n), (E) implies that

∆x(n) +

(

m
∑

i=1

pi(n)

)

x (h(n)) ≤ 0,

or

∆x(n) + P (n)x (h(n)) ≤ 0, n ≥ n2. (3.3)

On the other hand, by (2.2), for each ǫ > 0, there exists a n(ǫ) such that

x(h(n))

x(n)
> λ0 − ǫ, for all n ≥ n(ǫ) ≥ n2. (3.4)

Combining inequalities (3.3) and (3.4), we obtain

∆x(n) + (λ0 − ǫ)P (n)x(n) < 0, n ≥ n(ǫ),

or

∆x(n) +R0(n, ǫ)x(n) < 0, n ≥ n(ǫ), (3.5)

where

R0(n, ǫ) = (λ0 − ǫ)P (n).

Applying the discrete Grönwall inequality in (3.5), we have

x(k) > x(n)
n−1
∏

i=k

1

1−R0(i, ǫ)
, for all n ≥ k ≥ n(ǫ). (3.6)

Now, dividing (E) by x(n) and summing up from k to n− 1, we get

n−1
∑

j=k

∆x(j)

x(j)
= −

n−1
∑

j=k

m
∑

i=1

pi(j)
x(τi(j))

x(j)

or
n−1
∑

j=k

∆x(j)

x(j)
≤ −

n−1
∑

j=k

(

m
∑

i=1

pi(j)

)

x(τ(j))

x(j)

i.e.,
n−1
∑

j=k

∆x(j)

x(j)
≤ −

n−1
∑

j=k

P (j)
x(τ(j))

x(j)
. (3.7)

Also, since ex ≥ x+ 1, x > 0, we have

n−1
∑

j=k

∆x(j)

x(j)
=

n−1
∑

j=k

(

x(j + 1)

x(j)
− 1

)

=
n−1
∑

j=k

[

exp

(

ln
x(j + 1)

x(j)

)

− 1

]
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≥
n−1
∑

j=k

[

ln
x(j + 1)

x(j)
+ 1− 1

]

=

n−1
∑

j=k

ln
x(j + 1)

x(j)
= ln

x(n)

x(k)
,

or
n−1
∑

j=k

∆x(j)

x(j)
≥ ln

x(n)

x(k)
. (3.8)

Combining inequalities (3.7) and (3.8), we obtain

−

n−1
∑

j=k

P (j)
x(τ(j))

x(j)
≥ ln

x(n)

x(k)
,

or

ln
x(k)

x(n)
≥

n−1
∑

j=k

P (j)
x(τ(j))

x(j)
. (3.9)

Since τ(j) < j, (3.6) implies

x(τ(j)) > x(j)

j−1
∏

i=τ(j)

1

1−R0(i, ǫ)
. (3.10)

In view of (3.10), (3.9) gives

ln
x(k)

x(n)
>

n−1
∑

j=k

P (j)

j−1
∏

i=τ(j)

1

1−R0(i, ǫ)
,

or

x(k) > x(n) exp





n−1
∑

j=k

P (j)

j−1
∏

i=τ(j)

1

1−R0(i, ǫ)



 . (3.11)

Summing up (E) from τ(n) to n− 1, we have

x(n) − x(τ(n)) +

n−1
∑

ℓ=τ(n)

m
∑

i=1

pi (ℓ)x(τi(ℓ)) = 0,

or

x(n)− x(τ(n)) +

n−1
∑

ℓ=τ(n)

(

m
∑

i=1

pi (ℓ)

)

x(τ(ℓ)) ≤ 0,

i.e.,

x(n) − x(τ(n)) +

n−1
∑

ℓ=τ(n)

P (ℓ)x(τ(ℓ)) ≤ 0. (3.12)
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Since τ(ℓ) ≤ h(ℓ) ≤ h(n) < n, (3.11) implies that

x(τ(ℓ)) > x(n) exp





n−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−R0(i, ǫ)



 . (3.13)

Combining (3.12) and (3.13), we have

x(n)− x(τ(n)) + x(n)

n−1
∑

ℓ=τ(n)

P (ℓ) exp





n−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1− R0(i, ǫ)



 < 0.

Multiplying the last inequality by P (n), we take

P (n)x(n) − P (n)x(τ(n))

+ P (n)x(n)

n−1
∑

ℓ=τ(n)

P (ℓ) exp





n−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−R0(i, ǫ)



 < 0. (3.14)

Furthermore,

∆x(n) = −
m
∑

i=1

pi(n)x (τi(n)) ≤ −x (τ(n))
m
∑

i=1

pi(n),

i.e.,

∆x(n) ≤ −P (n)x (τ(n)) .

In view of this, (3.14) gives

∆x(n)+P (n)x(n)+P (n)x(n)

n−1
∑

ℓ=τ(n)

P (ℓ) exp





n−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−R0(i, ǫ)



 < 0,

or

∆x(n) + P (n)



1 +

n−1
∑

ℓ=τ(n)

P (ℓ) exp





n−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−R0(i, ǫ)







x(n) < 0.

Therefore

∆x(n) +R1(n, ǫ)x(n) < 0, (3.15)

where

R1(n, ǫ) = P (n)



1 +
n−1
∑

ℓ=τ(n)

P (ℓ) exp





n−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−R0(i, ǫ)







 .

Repeating the above argument, where (3.15) is used instead of (3.5), leads to a new

estimate

∆x(n) +R2(n, ǫ)x(n) < 0,
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where

R2(n, ǫ) = P (n)



1 +

n−1
∑

ℓ=τ(n)

P (ℓ) exp





n−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−R1(i, ǫ)







 .

By induction, we get

∆x(n) +Rw(n, ǫ)x(n) < 0, (w ∈ N) (3.16)

where

Rw(n, ǫ) = P (n)



1 +

n−1
∑

ℓ=τ(n)

P (ℓ) exp





n−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw−1(i, ǫ)









and

x(τ(ℓ)) > x(h(n)) exp





h(n)−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 . (3.17)

Summing up (E) from h(n) to n, we have

x(n+ 1)− x(h(n)) +

n
∑

ℓ=h(n)

m
∑

i=1

pi (ℓ)x(τi(ℓ)) = 0,

or

x(n+ 1)− x(h(n)) +

n
∑

ℓ=h(n)

(

m
∑

i=1

pi (ℓ)

)

x(τ(ℓ)) ≤ 0,

i.e.,

x(n+ 1)− x(h(n)) +

n
∑

ℓ=h(n)

P (ℓ)x (τ(ℓ)) ≤ 0.

Using (3.17), the last inequality gives

x(n+ 1)− x(h(n))

+ x(h(n))

n
∑

ℓ=h(n)

P (ℓ) exp





h(n)−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 < 0. (3.18)

The inequality is still valid, if we omit the term x(n+ 1) > 0, in the left-hand side:

−x(h(n)) + x(h(n))

n
∑

ℓ=h(n)

P (ℓ) exp





h(n)−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 < 0.

This implies

x(h(n))





n
∑

ℓ=h(n)

P (ℓ) exp





h(n)−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



− 1



 < 0,
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i.e.,

lim sup
n→∞

n
∑

ℓ=h(n)

P (ℓ) exp





h(n)−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 ≤ 1.

Since ǫ may be taken arbitrarily small, this inequality contradicts (3.1).

The proof of the theorem is complete.

Theorem 8. Assume that (1.1), (1.8) hold, h(n) is defined by (1.7) and α by (1.3),

with 0 < α ≤ 1/e. If for some w ∈ N

lim sup
n→∞

n
∑

ℓ=h(n)

P (ℓ) exp





h(n)−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i)



 > 1−D (α) , (3.19)

where Rw(n) is defined by (3.2), then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that (x(n))n≥−v is a nonoscillatory

solution of (E). Since (−x(n))n≥−v is also a solution of (E), we can confine our

discussion only to the case where x(n) > 0, for all large n. Then, as in the proof of

Theorem 7, for sufficiently large n, (3.18) is satisfied, i.e.,

x(n+1)−x(h(n))+x(h(n))

n
∑

ℓ=h(n)

P (ℓ) exp





h(n)−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 < 0.

That is,

n
∑

ℓ=h(n)

P (ℓ) exp





h(n)−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 < 1−
x(n+ 1)

x(h(n))
,

which gives

lim sup
n→∞

n
∑

ℓ=h(n)

P (ℓ) exp





h(n)−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 ≤ 1− lim inf
n→∞

x(n+ 1)

x(h(n))
.

Since 0 < α ≤ 1/e, by Lemma 3, inequality (2.9) holds. So the last inequality leads

to

lim sup
n→∞

n
∑

ℓ=h(n)

P (ℓ) exp





h(n)−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 ≤ 1−D (α) .

Since ǫ may be taken arbitrarily small, this inequality contradicts (3.19).

The proof of the theorem is complete.

Remark 9. It is clear that the left-hand sides of both conditions (3.1) and (3.19)

are identical, also the right-hand side of condition (3.19) reduces to (3.1) in case that
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α = 0. So it seems that Theorem 8 is the same as Theorem 7 when α = 0. However,

one may notice that condition 0 < α ≤ 1/e is required in Theorem 8 but not in

Theorem 7.

Theorem 10. Assume that (1.1), (1.8) hold, h(n) is defined by (1.7) and α by

(1.3), with 0 < α ≤ 1/e. If for some w ∈ N

lim sup
n→∞

n
∑

ℓ=h(n)

P (ℓ) exp





n
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i)



 >
1

D (α)
− 1, (3.20)

where Rw(n) is defined by (3.2), then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that (x(n))n≥−v is an eventually pos-

itive solution of (E). Then, as in the proof of Theorem 7, (3.17) is satisfied, i.e.,

x(τ(ℓ)) > x(h(n)) exp





h(n)−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 .

Therefore, for a sufficiently large n, we have

x(τ(ℓ)) > x(n+ 1) exp





n
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 . (3.21)

Summing up (E) from h(n) to n, we have

x(n+ 1)− x(h(n)) +

n
∑

ℓ=h(n)

m
∑

i=1

pi (ℓ)x(τi(ℓ)) = 0,

or

x(n+ 1)− x(h(n)) +

n
∑

ℓ=h(n)

(

m
∑

i=1

pi (ℓ)

)

x(τ(ℓ)) ≤ 0,

i.e.,

x(n+ 1)− x(h(n)) +

n
∑

ℓ=h(n)

P (ℓ)x (τ(ℓ)) ≤ 0.

In view of (3.21), the last inequality gives

x(n+ 1)− x(h(n)) +

n
∑

ℓ=h(n)

P (ℓ)x(n+ 1) exp





n
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 < 0,

or

x(n+1)−x(h(n))+x(h(n))

n
∑

ℓ=h(n)

P (ℓ)
x(n+ 1)

x(h(n))
exp





n
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 < 0,
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or

x(n+1)+x(h(n))





x(n+ 1)

x(h(n))

n
∑

ℓ=h(n)

P (ℓ) exp





n
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



− 1



 < 0.

Thus, for all sufficiently large n, it holds

n
∑

ℓ=h(n)

P (ℓ) exp





n
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 <
x(h(n))

x(n+ 1)
− 1.

Letting n → ∞, we take

lim sup
n→∞

n
∑

ℓ=h(n)

P (ℓ) exp





n
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 ≤ lim sup
n→∞

x(h(n))

x(n+ 1)
− 1.

Since 0 < α ≤ 1/e, by Lemma 3, inequality (2.9) holds. So the last inequality leads

to

lim sup
n→∞

n
∑

ℓ=h(n)

P (ℓ) exp





n
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i, ǫ)



 ≤
1

D (α)
− 1.

Since ǫ may be taken arbitrarily small, this inequality contradicts (3.20).

The proof of the theorem is complete.

Remark 11. If Rw(n, ǫ) ≥ 1, then (3.16) guarantees that all solutions of (E) are

oscillatory. In fact, (3.16) gives

∆x(n) + x(n) ≤ 0

which means that x(n + 1) ≤ 0. This contradics x(n) > 0, for all n ≥ n2. Thus,

in Theorems 7, 8 and 10 we consider only the case Rw(n) < 1. Another conclusion,

that can be drawn from the above, is that if at some point through the iterative

process, we get a value of w, for which Rw(n) ≥ 1, then the process terminates,

since in any case, all solutions of (E) will be oscillatory. The value of w, that is the

number of iterations, obviously, depends on the coefficients pi(n) and the form of the

non-monotone arguments τi(n).

3.2. ADVANCED DIFFERENCE EQUATIONS

Based on Lemmas 4, 5 and 6, similar oscillation theorems for the (dual) advanced

difference equation (E′) can be derived easily. The proofs of these theorems are

omitted, since they are quite similar to the proofs for a retarded equation.
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Theorem 12. Assume that (1.2), (1.16) hold, and ρ(n) is defined by (1.15). If for

some w ∈ N

lim sup
n→∞

ρ(n)
∑

ℓ=n

Q(ℓ) exp





σ(ℓ)
∑

j=ρ(n)+1

Q(j)

σ(j)
∏

i=j+1

1

1− Φw(i)



 > 1, (3.22)

where

Φw(n) = Q(n)



1 +

σ(n)
∑

ℓ=n+1

Q(ℓ) exp





σ(ℓ)
∑

j=n+1

Q(j)

σ(j)
∏

i=j+1

1

1− Φw−1(i)







 (3.23)

with Φ0(n) = λ0Q(n), Q(n) =
∑m

i=1 qi(n) and λ0 be the smaller root of the transcen-

dental equation λ = eβλ, then all solutions of (E′) are oscillatory.

Theorem 13. Assume that (1.2), (1.16) hold, ρ(n) is defined by (1.15) and β by

(1.4), with 0 < β ≤ 1/e. If for some w ∈ N

lim sup
n→∞

ρ(n)
∑

ℓ=n

Q(ℓ) exp





σ(ℓ)
∑

j=ρ(n)+1

Q(j)

σ(j)
∏

i=j+1

1

1− Φw(i)



 > 1−D (β) , (3.24)

where Φw(n) is defined by (3.23), then all solutions of (E′) are oscillatory.

Theorem 14. Assume that (1.2) and (1.16) hold, ρ(n) is defined by (1.15) and β

by (1.4), with 0 < β ≤ 1/e. If for some w ∈ N

lim sup
n→∞

ρ(n)
∑

ℓ=n

Q(ℓ) exp





σ(ℓ)
∑

j=n

Q(j)

σ(j)
∏

i=j+1

1

1− Φw(i)



 >
1

D (β)
− 1, (3.25)

where Φw(n) is defined by (3.23), then all solutions of (E′) are oscillatory.

Remark 15. Similar comments to those in Remark 11, can be made for Theorems

12, 13 and 14, concerning equation (E′).

3.3. DIFFERENCE INEQUALITIES

Slightly modifying the proofs of Theorems 7, 8, 10 and 12−14, we can establish the

following result on deviating difference inequalities.

Theorem 16. Assume that all conditions of Theorem 7 [12] or 8 [13] or 10 [14]

hold. Then

(i) the retarded [advanced] difference inequality

∆x(n) +

m
∑

i=1

pi(n)x(τi(n)) ≤ 0, n ∈ N0

[

∇x(n) −

m
∑

i=1

qi(n)x(σi(n)) ≥ 0, n ∈ N

]

,
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has no eventually positive solutions;

(ii) the retarded [advanced] difference inequality

∆x(n) +

m
∑

i=1

pi(n)x(τi(n)) ≥ 0, n ∈ N0

[

∇x(n) −

m
∑

i=1

qi(n)x(σi(n)) ≤ 0, n ∈ N

]

,

has no eventually negative solutions.

4. EXAMPLES AND COMMENTS

The examples in this section illustrate how the conditions established in this paper

imply oscillations, where the previously known conditions fail.

Example 17. Consider the retarded difference equation

∆x(n) +
29

500
x (τ1(n)) +

29

1000
x (τ2(n)) +

37

2500
x (τ3(n)) = 0, n ∈ N0, (4.1)

with (see Fig. 1, (a))

τ1(n) =































n− 4, if n = 5µ

n− 1, if n = 5µ+ 1

n− 5, if n = 5µ+ 2

n− 3, if n = 5µ+ 3

n− 6, if n = 5µ+ 4

and
τ2(n) = τ1(n)− 1

τ3(n) = τ1(n)− 2

where µ ∈ N0 and N0 is the set of nonnegative integers.

Figure 1: The graphs of τ1(n) and h1(n)
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By (1.7), we see (Fig. 1, (b)) that

h1(n) =































n− 4, if n = 5µ

n− 1, if n = 5µ+ 1

n− 2, if n = 5µ+ 2

n− 3, if n = 5µ+ 3

n− 4, if n = 5µ+ 4

and
h2(n) = h1(n)− 1

h3(n) = h1(n)− 2
.

Consequently

h(n) = max
1≤i≤3

{hi(n)} = h1(n) and τ(n) = max
1≤i≤3

τi(n) = τ1(n).

It is easy to see that

α = lim inf
n→∞

3
∑

i=1

n−1
∑

j=τ(n)

pi(j) = lim inf
µ→∞

3
∑

i=1

5µ
∑

j=5µ

pi(j)

=
29

500
+

29

1000
+

37

2500
=

509

5000
= 0.1018

and the smaller root of equation eαλ = λ is λ0 ≃ 1.12087.

Also,
∑3

i=1 pi(n) = 0.1018 < 1, i.e., (1.8) is satisfied for all n ≥ 0.

Observe that the function Fℓ : N0 → R+ defined as

Fw(n) =
n
∑

ℓ=h(n)

P (ℓ) exp





h(n)−1
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−Rw(i)





attains its maximum at n = 5µ, µ ∈ N0, for every w ∈ N. Specifically,

F1(5µ) =

5µ
∑

ℓ=5µ−4

P (ℓ) exp





5µ−5
∑

j=τ(ℓ)

P (j)

j−1
∏

i=τ(j)

1

1−R1(i)





with

R1(i) = P (i)



1 +

i−1
∑

u=τ(i)

P (u) exp





i−1
∑

v=τ(u)

P (v)

v−1
∏

ξ=τ(v)

1

1− λ0P (ξ)







 .

By using an algorithm on MATLAB software, we obtain

F1(5µ) ≃ 1.0066

and therefore

lim sup
n→∞

F1(n) ≃ 1.0066 > 1.

That is, condition (3.1) of Theorem 7 is satisfied, for w = 1. Therefore all solutions

of (4.1) are oscillatory.
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Observe, however, that

α = 0.1018 <
1

e
,

MD = lim sup
µ→∞

3
∑

i=1

5µ
∑

j=5µ−4

pi(j)

= 5 ·

(

29

500
+

29

1000
+

37

2500

)

= 0.509 < 1,

5µ
∑

j=5µ−4

3
∑

i=1

pi(j)a
−1
1 (5µ− 4, τi(j))

=
29

500
a−1
1 (5µ− 4, 5µ− 5) +

29

1000
a−1
1 (5µ− 4, 5µ− 6) +

37

2500
a−1
1 (5µ− 4, 5µ− 7)

+
29

500
a−1
1 (5µ− 4, 5µ− 8) +

29

1000
a−1
1 (5µ− 4, 5µ− 9) +

37

2500
a−1
1 (5µ− 4, 5µ− 10)

+
29

500
a−1
1 (5µ− 4, 5µ− 5) +

29

1000
a−1
1 (5µ− 4, 5µ− 6) +

37

2500
a−1
1 (5µ− 4, 5µ− 7)

+
29

500
a−1
1 (5µ− 4, 5µ− 7) +

29

1000
a−1
1 (5µ− 4, 5µ− 8) +

37

2500
a−1
1 (5µ− 4, 5µ− 9)

+
29

500
a−1
1 (5µ− 4, 5µ− 4) +

29

1000
a−1
1 (5µ− 4, 5µ− 5) +

37

2500
a−1
1 (5µ− 4, 5µ− 6)

=
29

500

1

1− 0.1018
+

29

1000

1

(1− 0.1018)2
+

37

2500

1

(1− 0.1018)3

+
29

500

1

(1− 0.1018)
4 +

29

1000

1

(1− 0.1018)
5 +

37

2500

1

(1− 0.1018)
6

+
29

500

1

1− 0.1018
+

29

1000

1

(1− 0.1018)
2 +

37

2500

1

(1− 0.1018)
3

+
29

500

1

(1− 0.1018)3
+

29

1000

1

(1− 0.1018)4
+

37

2500

1

(1− 0.1018)5

+
29

500
· 1 +

29

1000

1

1− 0.1018
+

37

2500

1

(1− 0.1018)
2 ≃ 0.6973346.

Thus,

lim sup
n→∞

n
∑

j=h(n)

3
∑

i=1

pi(j)a
−1
1 (h(n), τi(j)) ≃ 0.6973346 < 1.

Finally, by a MATLAB program, we obtain

lim sup
n→∞

n
∑

j=h(n)

P(j)

h(n)−1
∏

i=τ(j)

1

1− P1(i)
= lim sup

µ→∞

5µ
∑

j=5µ−4

P(j)

5µ−5
∏

i=τ(j)

1

1− P1(i)

≃ 0.7321 < 1
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and

lim sup
n→∞

n
∑

ℓ=h(n)

P (ℓ)

h(n)−1
∏

i=τ(ℓ)

1

1− P 1(i)
= lim sup

µ→∞

5µ
∑

j=5µ−4

P (ℓ)

5µ−5
∏

i=τ(ℓ)

1

1− P 1(i)

≃ 0.8915 < 1.

That is, none of conditions (1.5), (1.6), (1.9) (for r = 1), (1.10) (for ℓ = 1) and (1.12)

(for w = 1) is satisfied.

Comments. It is worth noting that condition (3.1) achieves a significant im-

provement, approximately 97.76%, over the corresponding condition (1.6). We get

that estimate by comparing the values on the left-side of these conditions. The im-

provement over the conditions (1.9), (1.10) and (1.12) is very satisfactory, around

44.35%, 37.49% and 12.91%, respectively.

Finally, observe that conditions (1.9), (1.10) and (1.12) do not lead to oscillation,

from the first iteration. On the contrary, condition (3.1) is satisfied from the first

iteration. This means that our condition is better and much faster than (1.9), (1.10)

and (1.12).

Example 18. Consider the advanced difference equation

∇x(n)−
79

1000
x (σ1(n))−

39

1000
x (σ2(n))−

19

1000
x (σ2(n)) = 0, n ∈ N, (4.2)

with (see Fig. 2, (a))

σ1(n) =















































n+ 5, if n = 7µ+ 1

n+ 1, if n = 7µ+ 2

n+ 2, if n = 7µ+ 3

n+ 1, if n = 7µ+ 4

n+ 4, if n = 7µ+ 5

n+ 2, if n = 7µ+ 6

n+ 1, if n = 7µ+ 7

and
σ2(n) = σ1(n) + 1

σ3(n) = σ1(n) + 2

where µ ∈ N0 and N0 is the set of non-negative integers. By (1.15), we see (Fig. 2,

(b)) that

ρ1(n) =















































n+ 2, if n = 7µ+ 1

n+ 1, if n = 7µ+ 2

n+ 2, if n = 7µ+ 3

n+ 1, if n = 7µ+ 4

n+ 3, if n = 7µ+ 5

n+ 2, if n = 7µ+ 6

n+ 1, if n = 7µ+ 7

and
ρ2(n) = ρ1(n) + 1

ρ3(n) = ρ1(n) + 2
.
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Figure 2: The graphs of σ1(n) and ρ1(n)

Consequently,

ρ(n) = min
1≤i≤3

{ρi(n)} = ρ1(n) and σ(n) = min
1≤i≤3

σi(n) = σ1(n).

It is easy to see that

β = lim inf
n→∞

3
∑

i=1

σ(n)
∑

j=n+1

qi(j) = lim inf
µ→∞

3
∑

i=1

7µ+3
∑

j=7µ+3

qi(j)

=
79

1000
+

39

1000
+

19

1000
= 0.137

and the smaller root of equation eβλ = λ is λ0 ≃ 1.17459.

Also,
∑3

i=1 qi(n) = 0.137 < 1, i.e., (1.16) is satisfied for all n ≥ 1.

We observe that the function F : N0 → R+ defined as

Fw(n) =

ρ(n)
∑

ℓ=n

Q(ℓ) exp





σ(ℓ)
∑

j=ρ(n)+1

Q(j)

σ(j)
∏

i=j+1

1

1− Φw(i)





with Q(n) =
∑3

i=1 qi(n) = 0.137, attains its maximum at n = 7µ + 5, µ ∈ N0, for

every w ∈ N. Specifically,

F1(7µ+ 5) =

7µ+8
∑

ℓ=7µ+5

Q(ℓ) exp





σ(ℓ)
∑

j=7µ+5

Q(j)

σ(j)
∏

i=j+1

1

1− Φ1(i)





with

Φw(i) = Q(i)



1 +

σ(i)
∑

u=i+1

Q(u) exp





σ(u)
∑

v=i+1

Q(v)

σ(v)
∏

ξ=v+1

1

1− λ0Q(ξ)







 .
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By using an algorithm on MATLAB software, we obtain

F1(7µ+ 5) ≃ 1.0230.

Thus

lim sup
n→∞

F1(n) ≃ 1.0230 > 1.

That is, condition (3.22) of Theorem 12 is satisfied for w = 1. Therefore, all solutions

of (4.2) are oscillatory.

Observe, however, that

MA = lim sup
n→∞

3
∑

i=1

7µ+8
∑

j=7µ+5

qi(j)

= 4 ·

(

79

1000
+

39

1000
+

19

1000

)

≃ 0.548 < 1.

Also,

7µ+8
∑

j=7µ+5

3
∑

i=1

qi(j)b
−1
1 (7µ+ 8, σi(j))

=
79

1000

[

b−1
1 (7µ+ 8, σ1(7µ+ 5)) + b−1

1 (7µ+ 8, σ1(7µ+ 6))

+b−1
1 (7µ+ 8, σ1(7µ+ 7)) + b−1

1 (7µ+ 8, σ1(7µ+ 8))

]

+
39

1000

[

b−1
1 (7µ+ 8, σ2(7µ+ 5)) + b−1

1 (7µ+ 8, σ2(7µ+ 6))

+b−1
1 (7µ+ 8, σ2(7µ+ 7)) + b−1

1 (7µ+ 8, σ2(7µ+ 8))

]

+
19

1000

[

b−1
1 (7µ+ 8, σ3(7µ+ 5)) + b−1

1 (7µ+ 8, σ3(7µ+ 6))

+b−1
1 (7µ+ 8, σ3(7µ+ 7)) + b−1

1 (7µ+ 8, σ3(7µ+ 8))

]

=
79

1000

[

b−1
1 (7µ+ 8, 7µ+ 9) + b−1

1 (7µ+ 8, 7µ+ 8)

+b−1
1 (7µ+ 8, 7µ+ 8) + b−1

1 (7µ+ 8, 7µ+ 13)

]

+
39

1000

[

b−1
1 (7µ+ 8, 7µ+ 10) + b−1

1 (7µ+ 8, 7µ+ 9)

+b−1
1 (7µ+ 8, 7µ+ 9) + b−1

1 (7µ+ 8, 7µ+ 14)

]

+
19

1000

[

b−1
1 (7µ+ 8, 7µ+ 11) + b−1

1 (7µ+ 8, 7µ+ 10)

+b−1
1 (7µ+ 8, 7µ+ 10) + b−1

1 (7µ+ 8, 7µ+ 15)

]

=
79

1000

[

1

1− 0.137
+ 1 + 1 +

1

(1− 0.137)
5

]

+
39

1000

[

1

(1− 0.137)
2 + 2 ·

1

1− 0.137
+

1

(1− 0.137)
6

]

+
19

1000

[

1

(1− 0.137)
3 + 2 ·

1

(1− 0.137)
2 +

1

(1− 0.137)
7

]
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≃ 0.7856.

Therefore

lim sup
n→∞

ρ(n)
∑

j=n

3
∑

i=1

qi(j)b
−1
1 (ρ(n), σi(j)) ≃ 0.7856 < 1.

Finally, by using algorithms on MATLAB software, we obtain

lim sup
n→∞

ρ(n)
∑

j=n

Q(j)

σ(j)
∏

i=ρ(n)+1

1

1−Q1(i)
≃ 0.8347 < 1

and

lim sup
n→∞

ρ(n)
∑

ℓ=n

Q(ℓ)

σ(ℓ)
∏

i=ρ(n)+1

1

1−Q1(i)
≃ 0.9709 < 1.

That is, none of conditions (1.14), (1.17) (for r = 1), (1.18) (for ℓ = 1) and (1.20) (for

w = 1) is satisfied.

Comments. It is worth noting that condition (3.22) achieves a significant im-

provement, approximately 86.68%, over the corresponding condition (1.14). We get

that estimate by comparing the values on the left-side of these conditions. The im-

provement over the conditions (1.17), (1.18) and (1.20) is very satisfactory, around

30.22%, 22.56% and 5.37%, respectively.

Finally, observe that conditions (1.17), (1.18) and (1.20) do not lead to oscillation

from the first iteration. On the contrary, condition (3.22) is satisfied from the first

iteration. This means that our condition is better and much faster than (1.17), (1.18)

and (1.20).

Remark 19. Similarly, one can construct examples to illustrate the other main

results.
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